
W4118: interrupt and system call

Junfeng Yang

Outline

 Motivation for protection

 Interrupt

 System call

2

Need for protection

 Kernel privileged, cannot trust user processes
 User processes may be malicious or buggy

 Must protect
 User processes from one another

 Kernel from user processes

3

Hardware mechanisms for protection

 Dual model of operation
 Privileged (+ non-privileged) operations in kernel mode

 Non-privileged operations in user mode

 Memory protection
 Segmentation and paging

• E.g., kernel sets page table when creating process

 Timer interrupt
 Kernel periodically gets back control

4

What operations are privileged?

 Read raw keyboard input

 Call printf()

 Call write()

 Write global descriptor table

 Divide by 0

 Set timer interrupt handler

 Set segment registers

 Load cr3

5

x86 protection modes

 Four modes (0-3), but often only 0 & 3 used
 Kernel mode: 0
 User mode: 3
 “Ring 0”, “Ring 3”

 Segment has Descriptor Privilege Level (DPL)
 DPL of kernel code and data segments: 0
 DPL of user code and data segments: 3

 Current Privilege Level (CPL) = current code
segment’s DPL
 Can only access data segments when CPL <= DPL

6

Outline

 Motivation for protection

 Interrupt

 System call

7

OS: “event driven”

 Events causing mode switches
 System calls: issued by user processes to request

system services

 Exceptions: illegal instructions (e.g., division by 0)

 Interrupts: raised by devices to get OS attention

 Often handled using same hardware
mechanism: interrupt
 Also called trap

8

Interrupt view of CPU
while (fetch next instruction) {
 run instruction;
 if (there is an interrupt) {

 process interrupt

 }
}

9

x86 interrupt view

 Q1: how does hardware find OS-provided
interrupt handler?

 Q2: why switch stack?
 Q3: what CPU context to save and restore?
 Q4: what does handler do?

while (fetch next instruction) {
 run instruction;
 if (there is an interrupt) {
 switch to kernel stack if necessary
 save CPU context and error code if any
 find OS-provided interrupt handler
 jump to handler
 restore CPU context when handler returns
 }
}

10

Q1: how to find interrupt handler?

 Hardware maps interrupt type to interrupt number

 OS sets up Interrupt Descriptor Table (IDT) at boot
 Also called interrupt vector
 IDT is in memory
 Each entry is an interrupt handler
 OS lets hardware know IDT base
 Defines all kernel entry points

 Hardware finds handler using interrupt number as

index into IDT
 handler = IDT[intr_number]

11

x86 interrupt hardware (legacy)

PIC CPU

Bus

INTR

IRQs

IDT
0

255

Interrupt

handler

idtr

intr #

Mask points

intr #

12

x86 interrupt numbers

 Total 256 number [0, 255]

 Intel reserved first 32, OS can use 224

 0: divide by 0

 1: debug (for single stepping)

 2: non-maskable interrupt

 3: breakpoint

 14: page fault

 64: system call in xv6

 xv6 traps.h

13

x86 interrupt descriptor table

 Interrupt gate descriptor
 Code segment selector and offset of handler
 Descriptor Privilege Level (DPL)

• To invoke “int x” in software, must have CPL <= DPL
 Trap or exception flag. If exception, hardware clears the IF flag

in EFLAGS to disable further maskable interrupts
 lidt instruction loads CPU with IDT base

 xv6
 Handler entry points: vector.S
 Interrupt gate format: SETGATE in mmu.h
 IDT initialization: tvinit() & lidt() in trap.c

14

Q2: why switch stack?

 Cannot trust stack of user process!

 x86 hardware switches stack when interrupt
handling requires user-kernel mode switch
 That is, when CPL <= DPL of handler’s code segment

 Where to find kernel stack?
 task gate descriptor has SS and ESP for interrupt
 ltr loads CPU with task gate descriptor

 xv6 uses current process’s kernel stack
 switchuvm() in vm.c

15

Q3: what CPU context to save and restore?

 x86 saves SS, ESP, EFLAGS, CS, EIP, Err code
 Restored by iret

 OS can save more context

16

SS

ESP

EFLAGS

CS

EIP

Err code
ESP

when switch stack

for some exceptions

Q4: what does interrupt handler do?

 Typical steps
 Assembly to save additional CPU context

 Invoke C handler to process interrupt
• E.g., communicate with I/O devices

 Invoke kernel scheduler

 Assembly to restore CPU context and return

 xv6
 Interrupt handler entries: vector.S

 Saves & restore additional CPU context: trapasm.S

 C handler: trap.c, struct trapframe in x86.h

17

Interrupt v.s. Polling

 Instead for device to interrupt CPU, CPU can
poll the status of device
 Intr: “I want to see a movie.”

 Poll: for(each week) {“Do you want to see a movie?”}

 Good or bad?
 For mostly-idle device?

 For busy device?

18

Outline

 Motivation for protection

 Interrupt

 System call

19

System call

 User processes cannot perform privileged
operations themselves

 Must request OS to do so on their behalf by
issuing system calls

 OS must validate system call parameters

20

System call dispatch

1. Kernel assigns system call type a system call number
2. Kernel initializes system call table, mapping system call

number to functions implementing the system call
 Also called system call vector

3. User process sets up system call number and arguments
4. User process runs int X

5. Hardware switches to kernel mode and invokes kernel’s
interrupt handler for X (interrupt dispatch)

6. Kernel looks up system call table using system call
number

7. Kernel invokes the corresponding function
8. Kernel returns by running iret (interrupt return)

21

syscall() {
 fn = syscalls[%eax]

} // trap.c

sys_write(…) {
 // do real work
} //sysfile.c

xv6 system call dispatch

22

movl $SYS_write, %eax
int 64
ret // usys.S

User mode

kernel mode

64

 write(fd, buf, sz)

User
program

IDT

syscall

syscalls
table

sys_write

System call parameter passing

 Typical methods
 Pass via registers (e.g., Linux)

 Pass via user-mode stack (e.g., xv6)

 Pass via designated memory region

 xv6 system call parameter passing
 Arguments pushed onto user stack based on gcc

calling convention

 Kernel function uses special routines to fetch these
arguments

• syscall.c

• Why?

23

xv6 system call naming convention

 Usually a library function foo() will do some
work and then call a system call sys_foo()
 sys_foo() implemented in sys*.c

 Often wrappers to foo() in kernel

 System call number for foo() is SYS_foo

 syscalls.h

 All system calls begin with sys_

24

Tracing system calls

 Use the “strace” command (man strace for info)

 Linux has a powerful mechanism for tracing
system call execution for a compiled application

 Output is printed for each system call as it is
executed, including parameters and return codes

 ptrace() system call is used to implement strace
 Also used by debuggers (breakpoint, singlestep, etc)

 Use the “ltrace” command to trace dynamically
loaded library calls

25

