EXPLODE: a Lightweight, General System for Finding Serious Storage
System Errors

Junfeng Yang, Can Sar, and Dawson Engler
Computer Systems Laboratory
Stanford University

Abstract dynamic storage checkereXpPLODE makes it easy for

Storage systems such as file systems, databases, and RAID sgheckers to find bugs in crash recovery code: as they run
tems have a simple, basic contract: you give them data, they don a live system they teHX PLODEwhen to generate the
not lose or corrupt it. Often they store the only copy, making disk images that could occur if the system crashed at the
its irrevocable loss almost arbitrarily bad. Unfortungtéheir ~ current execution point, which they then check for errors.
code is exceptionally hard to get right, since it must cdlyec e explicitly designedEX PLODE so that clients can
recover from any crash at any program point, no matter howgheck complex storage stacks built from many different
their state was smeared across volatile and persistent rgemo subsystems. For example, Figure 1 shows a version con-

This paper de.?crlbeEXPLODE, a system that makes it trol system on top of NFS on top of the JFS file sys-
easy to systematically check real storage systems forserror . .
tem on top of RAID.EXPLODE makes it quick to assem-

It takes user-written, potentially system-specific cheskend .
uses them to drive a storage system into tricky corner casedle checkers for such deep stacks by providing interfaces

including crash recovery erroreXPLODE uses a novel adap- that let users write small checker components and then
tation of ideas from model checking, a comprehensive, heavyPlug them together to build many different checkers.

weight formal verification technique, that makes its chegki Checking entire storage stacks has several benefits.
more systematic (and hopefully more effective) thanapeset First, clients can often quickly check a new layer (some-
ing approach while being just as lightweight. times in minutes) by reusing consistency checks for one

EXPLODEIs effective. It fqund serioqg bugs in a broad range layer to check all the layers below it. For example, given
of re@l storage systems (without requiring sou_rce codef)zeth an existing file system checker, if we can slip a RAID
version control systems, Berkeley DB, an NFS implemertatio)Jayer below the file system we can immediately use the

ten file systems, a RAID system, and the popular VMware GSX_. .
virtual machine. We found bugs in every system we checked,flle system checker to detect if the RAID causes errors.

36 bugs in total, typically with little effort. (Section 9 uses this approach to check NFS, RAID, and
) a virtual machine.) Second, it enables strong end-to-end
1 Introduction checks, impossible if we could only check isolated sub-

Storage system errors are some of the most destructi@/stems: correctness in isolation cannot guarantee cor-
errors possible. They can destroy persistent data, witféctness in composition [22]. Finally, users can localize
almost arbitrarily bad consequences if the system ha@rors by cross-checking different implementations of a
the only copy. Unfortunately, storage code is simultanelayer. If NFS works incorrectly on seven out of eight file
ously both difficult to reason about and difficult to test. It Systems, it probably has a bug, but if it only breaks on
must always correctly recover to a valid state if the sys-one, that single file system probably dog8.g).
tem crashes any program point, no matter what data We believeEXPLODE as described so far is a worth-
is being mutated, flushed (or not flushed) to disk, andwhile engineering contribution. A second conceptual
what invariants have been violated. Further, despite thgontribution is its adaptation of ideas from model check-
severity of storage system bugs, deployed testing mething [6,15,17], a typically heavyweight formal verifica-
ods remain primitive, typically a combination of manual tion technique, to make its checking more systematic
inspection (with the usual downsides), fixes in reaction(and thus hopefully more effective) than a pure testing
to bug reports (from angry users) and, at advanced sitegpproach while remaining as lightweight as testing.
the alleged use of manual extraction of power cords from Traditional model checking takes a specification of a
sockets (a harsh test indeed, but not comprehensive). system (a “model”) which it checks by starting from an
This paper presentsSXPLODE, a system that makes initial state and repeatedly performing all possible ac-
it easy to thoroughly check real systems for such crashions to this state and its successors. A variety of tech-
recovery bugs. It gives clients a clean framework to buildniques exist to make this exponential search less inef-
and plug together powerful, potentially system-specificficient. Model checking has shown promise in finding

checking o crash recovery machinery rather than re-implementing or emulating it.

subversion|, — — - 9
checker Italso becomes trivial to check new storage systems: just

*

mouhnt l;s)md run them. Finflallly,bany Che;qI;that can be run
—\ on the base system can also be run &XPLODE.
2 The final contribution of the paper is an experimental
loopback ‘”‘en’a"el evaluation ofeEX PLODE that shows the following:
e e e] 1. EXPLODEcheckers are effectiv1—§9). We found
e bugs in every system we checked, 3_6 bugs in total,
software || pdaterreayne typically with little effort, and often without source

RAID1

—_—
checking
disk 2

code §8.1,§9.3). Checking without source code is
valuable, since many robust systems rely on third-
party software that must be vetted in the context of

the integrated system.
Figure 1: A snapshot ofEXPLODE with a stack of storage systems 2. EXPLODE checkers have enough power to do thor-
being checked on the left and the recovery tools being rumemight)

after EXPLODE“crashes” the system to generate possible crash disks. 0.u9h checks, dem_onstr_ated by using itto comprehen-
This example checks Subversion running on top of NFS exmpri sively check ten Linux file system§%).
JFS file system running on RAID. 3. Even simple checkers find bugg8]. Tiny check-

L ers found bugs in three version control systefsX)
corner-case errors. However, requiring implementors to .
and a widely-used databas@8(2).

rewrite their system in an artificial modeling language .
. . : 4. EXPLODE makes it easy to check subsystems de-
makes it extremely expensive for typical storage systems™™ S
signed to transparently slip into storage stad}&y.(

(read: almost always impractical). We reused file system checkers to quickly find er-

Recent work onimplementation-level model check- rors in RAID (§9.1), NFS §9.2), and VMware§9.3)
ing [3,13, 18] eliminates the need to write a model by which should not (but do) break the behavior of stor-

using code itself as its own (high-fidelity) model. We age systems layered above or below them
used this approach in prior work to find serious errors .o paper is organized as follows. We first state our

in Linux file systems [30]. However, while more prac- principles §2) and then show how to USEXPLODE to

t'ﬁal :(ha(ljnl_z?\ traditional gpp:joachh, It redqtflre;]d rEnn_lng I:checheck an example storage system stei&).(We then
checked Linux system inside the model checker itsell ag,; o 5 gverview 0EXPLODE (§4) and focus on how it;

a user-space process, which demanded enormously invi) explores alternative actions in checked cdifd and

ﬁivzmodri]ﬁcaktions.h_Theb na_tdure fc_)lf the Changesdmade ' 2) checks crasheg®). After the experimental evalua-
ard to check anything besides file systems and, even i (§7—59), we discuss our experiences portie-

the best case, checking a new file system took a Week"F:,LODE to FreeBSD § 10), contrast with related work
work. Porting to a new Linux kernel, much less a differ- (511), and then concludé12)

ent operating system, could take months. o
This paper shows how to get essentially all the mode Principles
checking benefits of our prior work with little effort by |n a sense, this entire paper boils down to the repeated
turning the checking process inside out. Instead of shoeapplication of a single principle:
horning the checked system inside the model checker Explore all choices When a program point can
(or worse, cutting parts of the checked system out, ollegally do one ofN different actions, fork executioN
worse still, creating models of the checked code) it in-times and do each. For example, the kernel memory al-
terlaces the control needed for systematic state expldocator can returtlULL, but rarely does so in practice.
rationin situ, throughout the checked system, reducingFor each call to this allocator we want to fork and do both
the modifications needed down to a single device driveractions. The next principle feeds off of this one:
which can run inside of a lightly-instrumented, stock ker- Exhaust states Do every possible action to a state
nel running on real hardware. As a resal{PLODEcan pefore exploring another state. In our context, a state is
thoroughly check large amounts of storage system codgefined as a snapshot of the system we check.
with little effort. We distilled these two principles after several years of
Running checks on a live, rather than emulated, sysusing model checking to find bugs. Model checking has
tem has several nice fallouts. Because storage systenasvariety of tricks, some exceptionally complex. In retro-
already provide many management and configuratiorspect, these capture the one feature of a model checking
utilities, EXPLODE checkers can simply use this pre-built approach that we would take over all others: systemat-

—_—
checking
disk 1

I

ically do every legal action to a state, missing nothing,point that hasN possible actions clients insert a call
then pick another state, and repeat. This approach reli-choose(N) ,” which will appear to fork executiomN
ably finds interesting errors, even in well-tested code. Wdimes, returning the values 1, ..., N — 1 in each child
are surprised when it does not work. The key feature oexecution respectively. They then write code that uses
this principle over traditional testing is that it makes tow this return value to pick one unique action out of thie
probability events (such as crashes) as probable as higlpossibilities. EXPLODE can exhaust all possible actions
probability events, thereby quickly driving the checked at thischoose call by running all forked children. We
system into tricky corner-cases. The final two principlesdefine a code location that can pick one of several differ-
come in reaction to much of the pain we had with naiveent legal actions to be@hoice poiniand the act of doing
application of model checking to large, real systems. so achoice

