
W4118: concurrency error 

Instructor: Junfeng Yang 



Goals 

 Identify patterns of concurrency errors (so 
you can avoid them in your code) 

 

 Learn techniques to detect concurrency errors 
(so you can apply these techniques to your 
code) 

1 



Concurrency error classification 

 Deadlock: a situation wherein two or more 
processes are never able to proceed because 
each is waiting for the others to do something 
 Key: circular wait 

 

 Race condition: a timing dependent error 
involving shared state 
 Data race: concurrent accesses to a shared variable 

and at least one access is a write 

 Atomicity bugs: code does not enforce the atomicity 
programmers intended for a group of memory accesses 

 Order bugs: code does not enforce the order 
programmers intended for a group of memory accesses 

2 



3 



Writing correct parallel code is hard! 

 Too many schedules (exponential to program 
size), hard to reason about 

 

 Correct parallel code does not compose  
can’t divide-and-conquer 
 Synchronization cross-cuts abstraction boundaries  

 Local correctness may not yield global correctness.  

 

 We’ll see a few error examples next 

4 



Example 1: good + bad  bad 

 Result: race between deposit() and withdraw() 

withdraw() // no synchronization 
         
        -- *balance; 
         

 

deposit() // properly sycnrhonized 
        lock(); 
        ++ balance; 
        unlock(); 
 

 

5 



Example 2: good + good  bad 

 Compose single-account operations to operations on two accounts 
 deposit(), withdraw() and balance() are properly synchronized 
 sum() and transfer()?  Race 

int sum(Account *a1, Account *a2) 
{ 
        return balance(a1) + balance(a2) 
} 
void transfer(Account *a1, Account *a2) 
{         
       withdraw(a1);   
       deposit(a2); 
} 

int balance(Account *acnt) 
{ 
       int b; 
       lock(acnt->guard); 
       b = acnt->balance; 
       unlock(acnt->guard); 
       return b; 
} 

void withdraw(Account *acnt) 
{         
        lock(acnt->guard); 
        -- acnt->balance; 
        unlock(acnt->guard); 
} 

void deposit(Account *acnt) 
{         
        lock(acnt->guard); 
        ++ acnt->balance; 
        unlock(acnt->guard); 
} 

6 



Example 3: good + good  deadlock 

 2nd attempt: use locks in sum() 

 One sum() call, correct 

 Two concurrent sum() calls?  Deadlock 

int sum(Account *a1, Account *a2) 
{         
        int s; 
        lock(a1->guard); 
        lock(a2->guard); 
        s = a1->balance; 
        s += a2->balance; 
        unlock(a2->guard); 
        unlock(a1->guard); 
        return s 
} 

     T1: 
sum(a1, a2) 

     T2: 
sum(a2, a1) 

7 



Example 4: monitors don’t compose as well 

 Usually bad to hold lock (in this case Monitor 
lock) across abstraction boundary 

Monitor M1 { 
    cond_t cv; 
    foo() { 
          // releases monitor lock 
          wait(cv);  
    } 
    bar() { 
           signal(cv); 
    } 
};’ 
 

Monitor M2 { 
    f1() {M1.foo();} 
    f2() {M1.bar();} 
};’ 
 

     T1: 
M2.f1(); 

     T2: 
M2.f2(); 

8 



Outline 

 Concurrency error patterns 
 

 Concurrency error detection 
 Deadlock detection 

 Data race detection 

9 



Deadlock detection 

 Root cause of deadlock:  circular wait 
 

 Detecting deadlock manually: system halts 
 Can run debugger and see the wait cycle 

 

 Detecting deadlock automatically: resource 
allocation graph 

 

 Detecting potential deadlocks automatically: 
lock order 

10 



Resource allocation graph 

 Nodes 
 Locks (resources) 
 Threads (processes) 

 Edges 
 Assignment edge: lock->thread 

• Removed on unlock() 

 Request edge: thread->lock 
• Converted to assignment edges on 

lock() return 

 Cycles  deadlock 
 

 Problem: can we detect potential 
deadlocks before we run into 
them? 
 

a1->guard 

a2->guard 

T1: 
sum(a1,a2) 

T2: 
sum(a2,a1) 

Resource allocation graph for 
example 3 deadlock 

11 



Detecting potential deadlocks 

 Can deduce lock order: the order in which 
locks are acquired 
 For each lock acquired, order with locks held 

 Cycles in lock order  potential deadlock 

a1->guard 

a2->guard 

     T1: 
sum(a1, a2)       // locks held 
lock(a1->guard) // {} 
lock(a2->guard) // {a1->guard} 

     T2: 
sum(a1, a2)       // locks held 
 
 
 
lock(a2->guard)  // {} 
lock(a1->guard) // {a2->guard} 

Cycle  Potential deadlock! 

