
W4118: concurrency error

Instructor: Junfeng Yang

Goals

 Identify patterns of concurrency errors (so
you can avoid them in your code)

 Learn techniques to detect concurrency errors
(so you can apply these techniques to your
code)

1

Concurrency error classification

 Deadlock: a situation wherein two or more
processes are never able to proceed because
each is waiting for the others to do something
 Key: circular wait

 Race condition: a timing dependent error
involving shared state
 Data race: concurrent accesses to a shared variable

and at least one access is a write

 Atomicity bugs: code does not enforce the atomicity
programmers intended for a group of memory accesses

 Order bugs: code does not enforce the order
programmers intended for a group of memory accesses

2

3

Writing correct parallel code is hard!

 Too many schedules (exponential to program
size), hard to reason about

 Correct parallel code does not compose
can’t divide-and-conquer
 Synchronization cross-cuts abstraction boundaries

 Local correctness may not yield global correctness.

 We’ll see a few error examples next

4

Example 1: good + bad bad

 Result: race between deposit() and withdraw()

withdraw() // no synchronization

 -- *balance;

deposit() // properly sycnrhonized
 lock();
 ++ balance;
 unlock();

5

Example 2: good + good bad

 Compose single-account operations to operations on two accounts
 deposit(), withdraw() and balance() are properly synchronized
 sum() and transfer()? Race

int sum(Account *a1, Account *a2)
{
 return balance(a1) + balance(a2)
}
void transfer(Account *a1, Account *a2)
{
 withdraw(a1);
 deposit(a2);
}

int balance(Account *acnt)
{
 int b;
 lock(acnt->guard);
 b = acnt->balance;
 unlock(acnt->guard);
 return b;
}

void withdraw(Account *acnt)
{
 lock(acnt->guard);
 -- acnt->balance;
 unlock(acnt->guard);
}

void deposit(Account *acnt)
{
 lock(acnt->guard);
 ++ acnt->balance;
 unlock(acnt->guard);
}

6

Example 3: good + good deadlock

 2nd attempt: use locks in sum()

 One sum() call, correct

 Two concurrent sum() calls? Deadlock

int sum(Account *a1, Account *a2)
{
 int s;
 lock(a1->guard);
 lock(a2->guard);
 s = a1->balance;
 s += a2->balance;
 unlock(a2->guard);
 unlock(a1->guard);
 return s
}

 T1:
sum(a1, a2)

 T2:
sum(a2, a1)

7

Example 4: monitors don’t compose as well

 Usually bad to hold lock (in this case Monitor
lock) across abstraction boundary

Monitor M1 {
 cond_t cv;
 foo() {
 // releases monitor lock
 wait(cv);
 }
 bar() {
 signal(cv);
 }
};’

Monitor M2 {
 f1() {M1.foo();}
 f2() {M1.bar();}
};’

 T1:
M2.f1();

 T2:
M2.f2();

8

Outline

 Concurrency error patterns

 Concurrency error detection
 Deadlock detection

 Data race detection

9

Deadlock detection

 Root cause of deadlock: circular wait

 Detecting deadlock manually: system halts
 Can run debugger and see the wait cycle

 Detecting deadlock automatically: resource
allocation graph

 Detecting potential deadlocks automatically:
lock order

10

Resource allocation graph

 Nodes
 Locks (resources)
 Threads (processes)

 Edges
 Assignment edge: lock->thread

• Removed on unlock()

 Request edge: thread->lock
• Converted to assignment edges on

lock() return

 Cycles deadlock

 Problem: can we detect potential
deadlocks before we run into
them?

a1->guard

a2->guard

T1:
sum(a1,a2)

T2:
sum(a2,a1)

Resource allocation graph for
example 3 deadlock

11

Detecting potential deadlocks

 Can deduce lock order: the order in which
locks are acquired
 For each lock acquired, order with locks held

 Cycles in lock order potential deadlock

a1->guard

a2->guard

 T1:
sum(a1, a2) // locks held
lock(a1->guard) // {}
lock(a2->guard) // {a1->guard}

 T2:
sum(a1, a2) // locks held

lock(a2->guard) // {}
lock(a1->guard) // {a2->guard}

Cycle Potential deadlock!