Touch nothing. Almost invariably, changing the be- ~ An example: in low memory situations the Linux
havior of a large checked system has been a direct pathnal | oc function can returrNULL when called with-
to experiences that we never want to repeat. The intereut the __GFP_NOFAI L flag. But it rarely does so in
nal interfaces of such systems are often poorly definedpractice, making it difficult to comprehensively check
Attempting to emulate or modify them produces corner-that callers correctly handle this case. We can use
case mistakes that model checking is highly optimized tachoose to systematically explore both success and fail-
detect. Instead we try to do everything possible to runure cases of eadtnal | oc call as follows:

the checked system as-is and parasitically gather the in- ., kmallodsize t size int flags {

formation we need for checking as it runs. if((flags & __GFP_.NOFAIL) == 0)
Report only true errors, deterministically. The er- if(choos€2) == 0)
rors our system flags should be real errors, reduced to return NULL;

deterministic, replayable traces. All checking systems
share this motherhood proclamation, but, in our contexiTypically clients add a small number of such calls.
it has more teeth than usual: diagnosing even determinigon Linux, we usedchoose to fail six kernel func-
tic, replayable storage errors can take us over a day. Théons: kmal | oc (as above)page_al | oc (page al-
cost of a false one is enormous, as is the time needed tocator), access_ok (verify user-provided pointers),
fight with any non-determinism. bread (read a block),r ead_cache_page (read a

age), ancend_r equest (indicate that a disk request
3 How to Check a Storage System Eor%p)leted). The inqserted ((:ode mirrors thatimal | (?c:
This section shows how clients us¥ PLoDE interfaces a callchoose(2) and an if-statement to pick whether
to check a storage system, using a running example db either (0) return an error or (1) run normally.
a simple fiI_e sy_stem checker. Clients LB‘éP!_ODEtO 3.2 Driving checked code: The checker
do two main things to a storage system. First, system-
atically exhaust all possibilities when the checked sys-The client provides a checker thaXpPLODE uses to
tem can do one of several actions. Second, check that firive and check a given storage system. The checker im-
correctly recovers from a crash. Clients can also chectlements five methods:
non-crash properties by simply inserting code to do sol. nut at e: performs system-specific operations and
in either their checker or checked code itself without re- calls into EXPLODE to explore choices and to do
quiring EXPLODE support (for an example s§&.2). crash checking.

Below, we explain how clients expose decision points 2- check: called after eacEXPLODE-simulated crash

in the checked code; (3.1). We then explain the three to check for storage system errors.
system-specific components that clients provide (written3. get _si g: an optional method which returns a byte-
in C++). One, acheckerthat performs storage system array signature representing the current state of the

operations and checks that they worked correcyZ). checked system. It uses domain-specific knowledge
Two, astorage Componemhat sets up the checked sys- to discard irrelevant details so theX PLODE knows

tem §3.3). Finally, achecking stackhat combines the when two superficially different states are equivalent
first two into a checking harness3(4). and avoids repeatedly checking them. The default

get _si g simply records all choices made to pro-
duce the current state.

Like prior model checkers [13,30EXPLODE provides 4. i ni t andfi ni sh: optional methods to set up and
a function,choose, that clients use to select among clear the checker’s internal state, called whet
possible choices in checked code. Given a program PLODEmounts and unmounts the checked system.

3.1 How checked code exposes choicehoose

1 : const char *dir = "/ mt/sbdO/test-dir";

2 : const char *file = "/ mt/sbd0/test-file";

3 : static void do_fsyndconst char *fn) {

4 : int fd = oper({fn, O_RDONLY);

5: fsynqfd);

6 : closdfd);

7:}

8 : void FsChecker::mutateoid) {

9 : switch(chooséd)) {

10: caseO: system{' nkdir %%l", dir, choos¢5)); break;
11: casel: systemf'rndir %%l", dir, choos¢5)); break;
12: case?2: system{'rm %", file); break;

13: case3: systemf'echo \"test\" > ", file);

14: if(choos€2) == 0)

15: synd);

16: else {

17: do_fsyndfile);

18: /I fsync parent to commit the new directory entry
19: do_fsynq" / mt / sbd0");

20:

21: check crashnow(); // invokes check() for each crash
22: break;

23: }

24: }

25: void FsChecker::chegkoid) {

26: ifstream ir(file);

27: if(tin)

28: erro"fs", "file gone!");

29: char buf[1024];

30: in.readbuf, sizeof buf);

31: in.clos€);

32: if(strncmgbuf, "test", 4) = 0)

33: erro"fs", "wrong file contents!");

34: }

Figure 2: Example file system checker. We omit the class initialorati
code and some sanity checks.

rmdir rm file ” ﬁreat file

Figure 3: Choices made by one invocation of that at e method in
Figure 2's checker. It creates thirteen children.

dren.

The checker calleXpPLODE to check crashes. While
other code in the system can also initiate such check-
ing, typically it is themmut at e method’s responsibil-
ity: it issues operations that change the storage sys-
tem, so it knows the correct system state and when
this state changes. In our example, aftart ate
forces the file to disk it calls th&eXPLODE routine
check _crash_now(). EXPLODE then generates all
crash disks at the exact moment of the call and invokes
thecheck method on each after repairing and mounting
it using the underlying storage component (§e&.3).
Thecheck method checks if the test file exists (line 27)
and has the right contents (line 32). While simple, this
exact checker catches an interesting bug in JFS where
upon crash, afi sync'd file loses all its contents trig-
gered by the corner-case reuse of a directory inode as a
file inode §7.3 discusses a more sophisticated version of
this checker).

So far we have described how a singfet at e call
works. The next section shows how it fits in the check-

Checkers range from aggressively system-specific (Ofg process. In addition, checking crashes at only a sin-

even code-version specific) to the fairly generic. Theirgje code point is crude; Section 6 describes the routines
size scales with the complexity of the invariants checkedex p| opE provides for more comprehensive checking.

from a few tens to many thousands of lines.
Figure 2 shows a file system checker that checks

23 Setting up checked code: Storage components

simple correctness property: a file that has been synSinceEXPLODE checks live storage systems, these sys-

chronously written to disk (using either tliesync or

tems must be up and running. For each storage subsys-

sync system calls) should persist after a crash. Mailtem involved in checking, clients provide a storage com-
servers, databases and other application storage systemsnent that implements five methods:
depend on this behavior to prevent crash-caused data. i ni t : one-time initialization, such as formatting a

obliteration. While simple, the checker illustrates com-

mon features of many checkers, including the fact that it

catches some interesting bugs.
The mut at e method callschoose(4) (line 9) to

file system partition or creating a fresh database.
nount : set up the storage system so that operations
can be performed on it.

3. unmount : tear down the storage system; used by

fork and do each of four possible actions: (1) create a
directory, (2) delete it, (3) create a test file, or (4) delete
it. The first two actions then catlhoose(5) and cre-
ate or delete one of five directories (the directory name is
based orchoose’s return value). The file creation ac-
tion callschoose(2) (line 14) and forces the test file to
disk usingsync in one child and sync in the other. As
Figure 3 shows, onaut at e call creates thirteen chil-

4.

5.

EXPLODEt0 clear the storage system'’s state so it can
explore a different one;b.2).

recover : repair the storage system after aX-
PLODE-simulated crash.

t hr eads: return the thread IDs for the storage
system’s kernel threads.EXPLODE reduces non-
determinism by only running these threads when it
wants to §5.2).

void Ext3::init(void) { /Il Assemble FS + RAID storage stack step by step.

