
Laws of Order: Expensive Synchronization in
Concurrent Algorithms Cannot be Eliminated

Hagit Attiya
Technion

hagit@cs.technion.il

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Danny Hendler
Ben-Gurion University

hendlerd@cs.bgu.ac.il

Petr Kuznetsov
TU Berlin/Deutsche Telekom Labs

pkuznets@acm.org

Maged M. Michael
IBM T. J. Watson Research Center

magedm@us.ibm.com

Martin Vechev
IBM T. J. Watson Research Center

mtvechev@us.ibm.com

Abstract
Building correct and efficient concurrent algorithms is known to
be a difficult problem of fundamental importance. To achieve ef-
ficiency, designers try to remove unnecessary and costly synchro-
nization. However, not only is this manual trial-and-error process
ad-hoc, time consuming and error-prone, but it often leaves design-
ers pondering the question of: is it inherently impossible to elimi-
nate certain synchronization, or is it that I was unable to eliminate
it on this attempt and I should keep trying?

In this paper we respond to this question. We prove that it is im-
possible to build concurrent implementations of classic and ubiqui-
tous specifications such as sets, queues, stacks, mutual exclusion
and read-modify-write operations, that completely eliminate the
use of expensive synchronization.

We prove that one cannot avoid the use of either: i) read-after-
write (RAW), where a write to shared variable A is followed by a
read to a different shared variable B without a write to B in between,
or ii) atomic write-after-read (AWAR), where an atomic operation
reads and then writes to shared locations. Unfortunately, enforcing
RAW or AWAR is expensive on all current mainstream processors.
To enforce RAW, memory ordering–also called fence or barrier–
instructions must be used. To enforce AWAR, atomic instructions
such as compare-and-swap are required. However, these instruc-
tions are typically substantially slower than regular instructions.

Although algorithm designers frequently struggle to avoid RAW
and AWAR, their attempts are often futile. Our result characterizes
the cases where avoiding RAW and AWAR is impossible. On the
flip side, our result can be used to guide designers towards new
algorithms where RAW and AWAR can be eliminated.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; E.1 [Data]: Data Structures

General Terms Algorithms, Theory
Keywords Concurrency, Algorithms, Lower Bounds, Memory
Fences, Memory Barriers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

1. Introduction
The design of concurrent applications that avoid costly synchro-
nization patterns is a cardinal programming challenge, requiring
consideration of algorithmic concerns and architectural issues with
implications to formal testing and verification.

Two common synchronization patterns that frequently arise in
the design of concurrent algorithms are read after write (RAW) and
atomic write after read (AWAR).

The RAW pattern consists of a process writing to some shared
variableA, followed by the same process reading a different shared
variable B, without that process writing to B in between. The
AWAR pattern consists of a process reading some shared variable
followed by the process writing to a shared variable (the write could
be to the same shared variable as the read), where the entire read-
write sequence is atomic. Examples of the AWAR pattern include
read-modify-write operations such as a Compare-and-Swap [26]
(CAS).

Unfortunately, on all mainstream processor architectures, the
RAW and AWAR patterns are associated with expensive instruc-
tions. Modern processor architectures use relaxed memory mod-
els, where guaranteeing RAW order among accesses to indepen-
dent memory locations requires the execution of memory order-
ing instructions–often called memory fences or memory barriers–
that enforce RAW order.1 Guaranteeing the atomicity of AWAR
requires the use of atomic instructions. Typically, fence and atomic
instructions are substantially slower than regular instructions, even
under the most favorable caching conditions.

Due to these high overheads, designers of concurrent algorithms
aim to avoid both RAW and AWAR patterns. However, such at-
tempts are often unsuccessful: in many cases, even after multiple
attempts, it turns out impossible to avoid these patterns while en-
suring correctness of the algorithm.

This raises an interesting and important practical question:

Can we discover and formalize the conditions under which
avoiding RAW and AWAR, while ensuring correctness, is futile?

In this paper, we answer this question formally. We show that
implementations of a wide class of concurrent algorithms must
involve RAW or AWAR. In particular, we focus on two widely used

1 RAW order requires the use of explicit fences or atomic instructions
even on strongly ordered architectures (e.g., X86 and SPARC TSO) that
automatically guarantee other types of ordering (read after read, write after
read, and write after write).

specifications: linearizable objects [23] and mutual exclusion [11].
Our results are applicable to any algorithm claiming to satisfy these
specifications.

