
W4118 Operating Systems

Junfeng Yang

Bad News

 This is a DIFFICULT course
 “Most difficult” rated by CS alumni

 Unfamiliar low-level systems programming
 C and Assembly
 No abstraction, close to hardware

 Intense
 Should be 6 units instead of 3 …
 Most of those struggling in CS lounge or CLIC lab late or

possibly overnight were OS students

 And you have to climb up 7 floors for each lecture

Good News II

 Not interested in learning OS and low-level
systems programming? Don’t take this course!
 Waive if you have taken similar course

 Personalized track

Good News I

 Heavy, but worth it
 “Most useful after graduating” rated by alumni

 Works hard good grade

Why study OS?

 OS = arguably the most fundamental software
 We do almost everything with computers through OS

 By studying OS, you will
 Gain a good understanding of OS
 Learn some portable tricks
 Gain a good understanding of the big picture

• How do hardware, programming language, compiler, algorithms,
OS work together?

Possibly

 Get a job at Google/Microsoft/VMware/…
 Get started in systems research
 Apply OS ideas to your area
 …

What will we learn?

 OS concepts
 What does an OS do?

• Abstract hardware: processes, threads, files

• Manage resources: CPU scheduling, memory
management, file systems

 OS implementations
 How does an OS do these in general?

 How does xv6, an implementation of Unix 6th edition
on x86, do these?

• Complete, real code

What will we learn? (cont.)

 Hands on OS programming experience in xv6
 Best way: learning by doing

 Six programming assignments; five are kernel
programming assignments

 Practical programming skills
• How to understand code

• How to modify

• How to debug

• How to work with others

• …

xv6 overview

 Implementation of Unix 6th Edition on x86

 A subset of Unix system calls
 fork, exec, read, write, pipe, …

 Runs with multiple processors/multicore

 User-mode programs (can do some real stuff)
 mkdir, rm, …

 Can boot on real machine

Understanding xv6

 Lectures + study code on your own +
programming assignments

 Resources:
http://www.cs.columbia.edu/~junfeng/os/reso
urces.html
 gcc inline assembly

 Intel programming manual

 QEMU monitor commands

 gdb commands

 PC hardware programming

http://www.cs.columbia.edu/~junfeng/os/resources.html
http://www.cs.columbia.edu/~junfeng/os/resources.html

xv6 files
 Generic: asm.h (segmentation), mmu.h, x86.h (inline assembly), elf.h

(ELF format), types.h, param.h (kernel constants), string.c

 Boot: bootasm.S, bootother.S, bootmain.c, main.c

 Process and virtual memory: proc.h, proc.c, vm.c, zombie.c, pipe.c,
exec.c, kalloc.c, sysproc.c, swtch.S, initcode.S

 System call and interrupt: syscall.h, traps.h, trap.c, syscall.c,
trapasm.S, vector.S

 Synchronization and multicore: spinlock.h, mp.h, spinlock.c, mp.c

 Disk and file system: defs.h, fs.h, stat.h file.h, buf.h, fcntl.h, bio.c,
fs.c, file.c, sysfile.c

 Device: kbd.h, kbd.c, timer.c, lapic.c, picirq.c, uart.c, console.c, ide.c,
ioapic.c

 User-mode programs: user.h, sh.c, forktest.c, wc.c, kill.c, cat.c,
grep.c, stressfs.c, ln.c, ulib.c, echo.c, init.c, ls.c, printf.c, umalloc.c,
usertests.c, mkdir.c, rm.c, usys.S

 Other: mkfs.c, Makefile

My background

 Research area: systems
 Publish in systems conferences

• e.g., OSDI, SOSP, NSDI

 Research wise, practical kind of guy; believe only
in stuff that works and is useful

 System reliability research for N years
 Systems research shifted from pure performance to

reliability starting around 2000
 I was fortunate to be at the cutting edge of this shift
 Hacked Linux & Windows, found some of the worst bugs
 Current focus: concurrency

 Cool projects available for interested students
 http://rcs.cs.columbia.edu/student-projects.html

http://rcs.cs.columbia.edu/student-projects.html
http://rcs.cs.columbia.edu/student-projects.html
http://rcs.cs.columbia.edu/student-projects.html

Some of my previous results

 Built several effective bug-finding tools
 One transferred to Microsoft SQL Azure

 Found 100+ serious bugs
 Security holes: write arbitrary memory
 Data loss errors: lose entire file system data
 Errors in commercial data center systems: stuck

w/o progress

 Serious enough that developers immediately
worked on fixes
 google “lkml junfeng”

 Reported at news website (e.g. lwn.net)

Basic Course Info

 Course website:
http://www.cs.columbia.edu/~junfeng/os/

 Next: tour of course website

http://www.cs.columbia.edu/~junfeng/os/

Homework 1

 Written: basic OS concepts

 Programming: warm up, sanity test
 Part A: set up xv6 and qemu

 Part B: simple shell

 Apply CS account

 Look for teammates

