
W4118: locks

Instructor: Junfeng Yang

Outline

 Critical section requirements

 Implementing locks

 Readers-writer lock

Avoid race conditions

 Critical section: a
segment of code that
accesses a shared
variable (or
resource)

 No more than one
thread in critical
section at a time.

// ++ balance
mov 0x8049780,%eax
add $0x1,%eax
mov %eax,0x8049780
…

// -- balance
mov 0x8049780,%eax
sub $0x1,%eax
mov %eax,0x8049780
…

Critical section requirements

 Safety (aka mutual exclusion): no more than one
thread in critical section at a time.

 Liveness (aka progress):
 If multiple threads simultaneously request to enter

critical section, must allow one to proceed
 Must not depend on threads outside critical section

 Bounded waiting (aka starvation-free)
 Must eventually allow waiting thread to proceed

 Makes no assumptions about the speed and number
of CPU
 However, assumes each thread makes progress

Critical section desirable properties

 Efficient: don’t consume too much resource while
waiting
 Don’t busy wait (spin wait). Better to relinquish CPU

and let other thread run

 Fair: don’t make one thread wait longer than
others. Hard to do efficiently

 Simple: should be easy to use

Implementing critical section using locks

 lock(l): acquire lock exclusively; wait if not
available

 unlock(l): release exclusive access to lock

void* deposit(void *arg)
{
 int i;
 for(i=0; i<1e7; ++i) {
 pthread_mutex_lock(&l);
 ++ balance;
 pthread_mutex_unlock(&l);
 }
}

void* withdraw(void *arg)
{
 int i;
 for(i=0; i<1e7; ++i) {
 pthread_mutex_lock(&l);
 -- balance;
 pthread_mutex_unlock(&l);
 }
}

pthread_mutex_t l = PTHREAD_MUTEX_INITIALIZER

Outline

 Critical section requirements

 Implementing locks

 Readers-writer lock

Implementing locks: version 1

 Can cheat on uniprocessor: implement locks by disabling
and enabling interrupts

 Good: simple!

 Bad:
 Both operations are privileged, can’t let user program use

 Doesn’t work on multiprocessors

lock()
{
 disable_interrupt();
}

unlock()
{
 enable_interrupt();
}

Implementing locks: version 2

 Peterson’s algorithm: software-based lock
implementation

 Good: doesn’t require much from hardware

 Only assumptions:
 Loads and stores are atomic

 They execute in order

 Does not require special hardware instructions

Software-based lock: 1st attempt

 Idea: use one flag, test then set; if unavailable, spin-wait

 Problem?
 Not safe: both threads can be in critical section
 Not efficient: busy wait, particularly bad on uniprocessor (will

solve this later)

lock()
{
 while (flag == 1)
 ; // spin wait
 flag = 1;
}

unlock()
{
 flag = 0;
}

// 0: lock is available, 1: lock is held by a thread
int flag = 0;

Bug in software lock, 1st attempt

lock()
{
 1: while (flag == 1)
 ; // spin wait
 2: flag = 1;
}

unlock()
{
 3: flag = 0;
}

Software-based lock

 2nd attempt: use per thread flags, set then test, to
achieve mutual exclusion
 Not live: can deadlock

 3rd attempt: strict alternation to achieve mutual
exclusion
 Not live: depends on threads outside critical section

 Final attempt: combine above ideas

 Problem
 It’s hard!
 N>2 threads? (Lamport’s Bakery algorithm)
 Modern out of order processors?

Implementing locks: version 3

 Problem with the test-then-set approach: test and set are not atomic

 Fix: special atomic operation
 int test_and_set (int *lock) {
 int old = *lock;
 *lock = 1;
 return old;
 }
 Atomically returns *lock and sets *lock to 1

lock()
{
 while(test_and_set(&flag))
 ;
}

unlock()
{
 flag = 0;
}

// 0: lock is available, 1: lock is held by a thread
int flag = 0;

Implementing test_and_set on x86

 xchg reg, addr: atomically swaps *addr and reg
 Most spin locks on x86 are implemented using this

instruction
 xv6 spinlock.h, spinlock.c, x86.h

long test_and_set(volatile long* lock)
{
 int old;
 asm("xchgl %0, %1"
 : "=r"(old), "+m"(*lock) // output
 : "0"(1) // input
 : "memory“ // can clobber anything in memory
);
 return old;
}

Spin-wait or block?

 Problem: waste CPU cycles
 Worst case: prev thread holding a busy-wait lock gets

preempted, other threads try to acquire the same lock

 On uniprocessor: should not use spin-lock
 Yield CPU when lock not available (need OS support)

 On multi-processor
 Thread holding lock gets preempted ???

 Correct action depends on how long before lock release
• Lock released “quickly” ?

• Lock released “slowly” ?