Main Contributions. The main contributions of this paper are the
following:

• We prove that it is impossible to build a linearizable implemen-
tation of a strongly non-commutative method that satisfies a de-
terministic sequential specification, in a way that sequential ex-
ecutions of the method are free of RAW and AWAR (Section 5).

• We prove that common methods on ubiquitous and funda-
mental abstract data types–such as sets, queues, work-stealing
queues, stacks, and read-modify-write objects–are strongly
non-commutative and are subject to our results (Section 6).

• We prove that it is impossible to build an algorithm that satisfies
mutual exclusion, is deadlock-free and avoids both RAW and
AWAR (Section 4).

Practical Implications. Our results have several implications:

• Designers of concurrent algorithms can use our results to de-
termine when looking for a design without RAW and AWAR is
futile. Conversely, our results indicate when avoidance of these
patterns may be possible.

• For processor architects, our result indicates the importance
of optimizing the performance of atomic operations such as
compare-and-swap and RAW fence instructions, which have
historically received little attention for optimization.

• For synthesis and verification of concurrent algorithms, our
result is potentially useful in the sense that a synthesizer or a
verifier need not generate or attempt to verify algorithms that
do not use RAW and AWAR for they are certainly incorrect.

The remainder of the paper is organized as follows. We present
an overview of our results with illustrative examples in Section 2.
In Section 3, we present the necessary formal machinery. We
present our result for mutual exclusion in Section 4 and for lin-
earizable objects in Section 5. In Section 6, we show that many
widely used specifications satisfy the conditions outlined in Sec-
tion 5 and hence are subject to our result. We discuss related work
in Section 7 and conclude the paper with Section 8.

2. Overview
In this section we explain our results informally, give an intuition
of the formal proof presented in later sections and show concurrent
algorithms that exemplify our result.

As mentioned already, our result focuses on two practical spec-
ifications for concurrent algorithms: mutual exclusion [11, 31] and
linearizability [23].

Informally, our result states that if we are to build a mutual
exclusion algorithm or a linearizable algorithm, then in certain
sequential executions of that algorithm, we must use either RAW
or AWAR. That is, if all executions of the algorithm do not use
RAW or AWAR, then the algorithm is incorrect.

2.1 Mutual Exclusion
Consider the classic mutual exclusion template shown in Fig. 1.
Here we have N processes (N > 1), with each process acquiring
a lock, entering the critical section, and finally releasing the lock.
The specification for mutual exclusion states that we cannot have
multiple processes in their critical section at the same time. The
template does not show the actual code that each process must
execute in its lock, critical, and unlock sections. Further, the code
executed by different processes need not be identical.

Process 0:

lock0: ...

CS0: ...

unlock0: ...

Process 1:

lock1: ...

CS1: ...

unlock1: ...

.....

.....

.....

Process N-1:

lockN−1: ...

CSN−1: ...

unlockN−1: ...

Figure 1. N-process mutual exclusion template, for N > 1.

locki:
while (¬ CAS(Lock,FREE,BUSY));

Figure 2. Illustrating AWAR: a simplified snippet of a test-
and-set lock acquire.

locki:
flag[i] = true;
while (flag[¬i])...

Figure 3. Illustrating RAW: simplified snippet from the lock
section of Dekker’s 2-way mutual exclusion algorithm (here
0 ≤ i < 2).

Our result states that whenever a process has sequentially exe-
cuted its lock section, then this execution must use RAW or AWAR.
Otherwise, the algorithm does not satisfy the mutual exclusion
specification and is incorrect.

2.1.1 Informal Proof Explanation
Let us now give an intuition for the proof on a simplified case where
the system is in its initial state, i.e., all processes are just about
to enter their respective lock sections, but have not yet done so.
Let us pick an arbitrary process i, 0 ≤ i < N , and let process
i sequentially execute its locki section, enter the critical section
CSi, and then stop. Let us assume that process i did not perform a
shared write when it executed its locki section.