/I create an empty ext3 FS with user-specified block size void assembl@Component*&top, TestDriver *&driver) {
systemf{'nkfs.ext3 -F -j -b % %", /I 1. load two RAM disks with size specified by user
get optionblk_sizée), childrerf0]—>path)); ekm.load_rdd(2, getoption(rdd, sector$);
} Disk *d1 = new Disk("/ dev/rdd0");
void Ext3::recovef) { Disk *d2 = new Disk("/ dev/ rdd1");

systemf" f sck. ext 3 -y %", childrerf0]—>path));
/I 2. plug a mirrored RAID array onto the two RAM disks.

void Ext3::mounfvoid) { Raid *raid = new Raid"/ dev/ nd0", "rai d1");
int ret = system{" sudo nount -t ext3 % %", raid—>plug-child(d1);
childrer{0]—>path(), path)); raid—>plug_child(d2);

if(ret < 0) errof" Corrupt FS: Can’t nount!");

} /I 3. plug an ext3 system onto RAID
void Ext3::umoungvoid) { Ext3 *ext3 = new Ext3("/ mt / sbd0");
system{" sudo unount %", path)); ext3—>plug_child(raid);

top = ext3 // let eXplode know the top of storage stack
void Ext3::thread@hreadst &thids) {

int thid; /I 4. attach a file system test driver onto ext3 layer
if ((thid=get pid(" kj our nal d")) = —1) driver = new FsCheckdext3);

thids push.bacKthid); }
else

o , . ey Figure 5: Checking stack: file system checker (Figure 2) on an ext3 file
explodepaniq” can’ t get kjournald pid!"); system (Figure 4) on a mirrored RAID array on t&XpPLODE RAM

}.) disks. We elide the trivial class definitioRai d andDi sk.
Figure 4: Example storage component for thet 3 file system. The

C++ class membechi | dr en chains all storage components that a tiple RAM disks to make a RAID array. Given a stack,
component is based oaxt 3 has only one child. EXPLODE initializes the checked storage stack by call-

Clients write a component once for a given storage sysind €achi ni t bottom up, and themount bottom up.

tem and then reuse it in different checkers. Storage sys~fter a crash, it calls theecover methods bottom up

tems tend to be easy to set up, otherwise they will no@S Well. To unmountEXPLODE appliesunnmount top

get used. Thus, components tend to be simple and smaflown. Figure 5 shows a three-layer storage stack.

since they can merely wrap up alrgady—present systergr Implementation Overview

commands (e.qg., shell script invocations).
Figure 4 shows a storage component forebe 3 file This section gives an overview &XPLODE. The next

system that illustrates these points. Its first four methodéwo sections discuss the implementation of its most im-

call standarcext 3 commands. The one possibly non- portant features: choice and crash checking.

obvious method is hr eads, which returns the thread The reader should keep in mind that conceptually what

ID of ext 3’s kernel threadKj our nal d) using the ex- EXPLODEdoes is very simple. If we assume infinite re-

pedient hack of calling the built-iEXPLODE routine sources and ignore some details, the following would ap-

get _pi d which automatically extracts this ID from the proximate its implementation:

output of theps command. 1. Create a clean initial stat§3.3) and invoke the
client'srmut at e oniit.

2. Ateverychoose(N) call, fork Nchildren.

The checking stack builds a checker by glueing storage3. On clientrequest, generate all crash disks and run the

system components together and then attaching a single clientcheck method on them.

checker on top of them. The lowest component of a4. Whennut at e returns, re-invoke it.

checking stack typically is a custom RAM disk (down- This is it. The bulk ofEXPLODE is code for approx-

loaded from [24] and slightly modified). WhileX- imating this loop with finite resources, mainly the ma-

PLODEruns on real disks, using a RAM disk avoids non- chinery to save and restore the checked system so it

deterministic interrupts and giveXPLODE precise, fast can run one child at a time rather than an exponen-

control over the contents of a checked system’s “perdially increasing number all-at-once. As a resuX-

sistent” storage. The simplest storage stack attaches RL.ODE unsurprisingly looks like a primitive operating

checker to oneXPLODE RAM disk. Such a stack does system: it has a queue of saved processes, a scheduler

no useful crash checking, so clients typically glue one otthat picks which of these jobs to run, and time slices (that

more storage subsystems between these two. Currentlystart whenrut at e is invoked and end when it returns).

stack can only have one checker. However, there can beXpPLODEs scheduling algorithm: exhaust all possible

a fan-out of storage components, such as setting up mutombinations of choices within a singlait at e call be-

3.4 Putting it all together: The checking stack

storage.init() Add S' to

SO0.
S0 = checkpnt() ol / state queue
0 00
state queue -
pick S from S'=checkpnt()
state queue

unexplored
hoices in S?

@

discard
current state

No

4)
creat(...) {

generate all
=
S

buffer cache

(S)erenwi gy

curent RAM disk

Figure 6: Simplified view ofEXPLODE's state exploration loop for the
file system checker in Figure 2; sormhoose transitions and method
calls elided for space.

fore doing anotherg(2). (Note that turningeXPLODE

into a random testing framework is easy: never save and

restore states and make eachoose(N) call return
a random integef0, N) rather than forking, recording

each choice for error replay.) The above sketch glosses
over some important details; we give a more accurate de-
scription below, but the reader should keep this helpful,

simplistic one in mind.
From a formal method’s perspective, the coreif

PLODEIs a simple, standard model checking loop based

EXPLODE Runtime FS Checker
Model Checking Loop Ex13 Component
Rald Componem

Raid

= 22
RAM Disk| |RAM Disk

Hardware

|aulay || PEs Buppayd

ayoe)d
Jayng
Xnurq palipoN

3
void*
kmalloc|(size_t s) {

if(choose(2) == 0)
return NULL;

Figure 7: SnapshoteXpPLoDEwWith Figure 5’s checking stack

control to the running Linux kernel. Tter eat sys-
tem call writes two dirty blocks to the buffer cache
and returns back tout at e.

. mut at e callseEXPLODEto check that the file system

correctly recovers from any crash at this point.

. EXPLODEgenerates combinations of disks that could

be seen after a crash. It then runs the client code to:
nmount the crash disk; ecover it,andcheck it. If
these methods flag an error or they crasipLODE
records enough information to recreate this error, and
stops exploring this state.

. Otherwise EXPLODE returns back intorut at e

which in turn returns EXPLODE checks if it has al-
ready seen the current state using the abstracted rep-
resentation returned byet _si g. If it has, it dis-
cards the state to avoid redundant work, otherwise it
checkpoints it and puts it on the state queue.

7. EXPLODE then continues exploring any remaining

choices in the original stat®. If it has exhausted all
choice combinations 08 it picks a previously saved
state off the state queue and repeats this process on it.
This loop terminates when the state queue is empty
or the user loses patience. (The number of possible
states means the former never happens.)

on exhausting state choices. Figure 6 shows this vievAfter crash checking, the checked system may have a
of EXPLODE as applied to the file system checker of the butchered internal state. Thus, before continui;
previous section; the numbered labels in the figure corPLODE restores a clean copy of the current state without

respond to the numbers in the list below:

doing crash checking (not pictured).

In addition, since

1. EXPLODE initializes the checked system using checking all possible crash disks can take too long, users
client-providedi ni t methods. It seeds the check- can set a deterministic threshold: if the number of crash
ing process by saving this state and putting it on thedisks is bigger than this thresholeXPLODE checks a
state queue, which holds all states (jobs) to exploreconfigurable number of random combinations.

It separately saves the created disk image for use as a Figure 7 gives a snapshoteXPLODE; Table 1 breaks

pristine initial disk.
2. TheEXPLODE “scheduler” selects a stagfrom its

down the lines of code for each of the components.
It consists of two user-level pieces: a client-provided

state queue, restores it to produce a running storehecking stack and theXPLODE runtime, which imple-

age system, and invokeshoose to run either the

ments most of the model checking loop described above.

nmut at e method or one of the checked systems’ ker-EXPLODE also has three kernel-level pieces: (1) one or

nel threads. In the figureut at e is selected.
3. nut at e invokeschoose to pick an action. In our

more RAM disks, (2) a custom kernel modulegm,
and (3) a modified Linux kernel (either version 2.6.11 or

example it pickscr eat and calls it, transferring 2.6.15).EXPLODEUSeSEKM to monitor and determinis-

Name Line Cloggtl system, FiSC, did just this [30]. Unfortunately, one can-
EKM ; . .

L RAM disk Driver 326 not simply save and restore a kernel running on raw hard—
inux Kernel Patch 328 ware, so we had to instead run a heavily-hacked Linux

EKM -generated 2,194 kernel inside FiSC at user level, turning FiSC into a prim-

8D | RAM disk Dri ;é? itive virtual machine. Doing so was the single largest

IS river . .
Kernel Patch 116 source of F_lS_C gomplexny, overhead to check new sys-
User-mode EXPLODE 5.802 tems, and limitation on what we could check.
RPC Library 521

EXPLODE uses computation rather than copying to
Table L. £X i f code (ignori is and blank lines) recreate states. It checkpoints a st&tdy recording

able 1: EXPLODEIines of code (ignoring comments and blank lines), :
broken down by modules. Thexm driver contains 2,194 lines of au- the set of ch0|ces_ the checked COd_e_t_OOk to rech
tomatically generated codeKm -generated. TheexpLoberuntime 'estoresS by starting from a clean initial state and re-
and the RPC library run at user-level, the rest is in the Reriie playing these choices. Thus, assuming deterministic ac-
RPC library is used to check virtual machings9(3). BSD counts are tions. this method regeneratSs Mechanically check-
smaller because this port does not yet provideAlPLoDEfeatures. point, records the sequencemthoices that pr(;duceﬁ

tically control checking-relevant actions done by kernelin an array; during replay théh choose call simply
code and record system events needed for crashes. Theturns theth entry in this array.

