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Need for protection 

 Kernel privileged, cannot trust user processes 
 User processes may be malicious or buggy 

 

 Must protect 
 User processes from one another 

 Kernel from user processes 
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Hardware mechanisms for protection 

 Dual model of operation 
 Privileged (+ non-privileged) operations in kernel mode 

 Non-privileged operations in user mode 
 

 Memory protection 
 Segmentation and paging 

• E.g., kernel sets page table when creating process 
 

 Timer interrupt 
 Kernel periodically gets back control 
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What operations are privileged? 

 Read raw keyboard input 
 

 Call printf() 
 

 Call write() 
 

 Write global descriptor table 
 

 Divide by 0 
 

 Set timer interrupt handler 
 

 Set segment registers 
 

 Load cr3 
 

5 



x86 protection modes 

 Four modes (0-3), but often only 0 & 3 used 
 Kernel mode: 0 
 User mode: 3 
 “Ring 0”, “Ring 3” 

 

 Segment has Descriptor Privilege Level (DPL) 
 DPL of kernel code and data segments: 0 
 DPL of user code and data segments: 3 

 

 Current Privilege Level (CPL) = current code 
segment’s DPL 
 Can only access data segments when CPL <= DPL 

 

6 



Outline 

 Motivation for protection 

 

 Interrupt 

 

 System call 

 

 

7 



OS: “event driven” 

 Events causing mode switches 
 System calls: issued by user processes to request 

system services 

 Exceptions: illegal instructions (e.g., division by 0) 

 Interrupts: raised by devices to get OS attention 

 

 Often handled using same hardware 
mechanism: interrupt 
 Also called trap 
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Interrupt view of CPU 
while (fetch next instruction) { 
    run instruction; 
    if (there is an interrupt) { 
 
 
        process interrupt 
 
 
    } 
} 
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x86 interrupt view 

 Q1: how does hardware find OS-provided 
interrupt handler? 

 Q2: why switch stack? 
 Q3: what CPU context to save and restore? 
 Q4: what does handler do? 

while (fetch next instruction) { 
    run instruction; 
    if (there is an interrupt) { 
        switch to kernel stack if necessary 
        save CPU context and error code if any 
        find OS-provided interrupt handler 
        jump to handler 
        restore CPU context when handler returns 
    } 
} 
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Q1: how to find interrupt handler? 

 Hardware maps interrupt type to interrupt number 
 

 OS sets up Interrupt Descriptor Table (IDT) at boot 
 Also called interrupt vector 
 IDT is in memory 
 Each entry is an interrupt handler 
 OS lets hardware know IDT base 
 Defines all kernel entry points 

 
 Hardware finds handler using interrupt number as 

index into IDT 
 handler = IDT[intr_number] 
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x86 interrupt hardware (legacy) 
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x86 interrupt numbers 

 Total 256 number [0, 255] 
 

 Intel reserved first 32, OS can use 224 
 

 0: divide by 0 

 1: debug (for single stepping) 

 2: non-maskable interrupt 

 3: breakpoint 

 14: page fault 
 

 64: system call in xv6 

 xv6 traps.h 
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x86 interrupt descriptor table 

 Interrupt gate descriptor 
 Code segment selector and offset of handler 
 Descriptor Privilege Level (DPL) 

• To invoke “int x” in software, must have CPL <= DPL 
 Trap or exception flag.  If exception, hardware clears the IF flag 

in EFLAGS to disable further maskable interrupts 
 lidt instruction loads CPU with IDT base 

 

 xv6 
 Handler entry points: vector.S 
 Interrupt gate format: SETGATE in mmu.h 
 IDT initialization: tvinit() & lidt() in trap.c 
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Q2: why switch stack? 

 Cannot trust stack of user process! 
 

 x86 hardware switches stack when interrupt 
handling requires user-kernel mode switch 
 That is, when CPL <= DPL of handler’s code segment 

 

 Where to find kernel stack? 
 task gate descriptor has SS and ESP for interrupt 
 ltr loads CPU with task gate descriptor 

 

 xv6 uses current process’s kernel stack 
 switchuvm() in vm.c 
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Q3: what CPU context to save and restore? 

 x86 saves SS, ESP, EFLAGS, CS, EIP, Err code 
 Restored by iret 

 OS can save more context 
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Q4: what does interrupt handler do? 

 Typical steps 
 Assembly to save additional CPU context 

 Invoke C handler to process interrupt 
• E.g., communicate with I/O devices 

 Invoke kernel scheduler 

 Assembly to restore CPU context and return 
 

 xv6  
 Interrupt handler entries: vector.S 

 Saves & restore additional CPU context: trapasm.S 

 C handler: trap.c, struct trapframe in x86.h 
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Interrupt v.s. Polling 

 Instead for device to interrupt CPU, CPU can 
poll the status of device 
 Intr: “I want to see a movie.” 

 Poll: for(each week) {“Do you want to see a movie?”} 

 

 Good or bad? 
 For mostly-idle device? 

 For busy device? 
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System call 

 User processes cannot perform privileged 
operations themselves 

 

 Must request OS to do so on their behalf by 
issuing system calls 

 

 OS must validate system call parameters 
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System call dispatch 

1. Kernel assigns system call type a system call number 
2. Kernel initializes system call table, mapping system call 

number to functions implementing the system call 
 Also called system call vector 

 

3. User process sets up system call number and arguments 
4. User process runs int X  

5. Hardware switches to kernel mode and invokes kernel’s 
interrupt handler for X (interrupt dispatch) 

6. Kernel looks up system call table using system call 
number 

7. Kernel invokes the corresponding function 
8. Kernel returns by running iret (interrupt return) 
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syscall() { 
   fn = syscalls[%eax] 

} // trap.c 

sys_write(…) { 
 // do real work 
} //sysfile.c 

xv6 system call dispatch 
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movl $SYS_write, %eax 
int 64 
ret        // usys.S 

User mode 

kernel mode 
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System call parameter passing 

 Typical methods 
 Pass via registers (e.g., Linux) 

 Pass via user-mode stack (e.g., xv6) 

 Pass via designated memory region 
 

 xv6 system call parameter passing 
 Arguments pushed onto user stack based on gcc  

calling convention 

 Kernel function uses special routines to fetch these 
arguments 

• syscall.c 

• Why? 
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xv6 system call naming convention 

 Usually a library function foo() will do some 
work and then call a system call sys_foo() 
 sys_foo() implemented in sys*.c 

 Often wrappers to foo() in kernel 

 

 System call number for foo() is SYS_foo 

 syscalls.h 

 

 All system calls begin with sys_ 
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Tracing system calls 

 Use the “strace” command (man strace for info) 
 

 Linux has a powerful mechanism for tracing 
system call execution for a compiled application 

 

 Output is printed for each system call as it is 
executed, including parameters and return codes 

 

 ptrace() system call is used to implement strace 
 Also used by debuggers (breakpoint, singlestep, etc) 

 

 Use the “ltrace” command to trace dynamically 
loaded library calls 
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