Now, let us select another process j ̸= i, 0 ≤ j < N . As
process i did not write to the shared state, there is no way for
process j to know where process i is. Therefore, process j can
fully execute its own lockj section and enter the critical section
CSj . Now, both processes are inside the critical section, violating
mutual exclusion. Therefore we have shown that each process must
perform a shared write in its lock section.

Let us now repeat the same exercise and assume that all pro-
cesses are in the initial state, where they are all just about to enter
their respective lock sections, but have not yet done so. We know
that each process must write to shared memory in the sequential ex-
ecution of its lock section. Let us again pick process i to execute its
locki section sequentially. Assume that process i writes to shared
location named X . Now, let us assume that the locki section is ex-
ecuted by process i sequentially without using RAW and AWAR.
Since there is no AWAR, it means that the write to X cannot be
executed atomically with a previous shared read (be it a read from
X or another shared location). There could still be a shared read
in locki that precedes the write to X , but that read cannot execute
atomically with the write to X . Let us now have process i exe-
cute until it is about to perform its first shared write operation, and
then stop. Now, let process j perform a full sequential execution of
its lockj section (this is possible as process i has not yet written to
shared memory so process j is not perturbed). Process j now enters
its critical section CSj and stops. Process i now resumes its locki

section and immediately performs the shared write toX . Once pro-
cess i writes to X , it over-writes any changes to X that process j
made. This means that if process i is to know where process j is,
it must read a shared memory location other than X . However, we
assumed that there is no RAW which means that process i can-
not read a shared location other than X , without previously having
written to that location. In turn, this implies that process i cannot
observe where process j is, that is, process j cannot influence the
execution of process i. Hence, process i continues and completes
its locki section and enters its critical section, leading to a violation
of mutual exclusion. Therefore, any sequential execution of a lock
section requires the use of either AWAR or RAW.

2.1.2 Examples
Here, we show several examples of mutual exclusion algorithms
that indeed use either RAW or AWAR in their lock sections. These
examples are specific implementations that highlight the applica-
bility of our result, namely that implementation of algorithms that
satisfy the mutual exclusion specification cannot avoid both RAW
and AWAR.

One of the most common lock implementations is based on the
test-and-set atomic sequence. Its lock acquire operation boils down
to an AWAR pattern, by using an atomic operation, e.g., CAS, to
atomically read a lock variable, check that it represents a free lock,
and if so replace it with an indicator of a busy lock. Fig. 2 shows
a simplified version of a test-and-set-lock. Similar pattern is used
in all other locks that require the use of read-modify-write atomic
operations in every lock acquire [2, 18, 36].

On the other hand, a mutual exclusion lock algorithm that avoids
AWAR [6, 11, 41], must use RAW. For example, Fig. 3 shows a
simplified snippet from the lock section of Dekker’s algorithm [11]
for 2-process mutual exclusion. A process that succeeds in entering
its critical section must first raise its own flag and then read the
other flag to check that the other process’s flag is not raised. Thus,
the lock section involves a RAW pattern.

2.2 Linearizability
The second part of our result discusses linearizable algorithms
[23]. Intuitively, an algorithm is linearizable with respect to a se-
quential specification if each execution of the algorithm is equiva-
lent to some sequential execution of the specification, where the or-
der between the non-overlapping methods is preserved. The equiv-
alence is defined by comparing the arguments and results of method
invocations.

Unlike mutual exclusion where all sequential executions of a
certain method (i.e., the lock section) must use either RAW or
AWAR, in the case of linearizability, only some sequential execu-
tions of specific methods must use either RAW or AWAR. We quan-
tify these methods and their executions in terms of properties on se-
quential specifications. Any algorithm implementation that claims
to satisfy these properties on the sequential specifications is subject
to our results. The two properties are:

• Deterministic sequential specifications: Informally, we say that
a sequential specification is deterministic if a method executes
from the same state will always produce the same result. Many
classic abstract data types have deterministic specifications:
sets, queues, etc.

• Strongly non-commutative methods: Informally, a methodm1 is
said to be strongly non-commutative if there exists some state
in the specification from which m1 executed sequentially by
process p can influence the result of a method m2 executed
sequentially by process q, q ̸= p, and vice versa, m2 can
influence the result of m1 from the same state. Note that m1

and m2 are performed by different processes.