modified kernel C.a”EKM to log system e_v.ent.s and when This one change led to orders of magnitude reduction
|F reaches a choice pomt_. These moqmcatmns add 32§n complexity and effort in usingX PLODE as opposed
lines of_mostly read—onlylnstrumentatmn code, typically ; FiSC, to the degree th&XPLODE completely sub-

at function entry or exit. We expect them to generally beg | o oy prior work in almost every aspect by a large
done byEXPLODE users. UnlikeEXPLODES USer-space omqnt 1t also has the secondary benefit that states have

code, its RAM disk driver anékm are kernel-specific, a tiny representation: a sequence of integers, one for

but are fairly small and easily ported to a new OS. We r€each choice point, where the integer specifies which of

c_ently ported.zXPL.ODE,S core t? FreeBSD, which Sec- N choices were made. Note that some model checkers
tion _10 describes in mgre detail.) (and systems in other contexts [10]) already use replay-

_Given all of these pieces, checking works as follows. e creation of states, but for error reporting and state size
First, the user compiles and links their code against th¢eqyction, rather than for reducing invasiveness. One
EXPLODE runtime, and runs the resultant executable.promem with the approach is that the restored state’s

Second, theEXPLODE runtime dynamically loads its - imestamps will not match the original, making it harder
kernel-level components and then initializes the storaggy cneck some time properties.

system. Finally,eEXPLODE explores the checked sys-) o
tem’s states using its model Checking |00p' Na|Ve|y, It m|ght seem that to reset the checked SYs-
While checking a live kernel simplifies many things tems’ state we have to reboot the machine, re-initialize

the downside is that many bugs we find witkpLope ~ the storage system, mount it, and only then replay
cause kernel crashes. Thus, we run the checked systeffioices. This expensive approach works, but fortunately,
inside a virtual machine monitor (VMware Workstation), Storage systems have the observed, nice property that
where it can blow itself up without hurting anyone. This SIMPly unmounting them clears their in-memory state,

approach also makes checking a non-super-user Opergpmoving their buffer cache entries, freeing up their ker-
tion. with the usual benefits. nel data structures, etc. ThusXPLODE uses a faster

method: call the client-suppliednnount to clear the
5 Exploring Choices current state, then load a pristine initial state (saveet aft

EXPLODE exhausts a choice point by checkpointing the'mt'ahzatlon) using the client-supplietbunt .

current stateS, exploring one choice, restoring, and It gets more costly to restore states as the length of
then exploring the other choices. Below we discuss hovtheir choice sequence grows. Users can configite
EXPLODEImplements checkpoint and restore by replay-PLODE to periodically chop off the prefix of choice se-
ing choices § 5.1) deterministically§ 5.2). quences. It does so by (1) callimgnount to force the
checked system state to disk and (2) using the resultant
disk image as a new initial state that duplicates the effect
A standard checkpoint implementation would copy theof the choices before thenmount call. The downside
current system state to a temporary buffer, which restorés that it can no longer reorder buffer cache entries from
would then copy back. Our previous storage checkingbefore this point during crash checking.

5.1 Checkpointing and restoring states.

5.2 Re-executing code deterministically While checked code must do the santeoose calls

for deterministic error replay, it does not have to allocate
the same physical blocke X PLODEreplays choices, but
then regenerates all different crash combinations afeer th
last choice point until it (re)finds one that fails checking.

EXPLODE’S restore method only works if it can deter-
ministically replay checked code. We discuss hex+
pPLODEdoes so below, including the restrictions imposed

on thg checked system: . Thus, the checked code can put logical contents in differ-
Doing the same choices.Kemel code containing & ot hhysical blocks (e.g., an inode resides in disk block
choose call can be invoked by non-checking code, suchy 5 51 one run and in block 20 on another) as long as the

as Interrupt har_wdlers or system calls_ run by ‘?thef pro1ogical blocks needed to cause the error are still marked
cesses. Including such calls makes it impossible to re; dirty in the buffer cache

play traces. EXPLODE filters them by discarding any _
calls from an interrupt context or calls from any process6 Checking Crashes
whose ID is not associated with the checked system. 115 section discusses crash checking issueX-

Controlling threads. EXPLODE uses priorities t0 | oppes checking interface § 6.1), how it generates
control when storage system threads rgid (bullet 2). ¢rash disks{ 6.2), how it checks crashes during recov-
It quiesces storage system threads by giving them thgyy ¢ 6.3), how it checks for errors caused by application

lowest priority possible using aBkM i oct | . It runs crashesq 6.4), and some refinementsg.5).
a thread by giving it a high priority (others still have the

lowest) and calling the kernel scheduler, letting it sched8-1 The full crash check interface

ule the right thread. It might seem more sensiblesikr The check_crashes_now() routine is the simplest
PLODE to orchestrate thread schedules via semaphoregyay to check crashessX PLODE also provides a more
However, doing so requires intrusive changes and, ihowerful (but complex) interface clients can use to di-
our experience [30], backfires with unexpected deadlockectly inspect the logeXPLODE extracts fromekm.
since semaphores prevent a given thread from runninghey can also add custom log records. Clients use the
even if it absolutely must. Unfortunately, using prioritie |og to determine what state the checked system should
is not perfect either, and still allows non-deterministic recover to. They can initiate crash checking at any time
thread interleaving. We detect pathological cases wherghile examining the log. For space reasons we do not
a chosen thread does not run, or other “disabled” threadéiscuss this interface further, though many of our check-
do run using the “last-run” timestamps in the Linux pro- ers use it. Instead we focus on two simpler routines
cess data structure. These sanity checks let us catch whemeck cr ashes st art andcheck _cr ashes _end
we generate an error trace that would not be replayable ghat give most of the power of the logging approach.
when replaying it takes a different path. Neither happens clients callcheck_cr ashes_st art before invok-
much in practice. ing the storage system operations they want to check and
Requirements on the checked systeniThe checked check_cr ashes_end after. For example, assume we
system must issue the saméoose calls across re- want to check if we can atomically rename a #lé¢o B
play runs. However, many environmental features carby callingr enane and thersync() . We could write
change across runs, providing many sources of poterthe following code inrut at e:
tial non-deterministic input: thread stacks in differemt | /I Assume: A, B on disk Legal state(s) after crash
cations, memory allocations that return different blocks, (A and B)

data structures that have different sizes, etc. None of check crashes_start(..);
rename(“A”, “B”);

these perturbations should cause the checked code to be- sync(): (AandB), orB
have differently. Fortunately, the systems we checked check_crashes_end(...); 5
satisfy this requirement “out of the box” — in part be-

cause they are isolated during checking, and nothing beeXPLODEgenerates all crash disks that can occur (inclu-
sides the checker and their kernel threads call into thensively) between these calls, invoking the cliertiseck

to modify their RAM disk(s). Non-deterministic systems method on each. Note how the state the system should
require modification beforeXPLODEcan reliably check recover to changes. At theheck_crashes_start
them. However, we expect such cases to rarely occur. I€all, the recovered file system should contain bath
nothing else, usability forces systems to ensure that reand B. During the process of renaming, the recovered
executing the same user commands produces the sarfile system can contain either (1) the origiraland B
system state. As a side-effect, they largely run the samer (2) B with A's original contents. Aftesync com-
code paths (and thus would hit the sachmose calls). pletes, onlyB with A's original contents should exist.

This pattern of having an initial state, a set of legal in-

(1)logops =2, (2)rewiteto —_— (3) build potential

termediate states, and a final state is a common one f¢
checking. ThuseXpPLODE makes it easy focheck to
distinguish between these epochs by passing a flag th

micro-ops write sets
mark_dirty(B1) add B1, {B1:}
make_request(B1) add B1,// B1,!=B1, {B1,B1,}
make_request(B2) add B2, {B1: B1, B2 }
end_request(B1,B2) remove B1, B2 {

tellscheck if the crash disk could occur at the first call
(EXP_BEG N), the last call EXP_END), or in between
(EXP_I NBETVEEN). We could write a check method to
use these flags as follows:

checKint epoch ...) {
if (epoch == EXP_BEGIN)
/I check (A and B)
else if{epoch== EXP_INBETWEEN)
/I check (A and B) or B
else// EXP.END
/I check B

}

{51 B1282)

BZQ

= 3
B1u B1, B1;
B2' B2, B2,

Figure 8: Generating all potential crash disks.

Initial disk T

>
Blo generate 910 B“ B1,
B2, crashes B2“ B2

. As the storage system executesi logs operations
that affect which blocks could be written to disk.

. EXPLODEextracts this log using aekM i oct | and
reduces the logged operations to micro-operations
that add or remove blocks from the write set.

EXPLODE uses C++ tricks so that clients can pass an3.

arbitrary number of arguments to these two routines (up

to a user-specified limit) that in turn get passed to their 4.

It then applies these add and remove operations, in
order, to the initial write set.
Whenever the write set shrinks, it generates all pos-

check method.
6.2 Generating crash disks

EXPLODE generates crash disks by first constructing the

currentwrite set the set of disk blocks that currently

could bewritten to disk. Linux has over ten functions

that affect whether a block can be written or not. The

following two representative examples calsérPLODE

to add blocks to the write set:

1. mar k_buf fer _dirty(b) sets the dirty flag of a
block b in the buffer cache, making it eligible for
asynchronous write back.

