W4118: xvb process operations

Instructor: Junfeng Yang

References: Modern Operating Systems (37 edition), Operating Systems
Concepts (8'h edition), previous W4118, and OS at MIT, Stanford, and UWisc



QOutline

0 How to create the first user process
0 exec()

a fork()

Q exit()

a wait()

a kill()

Q sleep()

a wakeup()



Create the first user process

0 Idea: create a fake trap frame, then reuse
trap return mechanism

Q userinit() in proc.c

= allocproc() in vim.c allocates PCB, sets trap return
address to trapret in trapasm.S, and sets "saved”
kernel CPU context

= inituvm() in vim.c sets up user space

* Allocates physical page, sets up page table, and copies
initcode

= Set up fake trap frame
« Set up current working directory



initcode.S

// equivalent C code
char init[] = “/init\0”;
char *argv = {init, 0};
exec(init, argv);
for(;;) exit();

a Assembly code that

= Sets up system call arguments
= Moves SYS_exec to EAX

= Traps into kernel via INT 64
0 Execute init generated from init.c

0 Compiled and linked into kernel
= Makefile



exec()

0 sysfile.c, exec.c
QO Set up user page table
0 Load segments of the executable file into memory
a Set up stack and arguments to main(int argc, char* argv[])
a Jump to entry point (main()) of the executable
arg N |
| Null-terminated
string
640KB arg 0 _
heap 0 argV[argC]
addr of argN
stack (1 page)
data addr of arg0 argv[0]
text addr of addr of arg0 | argv to main
0 argc argc to main
OxFFFFFFFF fake ret addr




fork()

0 sysproc.c, proc.c

O Allocate new PCRB and stack
= Set up EIP of child to forkret = trapret

a Copy address space
= Copy both page tables and physical pages
= Can you do better?

Q Set parent pointer

a Copy parent’s trap frame

0 Change EAX in trap frame so that child returns O
0 Copy open file table



exit()
Q sysproc.c, proc.c

Q Close open files

0 Decrement reference count to current
working directory

a Wake up waiting parents
Q Re-parent children to init
Q Set state to zombie

a Yield to scheduler



wait()
Q sysproc.c, proc.c

a Find a zombie child by iterating process table
« Can you do better?

a If there is one,

« Free their PCB and other resources
= Return child PID

a If no child or killed, return -1
Q Repeat



kill()

Q Sysproc.c, proc.c

a Set proc->killed to 1

a At various places in kernel, check this flag,
and if process is killed, exit

= trap() in trap.c

= Sys_sleep() in sysproc.c

= piperead() & pipewrite() in pipe.c
= proc.c



sleep()

Q proc.c

0 Remember what we wait for (proc->chan)
Q Set process state
Q Yield to scheduler

10



wakeup()

Q proc.c

a Scan through all processes
a0 Wake up those waiting on chan

11