{S = A} contains(k) {ret = k ∈ A ∧ S = A}

{S = A} add(k) {ret = k ̸∈ A ∧ S = A ∪ {k}}

{S = A} remove(k) {ret = k ∈ A ∧ S = A \ {k}}

Figure 4. Sequential specification of a set. S ⊂ N denotes the
contents of the set. ret denotes the return value.

Figure 5. Illustration of the reasoning for why RAW is required in
linearizable algorithms.

Our result states that if we have an implementation of a strongly
non-commutative methodm, then there are some sequential execu-
tions of m that must use RAW or AWAR. That is, if all sequential
executions ofm do not use RAW or AWAR, then the algorithm im-
plementation is not linearizable with respect to the given sequential
specification.

Let us illustrate these concepts with an example: a Hoare-style
sequential specification of a classic Set, shown in Fig. 4 where each
method can be executed by more than one process.

First, this simple sequential specification is deterministic: if an
add, remove or contains execute from a given state, they will
always return the same result.

Second, both methods, add and remove are strongly non-
commutative. For add, there exists an execution of the specifica-
tion by a process such that add can influence the result of add
which is executed by another process. For example, let us begin
with S = ∅. Then, if process p performs an add(5), it will re-
turn true and a subsequent add(5) will return false. However,
if we change the order, and the second add(5) executes first,
then it will return true while the first add(5) will return false.
That is, add is a strongly non-commutative method as there ex-
ists another method where both method invocations influence each
other’s result starting from some state (i.e.,S = ∅). In this case it
happens to be another add method, but in general the two meth-
ods could be different. Similar reasoning shows why remove is
strongly non-commutative. However, contains is not a strongly
non-commutative method, as even though its result can be influ-
enced by a preceding add or remove, its execution cannot in-
fluence the result of any of the three methods add, remove or
contains, regardless of the state from which contains starts
executing.

For the Set specification, our result states that any linearizable
implementation of the strongly non-commutativie methods add
and remove must use RAW or AWAR in some sequential exe-
cution of the implementation. For example, let us consider a se-
quential execution of add(k) starting from a state where k ̸∈ S.
Then this sequential execution must use RAW or AWAR. However,
our result does not apply to the sequential execution of add(k)
where k ∈ S . In that case, regardless of whether add(k) is per-
formed, the result of any other subsequent method performed right
after add(k) is unaffected.

2.2.1 Informal Proof Explanation
The proof steps in the case of linearizable implementations are
very similar to the ones already outlined in the case of mutual
exclusion implementations. Intuitively, if a method is strongly non-
commutative, then any of its sequential executions must perform a
shared write. Otherwise, there is no way for the method to influence
the result of any other method that is executed after it, and hence
the method cannot be strongly non-commutative. Let us illustrate
how we reason about why RAW or AWAR should be present on
our set example.

By contradiction, let us assume that RAW and AWAR are not
present. Consider the concurrent execution in Fig. 5. Here, some
prefix of the execution marked asH has completed and at the end of
H , k ̸∈ S . Then, process p invokes method add(k) and executes
it up to the first shared write (to a location called X), and then p
is preempted. Then, another process q performs a full sequential
execution of add(k) (for the same k) which returns true. After
that, p resumes its execution and immediately performs the shared
write, and completes its execution of add(k) and also returns
true. The reason why both returned true is similar to the case for
mutual exclusion: the write to X by p overwrites any writes to X
that q has made and as we assumed that RAW is not allowed, it
follows that process p cannot read any locations other than X in its
subsequent steps without having previously written to them. Hence,
both add(k)’s return the same value true.

Now, if the algorithm is linearizable, there could only be two
valid linearizations as shown in Fig. 5. However, it is easy to see
that both linearizations are incorrect as they do not conform to the
specification: if k ̸∈ S at the end of H , then according to the set
specification, executing two add(k)’s sequentially in a row can-
not lead to both add(k)’s returning the same result. Therefore,
either RAW or AWAR must be present in some sequential execu-
tions of add(k).

More generally, as we will see in Section 5, we show this for any
deterministic specification, not only for sets. We will see that the
central reason why both linearizations are not allowed is because
the result of add(k) executed by process q is not influenced
by the preceding add(k) executed by process p, violating the
assumption that add() is a strongly non-commutative method.