. generi c_make_r equest (req) submits a list of
sectors to the disk queueXPLODE adds these sec-

sible crash disks by applying all subsets of the write
set to the current disk. (Doing so when the write set
shrinks rather than grows makes it trivial to avoid du-
plicate work.)

Note that the write set tracks a block’s contents in addi-
tion to the block itself. Naively it may appear that when
EXPLODEadds a block to the write set it should replace
any previous copy ob with this more recent one. (Our
previous work [30] did exactly this.) However, doing so
misses errors. For example, in the figure, doing so misses
one crash diskB1,, B2;) since the second insertion of
block B1 replaces the previous versi@hl; with B1s.

6.3 Checking crashes during recovery

tors to the write set, even if they are clean, which canClients can also useXPLODE to check that storage sys-
happen for storage systems maintaining their owntems correctly handle crashes during recovery. Since en-

private buffer caches (as in the Linux port of XFS).
The following three representative examples cagse

PLODEto remove blocks from the write set:

1. cl ear buffer_dirty(b) clearsbh’s dirty flag.
The buffer cache does not write clean buffers to disk
end_r equest (), called when a disk request com-
pletes. EXPLODE removes all versions of the re-

2.

vironmental failures are correlated, once one crash hap-
pens, another is not uncommon: power may flicker re-
peatedly in a storm or a machine may keep rebooting
because of a bad memory boardXPLODE generates

the disks that could occur if recovery crashes, by track-

ing the write set produced while runningcover , and
then applying all its subsets to the initial crash disk. It

quest’s sectors from the write set since they are guarehecks these “crash-crash” disks as it would a crash disk.

anteed to be on disk.

. I ock_buffer(b), locksb in memory, prevent-
ing it from being written to disk. A subsequent
cl ear buf fer | ocked(b) will add b to the
write set ifb is dirty.

Writing any subset of the current write set onto the

current disk contents generates a disk that could be see
if the system crashed at this moment. Figure 8 shows"
how EXPLODE generates crash disks; its numbered la-

bels correspond to those below:

Note this assumes recovery is idempotent in that if a cor-
rect recovery with no crash produces stég;;; then so
should a prematurely crashed repair followed by a suc-
cessful one. We do not (but could) check for further
crashes during recovery since implementors seem unin-
terested in such errors [30].

4 Checking “soft” application crashes

In addition to “hard” machine crashes that wipe volatile
state, EXPLODE can also check that applications cor-

rectly recover from “soft” crashes where they crashedfile systems on Linux 2.6.11: ext2, ext3, JFS, ReiserFS,
but the operating system did not. Such soft crasheReiser4, XFS, MSDOS, VFAT, HFS, and HFS+. We
are usually more frequent than hard crashes with causeskipped NTFS because repairing a crashed NTFS disk
ranging from application bugs to impatient users pressfequires mounting it in Windows. For most file sys-
ing “ctrl-C.” Even applications that ignore hard crashestems, we used the most up-to-date utilities in the Debian
should not corrupt user data because of a soft crash. “etch” Linux distribution. For HFS and HFS+, we had
EXPLODE checks soft crashes in two steps. First, itto download the source of their utilities from OpenDar-
runs the checkerisut at e method and logs all mutating win [14] and compile it ourselves. The storage compo-
file system operations it performs. Second, for each logients for these file systems mirrext 3's component
prefix EXPLODE mounts the initial disk and replays the (§ 3.3). Four file systems use kernel threads: JFS, Reis-
operations in the prefix in the order they are issued. IferFS, Reiser4 and XFS. We extracted these thread IDs
the log has: operationsEXPLODE generates storage using the same trick as witnxt 3.
states, and passes each tocheck method. While these file systems vary widely in terms of im-
plementation, they are identical in one way: none give
clean, precise guarantees of the state they recover to af-
In some cases we remove blocks from the write set toQer a crash. As a result, we wrote three checkers that
eagerly. For example, we always remove the sectors agpcused on different special cases where what they did
sociated witrend_r equest , but doing so can miss per- \as somewhat well-defined. We built these checkers by
mutations since subsequent writes may not in fact hav@xtending a common core, which we describe below. We

waited for (depended on) the write to complete. Con-then describe the checkers and the bugs they found.
sider the events: (1) a file system writes sector S1, (2

the write completes, (3) it then writes sector S2. If the
file system wrote S2 without explicitly waiting for the S1 The basic checker starts from an empty file system
write to complete then these writes could have been reand systematically generates file system topologies up
ordered (i.e., there is no happens-before dependency be a user-specified number of files and directories. Its
tween them). However, we do not want to grovel aroundmut at e exhaustively applies each of the following eight
inside storage systems rooting out these false dependegystem calls to each node (file, link, directory) in the cur-
cies, and conservatively treat all writes that complete asent topology before exploring the nextt r uncat e,
waited for. A real storage system implementor could ob-pwr i t e (which writes to a given offset within a file),
viously do a better job. creat ,nkdir,unlink,rndir,linkandrenane.

To prevent the kernel from removing buffers from the For example, if there are two leaf directories, the checker
write set, we completely disable the dirty buffer flushing will delete both, create files in both, etc. Thus, the num-
threadspdf | ush, and only schedule the kernel thread ber of possible choices for a given tree grows (determin-
kbl ockd that periodically flushes the disk queue be-istically) with its size. For file systems that support holes
tween calls to the clientut at e method. the checker writes at large offsets to exercise indirect

If a checked system uses a private buffer cae¥e, blocks. Other operations can easily be added.

PLODE cannot see all dirty blocks. We partially counter For each operation it invokesut at e duplicates its
this problem by doing an unmount before generatingeffect on a fake “abstract” file system it maintains pri-
crash disks, which will flush all private dirty buffers to vately. For example, if it performs three operations
disk (wheneEXPLODE can add them to its write set). Un- nkdi r (/ a), nkdi r (/a/ b), andsync() then the
fortunately, this approach is not a complete solution sinceabstract file system will be the trée/ b, which the real
these unmount-driven flushes can introduce spurious deile system must match exactly. The checkees _si g
pendencies (as we discussed above). method returns a canonical version of this abstract file
7 In-Depth Checking: File Systems system. Thi§ canonicalization mirro_rs that in [39], and
uses relabeling to make topologies differing only in nam-
This section demonstrates treXPLODES lightweight ing equivalent and discards less interesting properties
approach does not compromise its power by replicatsuch as timestamps, actual disk blocks used, etc.
ing (and sometimes superseding) the results we obtained .
with our previous, more strenuous approach [30]. It also7'2 Check: Failed system calls have no effect
showseX PLODE's breadth by using it to check ten Linux This check does not involve crash-recovery. It checks
file systems with little incremental effort. that if a file system operation (excemiwr i t €) returns
We appliedeEXPLODEto all but one of the disk based an error, the operation has no user-visible effect. It uses

6.5 Refinements

)7.1 The generic checker core

EXPLODE to systematically fail calls to the six kernel FStZ sync m’““tD sync fsénc O—SSNC
functions discussed in Section 3.1. The actual check uses o5 -
the abstract file system described in the previous sub- Reiseres O O
section. If a system call succeeds, the checker updates Reiser4 O
the abstract file system, but otherwise does not. It then f(iss g o g
checks that the real file system matc_hes the abstract one. spos 0 0 0
Bugs found. We found 2 bugs in total. One of VEAT]] O
them was an unfixed Linux VFS bug we already re- HFS O O O O
ported in [30]. The other one was a minor bug in Reis- HFS* o o O o

.erFSf truncate .Which can fail with its job half'dqne Table 2 Sync checking resultsd indicates the file system failed the
if memory allocation fails. We also found that Reiser4 check. There were 13 bugs, three of which show up more thaa, onc
calls pani ¢ on memory allocation failures, and Reis- causing morél marks than errors.

erFS callspani ¢ on disk read failures. (We did notin- rectory loops. The maintainers confirmed they knew of
clude these two undesired behaviors in our bug counts.xhese bugs, though they had not been publicly disclosed.
7.3 Check: “sync” operations work These bugs have subsequently been fixed. Eight file sys-

tems had synchronous mount bugs. For exangté 2

App]lcatlons such as databases and malil SEIVers use Oafves no consistency guarantees by default, but mounting
erating system-provided methods to force their data tqq synchronously still allows data loss

disk in order to prevent crashes from destroying or cor-
rupting it. Unfortunately, they are completely at these
routines’ mercy — there is no way to check they do what

they claim, yet their bugs can be almost arbitrarily bad. |, "The bug occurs when we: (1) shrink a file “A"
Fortunately,EXPLODE makes it easy to check these .kt r uncat e and (2) subsequentlyr eat , write,
operations. We built a checker (similar to the one in Fig- 4 sync a second file “B." If file B reuses the indi-

ure 2) to check four methods that force data to disk: rect blocks of A freed vid r uncat e, then following a

1. sync forces all dirty buffers to disk. crashe2f sck notices that As indirect blocks are cor-
2. fsync(fd) forcesf d's dirty buffers to disk. _rupt and clears them, destroying the contents of B. (For
3. Synchronously mounted file system: a system call'§yqo4 measure it then notices that A and B share blocks
modifications are on disk when the call returns. and “repairs” B by duplicating blocks from A.) Because
4. Files opened witld SYNC: all modifications done by - gy15> makes no guarantees about what is written to disk,
a system call through the returned file descriptor argyndamentally one cannot ugsync to safelyforce a
on disk when the call returns. _ _ . file to disk, since the file can still have implicit depen-
After each operation completes and its modificationsyencies on other file system state (in our case if it reuses

have been forced to disk, the sync-checker tells 5, ingirect blocks for a file whose inode has been cleared
PLODE to do crash checking and verifies that the mod-;, memory but not on disk).

ifications persist.