12 



Outline 

 Concurrency error patterns 
 

 Concurrency error detection 
 Deadlock detection 

 Data race detection 

13 



Race detection 

 We will look at only data race detection 
 Techniques exist to detect atomicity and order 

bugs, but we won’t discuss them in this class 

 

 Two approaches to data race detection 
 Happens-before 

 Lockset (Eraser’s algorithm) 

14 



Happens-before definition 

 Event A happens-before event B if 
 B follows A in the same thread 

 A inT1, and B inT2, and a synchronization event C 
such that 

• A happens in T1 

• C is after A in T1 and before B in T2 

• B in T2 
 

15 



Happens-before race detection 

 Tools before eraser are based on happens-
before 

 

 Sketch 
 Monitor all data accesses and synch operations 

 Watch for 
• Access of v in thread T1 

• Access of v in thread T2 

• No synchronization operation between the accesses 

• One of the accesses is write 

 

16 



Problems with happens-before 

 Problem I: expensive 
 Requires per thread 

• List of accesses to shared data 

• List of synch operations 

 

 Problem II: false negatives 
 Happens-before looks for actual 

data races (moment in time when 
multiple threads access  shared 
data w/o synchronization) 

 Ignores programmer intention;  
the synchronization op between 
accesses may happen to be there 

    T1: 
 
++ y 
lock(m) 
unlock(m) 

   T2: 
 
 
 
 
lock(m); 
unlock(m); 
++ y; 

17 



Eraser: a different approach 

 Idea: check invariants 
 Violations of invariants  likely data races 

 

 Invariant: the locking discipline 
 Assume: accesses to shared variables are protected 

by locks 
 Every access is protected by at least one lock 
 Any access unprotected by a lock  an error 

 

 Problem: how to find out what lock protects a 
variable? 
 Linkage between locks and variables undeclared 

18 



Lockset algorithm: infer the locks 

 Intuition: it must be one of the locks held at 
the time of access 

 

 C(v): a set of candidate locks for protecting v 

 Initialize C(v) to the set of all locks 

 On access to v by thread t, refine C(v) 
 C(v) = C(v) ^ locks_held(t) 

 If C(v) = {}, report error 
 

 

 Sounds good!  But … 

19 



Problems w/ simple lockset algorithm  

 Initialization 
 When shared data is first created and initialized 

 

 Read-shared data 
 Shared data is only read (once initialized) 

 

 Read/write lock 
 We’ve seen it last week 

 Locks can be held in either write mode or read mode 

 

20 



Initialization 

 When shared data first created, only one 
thread can see it  locking unnecessary with 
only one thread 

 

 Solution: do not refine  C(v) until the creator 
thread finishes initialization and makes the 
shared data accessible by other threads 

 

 How do we know when initialization is done? 
 We don’t … 
 Approximate with when a second thread accesses 

the shared data 

21 



Read-shared data 

 Some data is only read (once initialized)  
locking unnecessary with read-only data 

 

 Solution: refine C(v), but don’t report warnings 
 Question: why refine C(v) in case of read?  

 To catch the case when 
• C(v) is {} for shared read 

• A thread writes to v 

 

 

 

 

 

 
22 



State transitions 

 Each shared data value (memory location) is in 
one of the four states 

Virgin 

Exclusive 

Shared/ 

Modified 
Shared 

write, first thread 

Read, new 
thread 

write, new thread 

write 

Refine 
C(v) and 
check 

Refine C(v), 
no check 

23 



Read-write locks 

 Read-write locks allow a single writer and 
multiple readers  

 

 Locks can be held in read mode and write mode 
 read_lock(m);  read v;  read_unlock(m) 

 write_lock(m);  write v;  write_unlock(m) 
 

 Locking discipline 
 Lock can be held in some mode (read or write) for 

read access 

 Lock must be held in write mode for write access 
• A write access with lock held in read mode   error 

24 



Handling read-write locks 

 Idea: distinguish read and write access when 
refining lockset 

 

 On each read of v by thread t (same as 
before) 
 C(v) = C(v) ^ locks_held(t) 

 If C(v) = {}, report error 
 

 On each write of v by thread t 
 C(v) = C(v) ^ write_locks_held(t) 

 If C(v) = {}, report error 

25 



Implementing eraser 

 Binary tool 
 Pros: does not require source 
 Cons: lose source semantics 

• Track memory access at word granularity 
 

 How to monitor memory access? 
 Binary instrumentation 

 

 How to track lockset efficiently? 
 A shadow word for each memory word 
 Each shadow word stores a lockset index 
 A table maps lockset index to a set of locks 
 Assumption: not many distinct locksets 

26 



Results 

 Eraser works 
 Find bugs in mature software 
 Though many limitations 

• Major: benign races (intended races) 
 

 However, slow 
 Monitoring each memory access: costly, 10-30X slowdown 
 Can be made faster 

• With static analysis 
• Smarter instrumentation (e.g., sampling) 

 

 Lockset algorithm is influential, used by many tools 
 E.g.  Helgrind (a race detection tool in Valgrind) 

 

27 



Benign race examples 

 Double-checking locking 
 Faster if v is often 0 

 Doesn’t work with 
compiler/hardware reordering 

 

 

 

 Statistical counter 
 ++ nrequests 

if(v) { // race 
        lock(m); 
        if(v) 
                …; 
        unlock(m); 
} 

28 