2.2.2 Practical Implications
While our result shows when it is impossible to eliminate both
RAW and AWAR, the result can also be used to guide the search for
linearizable algorithms where it may be possible to eliminate RAW
and AWAR, by changing one or more of the following dimensions:

• Deterministic Specification: change the sequential specifica-
tion, perhaps by considering non-deterministic specifications.

• Strong Non-Commutativity: focus on methods that are not
strongly non-commutative, i.e.,contains instead of add.

• Single-Owner: restrict the specification such that a method can
only be performed by a single process, instead of multiple
processes (as we will see later, technically, this is also part of
the strong non-commutativity definition).

bool WFCAS(Val ev, Val nv) {
14: if (ev = nv) return WFRead()==ev;
15: Blk b = L;
16: b.X = p;
17: if (b.Y) goto 27;

...

Figure 6. Adapted snippet from Luchagco et al.’s [34] wait-
free CAS algorithm.

• Execution Detectors: design efficient detectors that can identify
executions which are known to be commutative.

The first three of these pertain to the specification and we illus-
trate two of them (deterministic specification and single-owner) in
the examples that follow. The last one is focused on the implemen-
tation. As mentioned already, for linearizability our result holds for
some sequential executions. However, when implementing an algo-
rithm, it may be difficult to differentiate the sequential executions
of a given method for which the result holds and those for which
it does not. However, if a designer is able to come up with an effi-
cient mechanism to identify these cases, it may be possible to avoid
RAW and AWAR in the executions where it may not be required.
For instance, if the method can check that k ∈ S before add(k) is
performed, then for those sequential executions of add(k) it may
not need to use neither RAW nor AWAR.

Even though our result only talks about some sequential execu-
tions, in practice, it is often difficult to design efficient tests that
differentiate sequential executions, and hence, it often ends up the
case that RAW or AWAR is used on all sequential executions of a
strongly non-commutative linearizable method.

2.3 Examples: Linearizable Algorithms
Next, we illustrate the applicability of our result in practice via
several well-known linearizable algorithms.

2.3.1 Compare and Swap
We begin with the universal compare-and-swap (CAS) construct,
whose sequential specification is deterministic, and the method is
strongly non-commutative (for a formal proof, see Section 6). The
sequential specification of CAS(m, o, n) says that it first compares
[m] to o and if [m] = o, then n is assigned to [m] and CAS returns
true. Otherwise, [m] is unchanged and CAS returns false. Here we
use the operator [] to denote address dereference.

The CAS specification can be implemented trivially with a
linearizable algorithm that uses an atomic hardware instruction
(also called CAS) and in that case, the implementation inherently
includes the AWAR pattern.

Alternatively, the CAS specification can be implemented by a
linearizable algorithm using reads, writes, and hardware CAS, with
the goal of avoiding the use of the hardware CAS in the common
case of no contention. Such a linearizable algorithm is presented
by Luchangco et al. [34]. Fig. 6 shows an adapted code snippet of
the common path of that algorithm. While the algorithm succeeds
in avoiding the AWAR pattern in the common case, the algorithm
does indeed include the RAW pattern in its common path. To ensure
correctness, the write to b.X in line 16 must precede the read of
b.Y in line 17.

Both examples confirm our result: AWAR or RAW was nec-
essary. Knowing that RAW or AWAR cannot be avoided in im-
plementing CAS correctly is important as CAS is a fundamental
building block for many classic concurrent algorithms.

WorkItem take() {
1: b = bottom;
2: CircularArray a = activeArray;
3: b = b - 1;
4: bottom = b;
5: t = top;

...

Figure 7. Snippet adapted from the takemethod of Chase-
Lev’s work stealing algorithm [10].

WorkItem take() {
1: h = head;
2: t = tail;
3: if (h= t) return EMPTY;
4: task = tasks.array[h%tasks.size];
5: head = h+1;
6: return task;

}

Figure 8. The take method from Michael et al.’s idempo-
tent work stealing FIFO queue [38].

2.3.2 Work Stealing Structures
Concurrent work stealing algorithms are popular algorithms for
implementing load balancing frameworks.

A work stealing structure holds a collection of work items and
it has a single process as its owner. It supports three main methods:
put, take, and steal. Only the owner can insert and extract
work items via methods put and take. Other processes (thieves)
may extract work items using steal.

