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Threads 

 Threads: separate streams of executions that 
share an address space 
 Allows one process to have multiple point of 

executions, can potentially use multiple CPUs 
 

 Thread control block (TCB) 
 Program counter (EIP on x86) 

 Other registers 

 Stack 
 

 Very similar to processes, but different 
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Single and multithreaded processes 

Threads in one process share code, data, files, … 
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Why threads? 

 Express concurrency 
 Web server (multiple requests), Browser (GUI + 

network I/O + rendering), … 
 
 

 

 
 

 Efficient communication 
 Using a separate process for each task can be 

heavyweight 
 

for(;;) { 
    struct request *req = get_request(); 
    create_thread(process_request, req); 
} 
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Threads vs. Processes 

 A thread has no data 
segment or heap 

 A thread cannot live on its 
own, it must live within a 
process 

 There can be more than one 
thread in a process, the first 
thread calls main() & has the 
process’s stack 

 Inexpensive creation 

 Inexpensive context 
switching 

 Efficient communication 

 If a thread dies, its stack is 
reclaimed 

• A process has code/data/heap & 
other segments 

• A process has at least one 
thread 

 

• Threads within a process share 
code/data/heap, share I/O, but 
each has its own stack & 
registers 

 

• Expensive creation 

• Expensive context switching 

• Interprocess communication can 
be expressive 

• If a process dies, its resources 
are reclaimed & all threads die 
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Using threads 

 Through thread library 
 E.g. pthread, Win32 thread 

 

 Common operations 
 create/terminate 

 suspend/resume 

 priorities and scheduling 

 synchronization 
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Example pthread functions 

 int pthread_create(pthread_t *thread, const pthread_attr_t 
*attr, void *(*start_routine)(void*), void *arg); 

 Create a new thread to run start_routine on arg 

 thread holds the new thread’s id 

 Can be customized via attr 

 

 int pthread_join(pthread_t thread, void **value_ptr); 

 Wait for thread termination, and retrieve return value in 
value_ptr 

 

 void pthread_exit(void *value_ptr); 

 Terminates the calling thread, and returns value_ptr to 
threads waiting in pthread_join 
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pthread creation example 

void* thread_fn(void *arg) 
{         
        int id = (int)arg;         
        printf("thread %d runs\n", id); 
        return NULL; 
} 
int main() 
{ 
        pthread_t t1, t2;         
        pthread_create(&t1, NULL, thread_fn, (void*)1);         
        pthread_create(&t2, NULL, thread_fn, (void*)2); 
        pthread_join(t1, NULL); 
        pthread_join(t2, NULL); 
        return 0; 
} One way to view threads: function 

calls, except caller doesn’t wait for 
callee; instead, both run concurrently 

$ gcc –o threads threads.c –Wall –lpthread 
$ threads 
thread 1 runs 
thread 2 runs 
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Multithreading models 

 Where to support threads? 
 

 User threads: thread management done by 
user-level threads library; kernel knows 
nothing 

 

 Kernel threads: threads directly supported by 
the kernel 
 Virtually all modern OS support kernel threads 
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User vs. Kernel Threads 

Example from Tanenbaum, Modern Operating Systems 3 e,  

(c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 
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User vs. Kernel Threads (cont.) 

 Pros: fast, no system call for 
creation, context switch 

 

 Cons: kernel doesn’t know  
one thread blocks, all threads 
in the process blocks 

• Cons: slow, kernel does 
creation, scheduling, etc 

 

• Pros: kernel knows  one 
thread blocks, schedule 
another 

No free lunch! 
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Multiplexing User-Level Threads 

 A thread library must map user threads to kernel threads 
 

 Big picture: 
 kernel thread: physical concurrency, how many cores? 

 User thread: application concurrency, how many tasks? 
 

 Different mappings exist, representing different tradeoffs 

 Many-to-One: many user threads map to one kernel 
thread, i.e. kernel sees a single process 

 One-to-One: one user thread maps to one kernel thread 

 Many-to-Many: many user threads map to many kernel 
threads 
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Many-to-One 

 Many user-level threads 
map to one kernel thread 

 

 Pros 
 Fast: no system calls 

required 
 Portable: few system 

dependencies 
 

 Cons 
 No parallel execution of 

threads 
• All thread block when one 

waits for I/O 
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One-to-One 

 One user-level thread 
maps to one kernel 
thread 

 

 Pros: more concurrency 
 When one blocks, others 

can run 
 Better multicore or 

multiprocessor 
performance 

 

 Cons: expensive 
 Thread operations involve 

kernel 
 Thread need kernel 

resources 
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Many-to-Many 

 Many user-level threads 
map to many kernel 
threads (U >= K) 
 Supported some versons 

of BSD, and Windows 
 

 Pros: flexible 
 OS creates kernel threads 

for physical concurrency 
 Applications creates user 

threads for application 
concurrency 

 

 Cons: complex 
 Most programs use 1:1 

mapping anyway 
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Two-level 

 Similar to M:M, 
except that a user 
thread may be 
bound to kernel 
thread 
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Other thread design issues 

 Semantics of fork() system calls 

 Does fork() duplicate only the calling thread or 
all threads? 