Problem with simple yield

 Problem:
 Still a lot of context switches: thundering herd

 Starvation possible

 Why? No control over who gets the lock next

 Need explicit control over who gets the lock

lock()
{
 while(test_and_set(&flag))
 yield();
}

Implementing locks: version 4

 The idea: add thread to queue when lock
unavailable; in unlock(), wake up one thread in
queue

 Problem I: lost wakeup
 Fix: use a spin_lock or lock w/ simple yield!
 Doesn’t avoid spin-wait, but make wait time short

 Problem II: wrong thread gets lock
 Fix: unlock() directly transfers lock to waiting thread

lock() {
 while (test_and_set(&flag)))
 add myself to wait queue
 yield
 …
}

unlock() {
 flag = 0
 if(any thread in wait queue)
 wake up one wait thread
 …
}

Lock from another
thread?

Lost wakeup

lock() {
 1: while (test_and_set(&flag)))
 2: add myself to wait queue
 3: yield
 …
}

unlock() {
 4: flag = 0
 5: if(any thread in wait queue)
 6: wake up one wait thread
 …
}

Wrong thread gets lock

lock() {
 1: while (test_and_set(&flag)))
 2: add myself to wait queue
 3: yield
 …
}

unlock() {
 4: flag = 0
 5: if(any thread in wait queue)
 6: wake up one wait thread
 …
}

Implementing locks: version 4, the code

typedef struct __mutex_t {
 int flag; // 0: mutex is available, 1: mutex is not available
 int guard; // guard lock to avoid losing wakeups
 queue_t *q; // queue of waiting threads
} mutex_t;

void lock(mutex_t *m) {
 while (test_and_set(m->guard))
 ; //acquire guard lock by spinning
 if (m->flag == 0) {
 m->flag = 1; // acquire mutex
 m->guard = 0;
 } else {
 enqueue(m->q, self);
 m->guard = 0;
 yield();
 }
}

void unlock(mutex_t *m) {
 while (test_and_set(m->guard))
 ;
 if (queue_empty(m->q))
 // release mutex; no one wants mutex
 m->flag = 0;
 else
 // direct transfer mutex to next thread
 wakeup(dequeue(m->q));
 m->guard = 0;
}

Outline

 Critical section requirements

 Implementing locks

 Readers-writer lock

Readers-Writers problem

 A reader is a thread that needs to look at
the shared data but won’t change it

 A writer is a thread that modifies the
shared data

 Example: making an airline reservation

 Courtois et al 1971

Solving Readers-Writers w/ regular lock

 Problem: unnecessary synchronization
 Only one writer can be active at a time
 However, any number of readers can be active

simultaneously!

 Solution: acquire lock for read mode and write mode

lock_t lock;

Writer

 lock (&lock);
 . . .
 // write shared data
 . . .
 unlock (&lock);

Reader

 lock (&lock);
 . . .
 // read shared data
 . . .
 unlock (&lock);

Readers-writer lock

 read_lock: acquires lock in read (shared) mode
 If lock is not acquired or in read mode success
 Otherwise, lock is in write mode wait

 write_lock: acquires lock in write (exclusive) mode
 If lock is not acquire success
 Otherwise wait

rwlock_t lock;

Writer

 write_lock (&lock);
 . . .
 // write shared data
 . . .
 write_unlock (&lock);

Reader

 read_lock (&lock);
 . . .
 // read shared data
 . . .
 read_unlock (&lock);

Implementing readers-writer lock

struct rwlock_t {
 int nreader; // init to 0
 lock_t guard; // init to unlocked
 lock_t lock; // init to unlocked
};

write_lock(rwlock_t *l)
{
 lock(&l->lock);
}

write_unlock(rwlock_t *l)
{
 unlock(&l->lock);
}

read_lock(rwlock_t *l)
{
 lock(&l->guard);
 ++ nreader;
 if(nreader == 1) // first reader
 lock(&l->lock);
 unlock(&l->guard);
}

read_unlock(rwlock_t *l)
{
 lock(&l->guard);
 -- nreader;
 if(nreader == 0) // last reader
 unlock(&l->lock);
 unlock(&l->guard);
}

Problem: may starve writer!

Backup slides

Software-based locks: 2nd attempt

 Idea: use per thread flags, set then test, to achieve
mutual exclusion

 Why doesn’t work?
 Not live: can deadlock

lock()
{
 flag[self] = 1; // I need lock
 while (flag[1- self] == 1)
 ; // spin wait
}

unlock()
{
 // not any more
 flag[self] = 0;
}

// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

Software-based locks: 3rd attempt

 Idea: strict alternation to achieve mutual exclusion

 Why doesn’t work?
 Not live: depends on threads outside critical section

lock()
{
 // wait for my turn
 while (turn == 1 – self)
 ; // spin wait
}

unlock()
{
 // I’m done. your turn
 turn = 1 – self;
}

// whose turn is it?
int turn = 0;

Software-based locks: final attempt
(Peterson’s algorithm)

 Why works?
 Safe?

 Live?

 Bounded wait?

// whose turn is it?
int turn = 0;
// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

lock()
{
 flag[self] = 1; // I need lock
 turn = 1 – self;
 // wait for my turn
 while (flag[1-self] == 1
 && turn == 1 – self)
 ; // spin wait while the
 // other thread has intent
 // AND it is the other
 // thread’s turn
}

unlock()
{
 // not any more
 flag[self] = 0;
}