In designing algorithms for work stealing, the highest priority
is to optimize the owner’s methods, especially the common paths
of such methods, as they are expected to be the most frequently
executed parts of the methods. Examining known work stealing
algorithms that avoid the AWAR pattern (i.e., avoid the use of
complex atomic operations) in the common path of the owner’s
methods [3, 16, 19, 20], reveals that they all contain the RAW
pattern in the common path of the take method that succeeds in
extracting work items.

The work stealing algorithm by Chase and Lev [10] is repre-
sentative of such algorithms. Fig. 7 shows a code snippet adapted
from the common path of the take method of that algorithm, with
minor changes for the sake of consistency in presentation. The vari-
ables bottom and top are shared variables, and bottom is writ-
ten only by the owner but may be read by other processes. The key
pattern in this code snippet is the RAW pattern in lines 4 and 5. The
order of the write to bottom in line 4 followed by the read of top
in line 5 is necessary for the correctness of the algorithm. Reversing
the order of these two instructions results in an incorrect algorithm.
In subsequent sections, we will see why correct implementations of
the take and steal methods must use either RAW or AWAR.

From deterministic to non-deterministic specifications Our re-
sult dictates that in the standard case where we have the expected
deterministic sequential specification of a work-stealing structure,
it is impossible to avoid both RAW and AWAR. However, as men-
tioned earlier, our result can guide us towards finding practical
cases where we can indeed eliminate RAW and AWAR. Indeed, re-
laxing the deterministic specification may allow us to come up with
algorithms that avoid both RAW and AWAR. Such a relaxation is
exemplified by the idempotent work stealing introduced by Michael
et al. [38]. This concept relaxes the semantics of work stealing to
require that each inserted item is eventually extracted at least once

Data dequeue() {
1: h = head;
2: t = tail;
3: next = h.next;
4: if head ̸= h goto 1;
5: if next = null return EMPTY;
6: if h = t {CAS(tail,t,next) ; goto 1; }
7: d = next.data;
8: if ¬CAS(head,h,next) goto 1;
9: return d;

}

Figure 9. Simplified snippet of dequeue on lock-free
FIFO queue [37].

Data dequeue() {
1: if (tail = head) return EMPTY;
2: Data data = Q[head mod m];
3: head = head +1 mod m;
4: return data;

}

Figure 10. Single-consumer dequeue method adapted
from Lamport’s FIFO queue which does not use RAW and
AWAR [30].

instead of exactly once. Under this notion the authors managed to
design algorithms for idempotent work stealing that avoid both the
AWAR and RAW patterns in the owner’s methods.

Our result explains the underlying reason of why the elimination
of RAW and AWAR was possible: because the sequential speci-
fication of idempotent structures is necessarily non-deterministic,
our result now indicates that it may be possible to avoid RAW and
AWAR. Indeed, this is confirmed by the algorithms in [38]. Fig. 8
shows the take method of one of the idempotent algorithms. Note
the absence of both AWAR and RAW in this code. The shared vari-
ables head, tail, and tasks.array[] are read before writing
to head, and no reads need to be atomic with the subsequent write.

2.3.3 FIFO Queue Example
In examining concurrent algorithms for multi-consumer FIFO
queues, one notes that either locking or CAS is used in the com-
mon path of nontrivial dequeue methods that return a dequeued
item. However, as we mentioned already, our result proves that
mutual exclusion locking requires each sequential execution of a
successful lock acquire to include AWAR or RAW. All algorithms
that avoid the use of locking in dequeue include a CAS operation
in the common path of each nontrivial dequeue execution. Fig. 9
shows the simplified code snippet from the dequeue method of
the classic Michael and Scott’s lock-free FIFO queue [37]. Note
that every execution that returns an item must execute CAS.

We observe that algorithms for multi-consumer dequeue in-
clude directly or indirectly at least one instance of the AWAR or
RAW patterns (i.e., use either locking or CAS).

