
W4118: threads and synchronization

Instructor: Junfeng Yang

Outline

 Thread definition

 Multithreading models

 Synchronization

2

Threads

 Threads: separate streams of executions that
share an address space
 Allows one process to have multiple point of

executions, can potentially use multiple CPUs

 Thread control block (TCB)
 Program counter (EIP on x86)

 Other registers

 Stack

 Very similar to processes, but different

3

Single and multithreaded processes

Threads in one process share code, data, files, …

4

Why threads?

 Express concurrency
 Web server (multiple requests), Browser (GUI +

network I/O + rendering), …

 Efficient communication
 Using a separate process for each task can be

heavyweight

for(;;) {
 struct request *req = get_request();
 create_thread(process_request, req);
}

5

Threads vs. Processes

 A thread has no data
segment or heap

 A thread cannot live on its
own, it must live within a
process

 There can be more than one
thread in a process, the first
thread calls main() & has the
process’s stack

 Inexpensive creation

 Inexpensive context
switching

 Efficient communication

 If a thread dies, its stack is
reclaimed

• A process has code/data/heap &
other segments

• A process has at least one
thread

• Threads within a process share
code/data/heap, share I/O, but
each has its own stack &
registers

• Expensive creation

• Expensive context switching

• Interprocess communication can
be expressive

• If a process dies, its resources
are reclaimed & all threads die

6

Using threads

 Through thread library
 E.g. pthread, Win32 thread

 Common operations
 create/terminate

 suspend/resume

 priorities and scheduling

 synchronization

7

Example pthread functions

 int pthread_create(pthread_t *thread, const pthread_attr_t
*attr, void *(*start_routine)(void*), void *arg);

 Create a new thread to run start_routine on arg

 thread holds the new thread’s id

 Can be customized via attr

 int pthread_join(pthread_t thread, void **value_ptr);

 Wait for thread termination, and retrieve return value in
value_ptr

 void pthread_exit(void *value_ptr);

 Terminates the calling thread, and returns value_ptr to
threads waiting in pthread_join

8

pthread creation example

void* thread_fn(void *arg)
{
 int id = (int)arg;
 printf("thread %d runs\n", id);
 return NULL;
}
int main()
{
 pthread_t t1, t2;
 pthread_create(&t1, NULL, thread_fn, (void*)1);
 pthread_create(&t2, NULL, thread_fn, (void*)2);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return 0;
} One way to view threads: function

calls, except caller doesn’t wait for
callee; instead, both run concurrently

$ gcc –o threads threads.c –Wall –lpthread
$ threads
thread 1 runs
thread 2 runs

9

Outline

 Thread definition

 Multithreading models

 Synchronization

10

Multithreading models

 Where to support threads?

 User threads: thread management done by
user-level threads library; kernel knows
nothing

 Kernel threads: threads directly supported by
the kernel
 Virtually all modern OS support kernel threads

11

User vs. Kernel Threads

Example from Tanenbaum, Modern Operating Systems 3 e,

(c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

12

User vs. Kernel Threads (cont.)

 Pros: fast, no system call for
creation, context switch

 Cons: kernel doesn’t know 
one thread blocks, all threads
in the process blocks

• Cons: slow, kernel does
creation, scheduling, etc

• Pros: kernel knows  one
thread blocks, schedule
another

No free lunch!

13

Multiplexing User-Level Threads

 A thread library must map user threads to kernel threads

 Big picture:
 kernel thread: physical concurrency, how many cores?

 User thread: application concurrency, how many tasks?

 Different mappings exist, representing different tradeoffs

 Many-to-One: many user threads map to one kernel
thread, i.e. kernel sees a single process

 One-to-One: one user thread maps to one kernel thread

 Many-to-Many: many user threads map to many kernel
threads

14

Many-to-One

 Many user-level threads
map to one kernel thread

 Pros
 Fast: no system calls

required
 Portable: few system

dependencies

 Cons
 No parallel execution of

threads
• All thread block when one

waits for I/O

15

One-to-One

 One user-level thread
maps to one kernel
thread

 Pros: more concurrency
 When one blocks, others

can run
 Better multicore or

multiprocessor
performance

 Cons: expensive
 Thread operations involve

kernel
 Thread need kernel

resources

16

Many-to-Many

 Many user-level threads
map to many kernel
threads (U >= K)
 Supported some versons

of BSD, and Windows

 Pros: flexible
 OS creates kernel threads

for physical concurrency
 Applications creates user

threads for application
concurrency

 Cons: complex
 Most programs use 1:1

mapping anyway

17

Two-level

 Similar to M:M,
except that a user
thread may be
bound to kernel
thread

18

Other thread design issues

 Semantics of fork() system calls

 Does fork() duplicate only the calling thread or
all threads?