• Running threads?  Threads trapped in system call? 

 Linux fork() copies only the calling thread 
 

 Signal handling 

 Which thread to deliver signals to? 

 Segmentation fault kills process or thread? 
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Thread pool 

 Problem:  
 Creating a thread for each request: costly 

• And, the created thread exits after serving a request  

 More user request  More threads, server overload 
 

 Solution: thread pool 
 Pre-create a number of threads waiting for work 
 Wake up thread to serve user request --- faster than 

thread creation 
 When request done, don’t exit --- go back to pool 
 Limits the max number of threads 

 
 

20 



Outline 

 Thread definition 

 

 Multithreading models 

 

 Synchronization 

21 



Banking example 
int balance = 0; 
int main() 
{ 
        pthread_t t1, t2;         
        pthread_create(&t1, NULL, deposit, (void*)1);         
        pthread_create(&t2, NULL, withdraw, (void*)2); 
        pthread_join(t1, NULL); 
        pthread_join(t2, NULL); 
        printf(“all done: balance = %d\n”, balance); 
        return 0; 
} 

void* deposit(void *arg) 
{         
        int i; 
        for(i=0; i<1e7; ++i) 
                ++ balance; 
} 
 

void* withdraw(void *arg) 
{         
        int i; 
        for(i=0; i<1e7; ++i) 
                -- balance; 
} 
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Results of the banking example 

$ gcc –Wall –lpthread –o bank bank.c 
$ bank 
all done: balance = 0 
$ bank 
all done: balance = 140020 
$ bank 
all done: balance = -94304 
$ bank 
all done: balance = -191009 
 
     Why? 
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A closer look at the banking example 

$ objdump –d bank 
… 
08048464 <deposit>: 
…                                            // ++ balance 
8048473:  a1 80 97 04 08          mov    0x8049780,%eax 
8048478:  83 c0 01                   add    $0x1,%eax 
804847b:  a3 80 97 04 08          mov    %eax,0x8049780 
… 
 
0804849b <withdraw>: 
…                                            // -- balance 
80484aa:  a1 80 97 04 08          mov    0x8049780,%eax 
80484af:  83 e8 01                    sub    $0x1,%eax 
80484b2: a3 80 97 04 08           mov    %eax,0x8049780 
… 
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One possible schedule 

mov    0x8049780,%eax 
 
add    $0x1,%eax 
 
mov    %eax,0x8049780 

mov    0x8049780,%eax 
 
sub    $0x1,%eax 
 
mov    %eax,0x8049780 

time 

CPU 0 CPU 1 

One deposit and one withdraw, 
balance unchanged.  Correct 

eax0: 0 

eax0: 1 

balance: 0 

balance: 1 

eax1: 1 

eax1: 0 

balance: 0 
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Another possible schedule 

mov    0x8049780,%eax 
 
add    $0x1,%eax 
 
 
 
mov    %eax,0x8049780 

mov    0x8049780,%eax 
 
 
 
sub    $0x1,%eax 
 
mov    %eax,0x8049780 

time 

CPU 0 CPU 1 

eax0: 0 

eax0: 1 

balance: 0 

balance: -1 

eax1: 0 

eax1: -1 

balance: 1 

One deposit and one withdraw, 
balance becomes less.  Wrong! 
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Race condition 

 Definition: a timing dependent error involving 
shared state 

 

 Can be very bad 
 “non-deterministic:” don’t know what the output will be, 

and it is likely to be different across runs 

 Hard to detect: too many possible schedules 

 Hard to debug: “heisenbug,” debugging changes timing so 
hides bugs  (vs “bohr bug” 
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How to avoid race conditions? 

 Atomic operations: no other 
instructions can be interleaved, 
executed “as a unit” “all or 
none”,  guaranteed by hardware 

 

 A possible solution: create a 
super instruction that does 
what we want atomically 
 add $0x1, 0x8049780 

 

 Problem 
 Can’t anticipate every possible 

way we want atomicity 

 Increases hardware 
complexity, slows down other 
instructions 

// ++ balance 
mov    0x8049780,%eax 
add    $0x1,%eax 
mov    %eax,0x8049780 
… 
 
// -- balance 
mov    0x8049780,%eax 
sub    $0x1,%eax 
mov    %eax,0x8049780 
… 

28 



Layered approach to synchronization 

Hardware-provided low-level 
atomic operations 

High-level synchronization 
primitives 

Properly synchronized application 

 Hardware provides simple low-level atomic 
operations, upon which we can build high-level,  
synchronization primitives, upon which we can 
implement critical sections and build correct 
multi-threaded/multi-process programs 
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Example synchronization primitives 

 Low-level atomic operations 
 On uniprocessor, disable/enable interrupt 

 On x86, aligned load and store of words 

 Special instructions: 
• test-and-set (TSL), compare-and-swap (XCHG) 

 

 High-level synchronization primitives 
 Lock 

 Semaphore 

 Monitor 
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