Note, neitherf sync nor O.SYNC guarantee that di-
rectory entries pointing to the sync'd file are on disk, Our final check is the most stringent: after a crash a file
doing so requires callingsync on any directory con- system recovers to a “reasonable” state. No files, di-
taining the file (a legal operation in Linux). Thus, the rectories, or links flushed to disk are corrupted or dis-
checker does ahsync on each directory along the path appear (unless explicitly deleted). Nor do they sponta-
to the sync'd file, ensuring there is a valid path to it in the neously appear without being created. For example, if
recovered file system. we crash after performing two operatiomidi r (/ A)

Bugs found. Table 2 summarizes the 13 bugs found andnkdi r (/ A/ B) on an empty file system, then there
with this checker. Three bugs show up in multiple waysare exactly three correct recovered file systemst (ho
(but are only counted three times): a VFS limitation data), (2 A, or (3)/ A/ B. We should not see directories
caused all file systems to fail tleeSYNCcheck, and both or files we never created. Similarly,/ifA was forced to
HFS and HFS+ mangled file and directory permissiongdisk before the crash, it should still exist.
after crashing, therefore failing all four sync checks. We For space reasons we only give a cursory implemen-
describe a few of the more interesting bugs below. tation overview. Asut at e issues operations, it builds

Besides HFS/HFS+, both MSDOS and VFAT mishan-two sets: (1) the stable set, which contains the opera-
dledsync. Simple crashes aftsrync can introduce di- tions it knows are on the disk, (2) the volatile set, which

There were two interestingsync errors, one in JFS
(§3.2) and one irext 2. Theext 2 bug is a case where
an implementation error points out a deeper design prob-

7.4 Check: arecovered FS is “reasonable”

contains the operations that may or may not be on disk. SVFStSem Stor;‘gi Cth:;’; BU?;
Thecheck method verifies that the recovered file sys- cVS 7 68 1
tem can be constructed using some sequence of volatile Subversion . - 1
operations legally combined with all the stable ones. The EXPENSIV 30 124 3
implementation makes heavy use of caching to prune the Berkeley DB 82 202 6
h and “desugars” operations suchrkdi r into RAID lad FS+ 137 2
searc desugars” operatioj , , NFS 34 FS 4
smaller atomic operations (in this case it creates an in- VMware GSX/Linux 54 FS 1
ode and then forms a link to it) to ensure it can describe Total 1,115 6,008 36

their intermediate effects.
Bugs found. We applied this check to ext2, ext3, Table 3 Summary of all storage systems checked. All line counts

JFS, ReiserFS and Reiser4. Unsurprisingly, sixe2 ignore comments and whitespa@ioragegives the line count for each

gives no crash guarantees, files can point to uninitial$YSems storage component, which kincludes the components for

: . . . all ten file systemsChecker gives the checker line counts, which for

ized bIOCkS_: and Sync_d files an(_j directories can be regxpeNsy includes two checkers. We reused the FS checker to check

moved by itsf sck. Since JFS journals metadata but RAID, NFS and VMware. We wrote an additional checker for RAID

not data, its files can also point to garbage. These pbelWe checked Subversion using an early versioBXPLODE, we have

haviors are design decisions so we did not include then°tYet Ported its component and checker.

in our bug counts. We found two bugs (one in JFS,8.1 Version control software

one in Reiserd4) where crashed disks cannot be reco

ered byf sck. We could not check many topologies for

ReiserFS and Reiser4 because they appear to leak lar

amounts of memory on evemypunt and unnmount o N
(Our bug counts do illot incIudrgIt)hese leaks.) (its license precludes naming it directly). We check that
In addition, we used the crash-during-recovery checihese systems meet their fundamental goal: do not lose
: or corrupt a committed file. We found errors in all three.

(86.3) on Reiser4. It found a bug where Reiser4 be-
comes so corrupted that mounting it causes a kernel The storage component for each wraps up the com-

panic. (Since our prior work explored this check in detail MaNds needed to set up a new repository on top of one
we did not apply it to more systems.) of the file systems we check. The checkerist at e

Finally, we did a crude benchmark run by running method checks out a copy of the repository, modifies it,

the checker (without crash-during-recovery checking) to?1d commits the changes back to the main repository.
ext 3 inside a virtual machine with 1G memory on a In- After this commit completes, these changes should per-
tel P4 3.2GHZ with 2G memory. After about 20 hours, SiSt aftér any crash. To test thisut at e immediately
EXPLODE checked 230,744 crashes for 327 differentC@llS check-crashes.now() aiter the commit com-
FS topologies and 1582 different FS operations. The?/€tes. Theheck method flags an error if: (1) the ver-
run died because Linux leaks memory on eadunt sion control systems’ crash recovery tool (if any) gives
andunmount and runs out of memory. Although we &N €fTor or (2) committed files are missing. _
fixed two leaks, more remain (we did not count these Bugs found. All three systems made the same mis-
obliquely-detected errors in our bug counts but wergl@k€. To update a repository fiks without corrupting
tempted to). We intend to haxeX PLODE periodically it they first update a temporary fil8, which they then
checkpoint itself so we can reboot the machine and legtomically rename ta\. However, they forget to force

\LI_'his section checks three version control systems: CVS,
%Jbversion [27], and an expensive commercial system
e did not have source code for, denoted agIEENSIV

EXPLODE resume from the checkpoints. B's contents to disk before the rename, which means a
.] crash can destroy it.
8 Even Simple Checkers Find Bugs In addition EXPENSIV purports to atomically merge

This section shows that even simple checkers find intertwo repositories into one, where any interruption (such
esting bugs by applying it to three version control sys-as crash) will either leave the two original repositories
tems and the Berkeley DB database. or one entirely (correctly) merged oneXpLoODE found

The next two sections demonstrate tlEXPLODE a bug where a crash during merge corrupts the repos-
works on many different storage systems by applying ititory, which EXPENSIV’s recovery tool EXPENSI v
to many different ones. The algorithm for this process:-r check -f) cannot fix. This error seems to be
write a quick checker, use it to find a few errors, declarecaused by the same renaming mistake as above.
success, and then go after another storage system. InFinally, we found that even a soft crash during a merge
all cases we could check many more invariants. Table Zorrupts EXPENSIV’s repository. It appears)BPENSv
summarizes all results. renames multiple files at the end of the merge. Although

each individual rename is atomic against a soft crashshould be the same as without it: any (new) errors the
their aggregation is not. The repository is corrupted ifchecker flags are RAID bugs. The second checks that
not all files are renamed. losing any single sector in a RAID1 or RAID5 stripe does
not cause data loss [20]. l.e., the disk’s contents were
8.2 Berkeley DB always correctly reconstructed from the non-failed disks.
The database checker in this section checks that after a we applied these checks to Linux's software
crash no committed transaction records are corrupted qRAID [26] levels 1 and 5. Linux RAID groups a set
disappear, and no uncommitted ones appear. It found sigf disks and presents them as a single block device to
bugs in Berkeley DB 4.3 [2]. the rest of the system. When a block write request is

Berkeley DB'’s storage component only defines thereceived by the software RAID block device driver, it re-

i ni t method, which calls Berkeley DB utilities to cre- computes the parity block and passes the requests to the
ate a database. It does not requitaunt orunmount, underlying disks in the RAID array. Linux RAID repairs
and has no threads. It performs recovery when thex disk using a very simple approach: overwrite all of the
database is opened with tiiB RECOVER flag (in the disk’s contents, rather than just those sectors that need to
check method). We stack this component on top of abe fixed. This approach is extremely slow, but also hard
file system one. to mess up. Still, we found two bugs.