12

Outline

 Concurrency error patterns

 Concurrency error detection
 Deadlock detection

 Data race detection

13

Race detection

 We will look at only data race detection
 Techniques exist to detect atomicity and order

bugs, but we won’t discuss them in this class

 Two approaches to data race detection
 Happens-before

 Lockset (Eraser’s algorithm)

14

Happens-before definition

 Event A happens-before event B if
 B follows A in the same thread

 A inT1, and B inT2, and a synchronization event C
such that

• A happens in T1

• C is after A in T1 and before B in T2

• B in T2

15

Happens-before race detection

 Tools before eraser are based on happens-
before

 Sketch
 Monitor all data accesses and synch operations

 Watch for
• Access of v in thread T1

• Access of v in thread T2

• No synchronization operation between the accesses

• One of the accesses is write

16

Problems with happens-before

 Problem I: expensive
 Requires per thread

• List of accesses to shared data

• List of synch operations

 Problem II: false negatives
 Happens-before looks for actual

data races (moment in time when
multiple threads access shared
data w/o synchronization)

 Ignores programmer intention;
the synchronization op between
accesses may happen to be there

 T1:

++ y
lock(m)
unlock(m)

 T2:

lock(m);
unlock(m);
++ y;

17

Eraser: a different approach

 Idea: check invariants
 Violations of invariants likely data races

 Invariant: the locking discipline
 Assume: accesses to shared variables are protected

by locks
 Every access is protected by at least one lock
 Any access unprotected by a lock an error

 Problem: how to find out what lock protects a
variable?
 Linkage between locks and variables undeclared

18

Lockset algorithm: infer the locks

 Intuition: it must be one of the locks held at
the time of access

 C(v): a set of candidate locks for protecting v

 Initialize C(v) to the set of all locks

 On access to v by thread t, refine C(v)
 C(v) = C(v) ^ locks_held(t)

 If C(v) = {}, report error

 Sounds good! But …

19

Problems w/ simple lockset algorithm

 Initialization
 When shared data is first created and initialized

 Read-shared data
 Shared data is only read (once initialized)

 Read/write lock
 We’ve seen it last week

 Locks can be held in either write mode or read mode

20

Initialization

 When shared data first created, only one
thread can see it locking unnecessary with
only one thread

 Solution: do not refine C(v) until the creator
thread finishes initialization and makes the
shared data accessible by other threads

 How do we know when initialization is done?
 We don’t …
 Approximate with when a second thread accesses

the shared data

21

Read-shared data

 Some data is only read (once initialized)
locking unnecessary with read-only data

 Solution: refine C(v), but don’t report warnings
 Question: why refine C(v) in case of read?

 To catch the case when
• C(v) is {} for shared read

• A thread writes to v

22

State transitions

 Each shared data value (memory location) is in
one of the four states

Virgin

Exclusive

Shared/

Modified
Shared

write, first thread

Read, new
thread

write, new thread

write

Refine
C(v) and
check

Refine C(v),
no check

23

Read-write locks

 Read-write locks allow a single writer and
multiple readers

 Locks can be held in read mode and write mode
 read_lock(m); read v; read_unlock(m)

 write_lock(m); write v; write_unlock(m)

 Locking discipline
 Lock can be held in some mode (read or write) for

read access

 Lock must be held in write mode for write access
• A write access with lock held in read mode error

24

Handling read-write locks

 Idea: distinguish read and write access when
refining lockset

 On each read of v by thread t (same as
before)
 C(v) = C(v) ^ locks_held(t)

 If C(v) = {}, report error

 On each write of v by thread t
 C(v) = C(v) ^ write_locks_held(t)

 If C(v) = {}, report error

25

Implementing eraser

 Binary tool
 Pros: does not require source
 Cons: lose source semantics

• Track memory access at word granularity

 How to monitor memory access?
 Binary instrumentation

 How to track lockset efficiently?
 A shadow word for each memory word
 Each shadow word stores a lockset index
 A table maps lockset index to a set of locks
 Assumption: not many distinct locksets

26

Results

 Eraser works
 Find bugs in mature software
 Though many limitations

• Major: benign races (intended races)

 However, slow
 Monitoring each memory access: costly, 10-30X slowdown
 Can be made faster

• With static analysis
• Smarter instrumentation (e.g., sampling)

 Lockset algorithm is influential, used by many tools
 E.g. Helgrind (a race detection tool in Valgrind)

27

Benign race examples

 Double-checking locking
 Faster if v is often 0

 Doesn’t work with
compiler/hardware reordering

 Statistical counter
 ++ nrequests

if(v) { // race
 lock(m);
 if(v)
 …;
 unlock(m);
}

28