• Running threads? Threads trapped in system call?

 Linux fork() copies only the calling thread

 Signal handling

 Which thread to deliver signals to?

 Segmentation fault kills process or thread?

19

Thread pool

 Problem:
 Creating a thread for each request: costly

• And, the created thread exits after serving a request

 More user request  More threads, server overload

 Solution: thread pool
 Pre-create a number of threads waiting for work
 Wake up thread to serve user request --- faster than

thread creation
 When request done, don’t exit --- go back to pool
 Limits the max number of threads

20

Outline

 Thread definition

 Multithreading models

 Synchronization

21

Banking example
int balance = 0;
int main()
{
 pthread_t t1, t2;
 pthread_create(&t1, NULL, deposit, (void*)1);
 pthread_create(&t2, NULL, withdraw, (void*)2);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf(“all done: balance = %d\n”, balance);
 return 0;
}

void* deposit(void *arg)
{
 int i;
 for(i=0; i<1e7; ++i)
 ++ balance;
}

void* withdraw(void *arg)
{
 int i;
 for(i=0; i<1e7; ++i)
 -- balance;
}
 22

Results of the banking example

$ gcc –Wall –lpthread –o bank bank.c
$ bank
all done: balance = 0
$ bank
all done: balance = 140020
$ bank
all done: balance = -94304
$ bank
all done: balance = -191009

 Why?

23

A closer look at the banking example

$ objdump –d bank
…
08048464 <deposit>:
… // ++ balance
8048473: a1 80 97 04 08 mov 0x8049780,%eax
8048478: 83 c0 01 add $0x1,%eax
804847b: a3 80 97 04 08 mov %eax,0x8049780
…

0804849b <withdraw>:
… // -- balance
80484aa: a1 80 97 04 08 mov 0x8049780,%eax
80484af: 83 e8 01 sub $0x1,%eax
80484b2: a3 80 97 04 08 mov %eax,0x8049780
…

24

One possible schedule

mov 0x8049780,%eax

add $0x1,%eax

mov %eax,0x8049780

mov 0x8049780,%eax

sub $0x1,%eax

mov %eax,0x8049780

time

CPU 0 CPU 1

One deposit and one withdraw,
balance unchanged. Correct

eax0: 0

eax0: 1

balance: 0

balance: 1

eax1: 1

eax1: 0

balance: 0

25

Another possible schedule

mov 0x8049780,%eax

add $0x1,%eax

mov %eax,0x8049780

mov 0x8049780,%eax

sub $0x1,%eax

mov %eax,0x8049780

time

CPU 0 CPU 1

eax0: 0

eax0: 1

balance: 0

balance: -1

eax1: 0

eax1: -1

balance: 1

One deposit and one withdraw,
balance becomes less. Wrong!

26

Race condition

 Definition: a timing dependent error involving
shared state

 Can be very bad
 “non-deterministic:” don’t know what the output will be,

and it is likely to be different across runs

 Hard to detect: too many possible schedules

 Hard to debug: “heisenbug,” debugging changes timing so
hides bugs (vs “bohr bug”

27

How to avoid race conditions?

 Atomic operations: no other
instructions can be interleaved,
executed “as a unit” “all or
none”, guaranteed by hardware

 A possible solution: create a
super instruction that does
what we want atomically
 add $0x1, 0x8049780

 Problem
 Can’t anticipate every possible

way we want atomicity

 Increases hardware
complexity, slows down other
instructions

// ++ balance
mov 0x8049780,%eax
add $0x1,%eax
mov %eax,0x8049780
…

// -- balance
mov 0x8049780,%eax
sub $0x1,%eax
mov %eax,0x8049780
…

28

Layered approach to synchronization

Hardware-provided low-level
atomic operations

High-level synchronization
primitives

Properly synchronized application

 Hardware provides simple low-level atomic
operations, upon which we can build high-level,
synchronization primitives, upon which we can
implement critical sections and build correct
multi-threaded/multi-process programs

29

Example synchronization primitives

 Low-level atomic operations
 On uniprocessor, disable/enable interrupt

 On x86, aligned load and store of words

 Special instructions:
• test-and-set (TSL), compare-and-swap (XCHG)

 High-level synchronization primitives
 Lock

 Semaphore

 Monitor

30