The checker'stut at e method is a simple loop that ~ The RAID storage component methods map directly
starts a transaction, adds several records to it, and them different options for its administration utilitydadm
commits this transaction. It records committed trans-The i nit method usesmdadm --create to as-
actions. It callcheck_crashes_st art before each semble either two or four RAM disks into a RAID1
commit andcheck_crashes_end (§ 6.1) after to ver- or RAID5 array respectively. Themount method
ify that there is a one-to-one mapping between the transealls nmdadm - - assenbl e on these disks and the
actions it committed and those in the database. unnmount method tears down the RAID array by invok-

Bugs found. We checked Berkeley DB on top of ingndadm - - st op. Ther ecover method reassem-
ext2, ext3, and JFS. On ext2 creating a database insidelsles and recovers the RAID array. We used titadm
transaction, while supposedly atomic, can lead to a cor- - add command to replace failed disks after a disk fail-
rupted database if the system crashes before the databas@. The checking stack is similar to that in Figure 5.
is closed osync is manually called. Furthermore, even Bugs found. The checker found that Linux RAID
with an existing database, committed records can disapdoes not reconstruct the contents of an unreadable sec-
pear during a crash. On ext3 an unfortunate crash whileor (as it easily could) but instead marks tetire disk
adding a record to an existing database can again leawat contains the bad sector as faulty and removes it from
the database in an unrecoverable state. Finally, on athe RAID array. Such a fault-handling policy is not so
three file systems, a record that was added but never congood: (1) it makes a trivial error enough to prevent the
mitted can appear after a crash. We initially suspecte®RAID from recovering fromany additional failure, and
these errors came from Berkeley DB incorrectly assum{2) as disk capacity increases, the probability that amrothe
ing that file system blocks were written atomically. How- sector goes bad goes to one.
ever, setting Berkeley DB to use sector-aligned writes Given this fault-handling policy, it is unsurprising our
did not fix the problem. While the errors we find differ checker found that after two sector read errors happen
depending on the file system and configuration settingson different disks, requiring manual maintenance, almost
some are probably due to the same underlying problemall maintenance operations (suchnakadm - - st op or
9 Checking “Transparent” Subsystems rrdadm_- - ad_d) fail with a “Devi_cg or resource busy’f

error. Disk write requests also fail in this case, rendering
Many subsystems transparently slip into a storage stackhe RAID array unusable until the machine is rebooted.
Given a checker for the original system, we can easilyOne of the main developers confirmed that these behav-
check the new stack: run the same checker on top of itors were bad and should be fixed with high priority [4].
and make sure it gives the same results. 92 NES

9.1 Software RAID NFS synchronously forces modifications to disk before
We ran two checkers on RAID. The first checks that arequests return [23]. Thus, with only a single client mod-
RAID transparently extends a storage stack by runningfying an NFS file system, after a crash NFS must recover
the file system sync-checkef 7.3) on top of it. A file tothe same file system tree as a local file system mounted
system’s crash and non-crash behavior on top of RAIDsynchronously. We check this property by running the

sync-checker§7.3) on NFS and having it treat NFS as Checking Stack
a synchronously mounted file system. This check found
four bugs when run on the Linux kernel's NFS (NFSv3)
implementation [19]. X Component
The NFS storage component is a trivial 15-lines of Fpsw— _’
code (plus a hand-edit of €t ¢/ export s” to define
an NFS mount point). It provides two methods: (1)
nmount , which sets up an NFS partition by exporting

RPC Server

Guest Linux

FS Test Driver

VM-ext3 Component

Swiuny 3dOTd X3

Il

Ext3

&z
a local FS over the NFS loop-back interface and (2) Host Linux with EKM
unnmount , which tears down an NFS partition by un- Hardware

mounting it. It does not provide aecover method
since ther ecover of the underlying local file system
must be sufficient to repair crashed NFS partitions. Wevmwar e-cnd start and unnount stops it using
did not model network failures, neither did we control Vmar e-cmd stop hard. Therecover method
the scheduling of NFS threads, which could make erro€alls viwar e- cnd st art, which repairs a crashed
replay non-deterministic (but did not for ours). virtual machine, and then removes a dangling lock (cre-
Bugs found. The checker found a bug where a client ated by the “crashed” virtual machine to preventraces on
that writes to a file and then reads the same file througihe virtual disk file).
a hard link in a different directory will not see the values ~ As shown in Figure 9 the checking stack was the most
of the first write. We elide the detailed cause of this errorintricate of this paper. It has five layers, starting from-bot
for space, other than noting that diagnosing this bug agomto top: (1) a RAM disk, (2) the ext3 file system in the
NFS’s fault was easy, because it shows up regardless &¥ost, storing the GSX virtual disk file, (3) GSX, (4) the
the underlying file system (we tried ext2, ext3, and JFS)€xt3 file system in the guest, (5) the sync-checker. The
We found additional bugs specific to individual file Main complication in building this stack was the need to
systems exported by NFS. When JFS is exported ovesPlit EXPLODE into two pieces, one running in the host,
NFS, thel i nk andunl i nk operations are not commit- the other in the guest. Since the virtual machine will
ted synchronously. When an ext2 file system is exportedrequently “crash” we decided to keep the part running
over NFS, our checker found that many Operations Werénside it Simp|e and make it a stateless RPC server. The
not committed synchronously. If the NFS server crashe§ntire storage stack and the sync-checker reside in the

these bugs can lose data and cause data values to go baBRst. When the sync-checker wants to run an operation
wards for remote clients. in the guest, or a storage method wants to run a utility,

they do RPC calls to the server in the guest, which then

9.3 VMware GSX server performs the operation.
In theory, a virtual machine slipped beneath a guest OS Bugs found. Calling sync in the guest OS does not
should not change the crash behavior of a correctlycorrectly flush dirty buffers to disk, but only to the host's
written guest storage system. Roughly speaking, corbuffer cache. According to VMware documents, setting
rectness devolves to not lying about when a disk blockhe “disable write caching” configuration flag forces all
actually hits a physical disk. In practice, speed concernsvrites to disk. However, we hit the same bug even with
make lying tempting. We check that a file system on topthis flag on. This bug makes it impossible to reliably run
of a virtual machine provided “disk” has the same syn-a storage system on top of this VMM on Linux. We con-
chronous behavior as running without it (again) using thefirmed this problem with one of the main developers who
sync-checkery7.3). We applied this check to VMware stated that it should not show up in the latest version [28].
GSX 3.2.0[29] running on Linux. GSX is an interesting . .
case folEXPLODE: a large, complex commercial system 10 Checking on a new system: FreeBSD
(for which we lack source code) that, from the point of We portedeXPLODE to FreeBSD 6.0 to ensure porting
view of a storage system checker, implements a blockvas easy and to shake out Linux-specific design assump-
device interface in a strange way. tions. We spent most of our time writing a new RAM

The VMware GSX scripting APl makes the storage disk andeEkm module; we only needed to change a few
component easy to build. Theni t method copies a lines in the user-level runtime to run on FreeBSD.
precreated empty virtual disk image onto the file sys- The FreeBSD version oEXPLODE supports crash
tem on top ofEXPLODE RAM disk. The nount checking, but currently does not provide a kernel-level
method starts the virtual machine using the commanad¢hoose nor logging of system calls. Neither should

Figure 9: The VMware checking stack.

present a challenge here or in general. Even without Recently, Prabhakarat al [21] studied how file sys-
these features, we reproduced the errorsin CVS and E tems handle disk failures and corruption. They devel-
PENSIV we saw on Linux as well as finding new errors oped a testing framework that uses techniques from [25]
in FreeBSD UFS2. Below, we discuss issues in writingto infer disk block types and then inject “type-aware”
EKM and the RAM disk. block failure and corruption into file systems. Their re-
EKM . Crash checking requires adding callsstov in ~ sults provide motivation for using existing checksum-
functions that mark buffers as clean, dirty, or write thembased file systems (such as Sun’s ZFS [32]). While their
to disk. While a FreeBSD developer could presumablytechnique is more precise than random testing, it does
enumerate all such functions easily, our complete lackiot find the crash errors tha&XPLODE does, nor is it
of experience with FreeBSD meant it took us about aas systematic. ExtendirgXPLODE to similarly return
week to find all corner-cases. For example, FreeBSD'garbage on disk reads is trivial.
UFS2 file system sometimes bypasses the buffer cache Software Model Checking. Model checkers have
and writes directly to the underlying disk. been previously used to find errors in both the design

There were also minor system-differences we had t@nd the implementation of software systems [1,3,7, 13,
correct for. As an example, while Linux and FreeBSD 15, 16,18, 30]. Two notable examples are Verisoft [13],
have similar structures for buffers, they differ in how Which systematically explores the interleavings of a con-
they store bookkeeping information (e.g., representingurrent C program, and Java PathFinder [3] which used
offsets in sectors on Linux, and in bytes on FreeBSD).2 specialized virtual machine to check concurrent Java
We adjusted for such differences insiglem so thateX- Programs by checkpointing states.

PLODES user-level runtime sees a consistent interface. The model checking ide@XPLODEuses — exhaust-
We believe porting should generally be easy sisger N States, systematic exploration, and choice — are not
only logs the offset, size, and data of buffer modifica-Novel. This paper’s conceptual contribution is dramati-
tions, as well as the ID of the modifying thread. All of cally reducing the large work factor that plagues tradi-
these should be readily available in any OS. tional model checking. It does so by turning the check-

RAM disk. We built our FreeBSD RAM disk by mod- ing process inside out. It interlaces the control it needs
ifying the / dev/ md memory-based disk device. We ex- for systematic state exploratian situ, throughout the
pect developers can generally use this approach: takghecked system. As far as we knoeXPLODE is t,he
an existing storage device driver and add triviact | 'St €xample ofn situ model checking. The paper’s en-

commands to read and write its disk state by copying pegdineering contribution is building a system that exploits
tween user- and kernel-space. this technique to effectively check large amounts of stor-

Bug-Finding Results. In addition to our quick tests age sy_stem C(.)de. with relatively litile effort.
to replicate the EPENSV and CVS bugs, we also ran Static bug finding. There has been much recent work

our sync-checker§.3) on FreeBSD's UFS2 with soft on Sts.t'c btl:g flndlng (e.g.,_ [1}]5’?(’.9’ 11, 12]).dthu.gf|1.Iy
updates disabled. It found errors whéreck with the f{pgi I_ng,t ecautsed yntzmlg Ct ecking run:rcot_ e’ll "T‘] ImI;
- p option could not recover from crashes. WHilseck ltedto just executed paths, but cah more efiectively chec

without - p could repair the disk, the documentation for ?uejlpeéoprfrﬁﬁg'gzt';ng'2?;;{;2?023(1? (()??l:.?;s(h) rzg(-)ver
f sck claims- p can recover from all errors unless un- y g y

expected inconsistencies are introduced by hardware Ovyorks). The errors we found would be difficult to get

software failures. Developers confirmed that this is astatlcally. However, we view static analysis as comple-

problem and should be further investigated. mentary: easy enough to apply that there is no reason not
to use it and then useXPLODE.

11 Related Work 12 Conclusion and Future Work
Below we compareXpLODETo file system testing, soft- eXpLoDE comprehensively checks storage systems by
ware model checking, and static bug finding. adapting key ideas from model checking in a way that

File system testing tools. There are many file sys- retains their power but discards their intrusiveness. Its
tem testing frameworks that use application interfaces tanterface lets implementors quickly write storage check-
stress a “live” file system with an adversarial environ-ers, or simply compose them from existing components.
ment. These testing frameworks are less comprehensivEhese checkers run on live systems, which means they
than our approach, but they work “out of the box.” Thus, do not have to emulate either the environment or pieces
there is no reason not to both test a file system and theaf the system. As a result, we often have been able to
test withEXPLODE (or vice versa). check a new system in minutes. We usetiPLODE to

find serious bugs in a broad range of real, widely-usedReferences

storage systems, even when we did not have their sourcél
code. Every system we checked had bugs. Our gut belief

has become that an unchecked systeansthave bugs — [2]
if we do not find any we immediately look to see what is 3
wrong with our checker (a similar dynamic arose in our
prior static checking work). 5]

The work in this paper can be extended in numerous
ways. First, we only checked systems we did not build. [6]
While this showsEXPLODE gets good results withouta [7]
deep understanding of checked code, it also means we
barely scratched the surface of what could be checked!/8l
In the future we hope to collaborate with system builders !
to see just how deepX PLODEcan push a valued system.

Second, we only useeX pLODE for bug-finding, but
it is equally useful as an end-to-end validation tool (with
no bug fixing intended). A storage subsystem implemen-
tor can use it to double-check that the environment thélll
subsystem runs in meets its interface contracts and that
the implementor did not misunderstand these contractgi2]
Similarly, a user can use it to check that slipping a sub-
system into a system breaks nothing. Or use it to pick
a working mechanism from a set of alternatives (e.qg., ifl 3
f sync does not work useync instead).

Finally, we can do many things to improgX PLODE.
Our biggest missed opportunity is that we do nothing[is]
clever with states. A big benefit of model checking is (16}
perspective: it makes state a first-class concept. Thus it
becomes natural to think about checking as a state space,
search; to focus on hitting states that are most “differ-q,
ent” from those already seen; to infer what actions cause
“interesting” states to be hit; and to extract the essence,
of states so that two superficially different ones can begzg
treated as equivalent. We have a long list of such things
to add toEXPLODEIN the future. (1]

Acknowledgements

We thank Xiaowei Yang, Philip Guo, Daniel Dunbar, [
Silas Boyd-Wickize, Ben Pfaff, Peter Pawlowski, Mike [23]
Houston, Phil Levis for proof-reading. We thank Jane-,4
Ellen Long and Jeff Mogul for help with time manage- |25
ment. We especially thank Ken Ashcraft and Cristian
Cadar for detailed comments, Jeremy Sugerman for hige
help in reasoning about the GSX error, and Paul Twohe
and Ben Pfaff for help in the initial stages of this project g
(described in [31]). We thank Martin Abadi (our shep- [29]
herd) and the anonymous reviewers for their struggle%O]
with our opaque submission. This research was sup-
ported by National Science Foundation (NSF) CAREER
award CNS-0238570-001 and Department of Homelan
Security grant FA8750-05-2-0142.

[10

(14]

1]

(32]

T. Ball and S. Rajamani. Automatically validating tenmpbsafety proper-
ties of interfaces. IIBPIN 2001 Workshop on Model Checking of Software
May 2001.

Berkeley DB.ht t p: / / ww. sl eepycat . com

G. Brat, K. Havelund, S. Park, and W. Visser. Model chagprograms. In
IEEE International Conference on Automated Software Eggjimg 2000.

N. Brown. Private communication., Mar. 2005.

W. Bush, J. Pincus, and D. Sielaff. A static analyzer fodfng dynamic
programming errors Software: Practice and Experienc&0(7):775-802,
2000.

E. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. PasargaRobby, and
H. Zheng. Bandera: Extracting finite-state models from 3avace code.
In ICSE 2000 2000.

The Coverity software analysis toolsétt t p: / / coverity. com
M. Das, S. Lerner, and M. Seigle. Path-sensitive progremification in
polynomial time. InProceedings of the ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementatigerlin, Germany,
June 2002.

] G. Dunlap, S. T. King, S. Cinar, M. Basrat, and P. ChenViReenabling

intrusion analysis through virtual-machine logging anglag. InProceed-
ings of the Fifth Symposium on Operating Systems Designrapt&inen-
tation, Dec. 2002.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checkingtsys rules using
system-specific, programmer-written compiler extensidngroceedings
of Operating Systems Design and Implementat8spt. 2000.

C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. $&xand R. Stata.
Extended static checking for Java. Pmoceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Impittien
pages 234-245. ACM Press, 2002.

] P. Godefroid. Model Checking for Programming Langusgsing VeriSoft.

In Proceedings of the 24th ACM Symposium on Principles of Rrogning
Languages1997.

HFS and HFS+ utilities. htt p: // darwi nsour ce. opendar wi n.

or g/ 10. 2. 6/ di skdev_cnds- 208. 11.

G. J. Holzmann. The model checker SPINSoftware Engineering
23(5):279-295, 1997.

G. J. Holzmann. From code to models.Rroc. 2nd Int. Conf. on Applica-
tions of Concurrency to System Desigages 3—-10, Newcastle upon Tyne,
U.K., 2001.

M. K. Symbolic Model Checkindluwer Academic Publishers, 1993.

M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. LillD CMC:
A pragmatic approach to model checking real codePioceedings of the
Fifth Symposium on Operating Systems Design and Impleti@nta002.

] Linux NFS.http://nfs.sourceforge. net/.

D. Patterson, G. Gibson, and R. Katz. A case for redundaays of inex-
pensive disksACM SIGMOD Conferencgages 109-116, June 1988.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, HG8nawi, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Iron file systémBroceed-
ings of the Twentieth ACM Symposium on Operating Systemsiplgs
pages 206-220, New York, NY, USA, 2005. ACM Press.

22] J. Saltzer, D. Reed, and D. Clark. End-to-end argumierggstem design.

ACM Transactions on Computer Syste@(@):277-288, Nov. 1984.
Sandberg, Goldberg, Kleiman, Walsh, and Lyon. Desighianplementa-
tion of the Sun network file system, 1985.

A simple block driverhttp: //1wn. net/Articl es/ 58719/ .

M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. DenéA. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Semantically-smdctsglistems. In
Second USENIX Conference on File and Storage Techno|&fies.
Linux software RAID.ht t p: / / cgi . cse. unsw. edu. au/ ~nei | b/
Sof t Rai d.

Subversionht t p: // subversion. tigris.org.

J. Sugerman. Private communication., Dec. 2005.

VMware GSX server. http://ww. vimnar e. coni product s/
server/.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Usingdelochecking
to find serious file system errors. Rroceedings of the Sixth Symposium
on Operating Systems Design and Implementafiet. 2004.

J. Yang, P. Twohey, B. Pfaff, C. Sar, and D. Engler. eXigloA lightweight,
general approach for finding serious errors in storage syssten\Workshop
on the Evaluation of Software Defect Detection Tpdisme 2005.

Zfs: the last word in file systems. http://ww. sun. conl
2004- 0914/ feature/ .