From Multi-Owner to Single-Owner Our results suggest that if
we want to eliminate RAW and AWAR, we can focus on restricting
the processes that can execute a method. For instance, we can
specify that dequeue can be executed only be a single process.
Indeed, when we consider single-consumer FIFO queues, where
no more than one process can execute the dequeue method, we
can obtain a correct implementation of dequeue which does not
require RAW and AWAR.

x, y ∈ V ar
m ∈ MID
l ∈ Lab
B ∈ BExp ::= ...
E ∈ NExp ::= ...
C ∈ Com ::= l : x = E | l : x = G[E] |

l : G[E] = E | l : ifB goto l |
l : beg-atomic | l : end-atomic
l : entrym x⃗ | l : exitm x
C;C

P ::= C ∥ ... ∥ C

Figure 11. Language Syntax

Fig. 10 shows a single-consumer dequeue method, adapted
from Lamport’s single-producer single-consumer FIFO queue [30].2

Note that the code avoids both RAW and AWAR. The variable
head is private to the single consumer and its update is done by a
regular write. Once again, this example demonstrates a case where
we used our result to guide the implementation. In particular, by
changing the specification of a method of the abstract data type–
namely from multi-consumer to single-consumer–it enabled us to
create an implementation of the method (i.e., dequeue) where we
did not need RAW and AWAR.

3. Preliminaries
In this section, we present the formal machinery necessary to spec-
ify and prove our results later.

3.1 Language
The language shown in Fig. 11 is a basic assembly language
with labeled statements: assignments, sequencing and conditional
goto’s. We do not elaborate on the construction of numerical and
boolean expressions, which are standard. The language is also
equipped with the following features:

• Statements for beginning and ending of atomic sections. Using
these, one can implement various universal constructs such as
compare-and-swap.

• Parallel composition of sequential commands.
• We use G to model global memory via a one dimensional array.
• Two statements are used to denote the start (i.e., entry state-

ment) and end of a method (i.e., exit statement).

We use V ar to denote the set of local variables for each process,
MID to denote a finite set of method identifiers, Lab the set of pro-
gram labels and PID a finite set of process identifiers. We assume
the set of values obtained from expression evaluation includes at
least the integers and the booleans.

3.2 Semantics
A program state σ is a tuple ⟨pc, locals,G, inatomic⟩ ∈ Σ:

• Σ = PC × Locals×Globals× InAtomic

• PC = PID ⇀ Lab
• Locals = PID × V ar ⇀ Val
• Globals = Val ⇀ Val
• InAtomic = PID ∪ ⊥

2 The restriction or the lack of restriction on the number of concurrent
producers does not affect the algorithm for the dequeue method.

A state σ tracks the program counter for each process (pc), a
mapping from process local variables to values (locals), the con-
tents of global memory (G) and whether a process executes atomi-
cally (inatomic). If no process executes atomically then inatomic
is set to ⊥. We denote the set of initial states as Init ⊆ Σ (Initially
inatomic is set to ⊥ for all states in Init).

Transition Function We assume standard small-step operational
semantics given in terms of transitions between states [45]. The
behavior of a program is determined by a partial transition function
TF : Σ × PID ⇀ Σ. Given a state σ and a process p, TF (σ, p)
returns the unique state, if it exists, that the program will evolve
into once p executes its enabled statement. When convenient, we
sometimes use the function TF as a relation.

For a transition t ∈ TF , we denote its source state by src(t),
its executing process by proc(t), its destination state by dst(t), its
executing statement by stmt(t). A program transition represents
the intuitive fact that starting from a state src(t), process proc(t)
can execute the statement stmt(t) and end up in a state dst(t),
that is, TF (src(t), proc(t)) = dst(t). We say that a transition t
performs a global read (resp. write) if stmt(t) reads from G (resp.
writes to) and use mloc(t) to denote the global memory location
that the transition accesses. If the transition does not read or write
a global location, then mloc(t) returns ⊥. That is, only in the
case where a transition t accesses a global memory location does
mloc(t) return a non-⊥ value, otherwise, mloc(t) always returns
⊥.

We enforce strong atomicity semantics: for any state σ, process
p can make a transition from σ only if inatomicσ = ⊥ or
inatomicσ = p. For a transition t, if stmt(t) = beg-atomic, then
inatomicdst(t) = proc(t). Similarly, if stmt(t) = end-atomic,
inatomicdst(t) = ⊥. We use enabledσ to denote the set of
processes that can make a transition from σ. If inatomicσ ̸= ⊥,
then enabledσ = {inatomicσ}, otherwise enabledσ = PID.

The statement entrym x⃗ is used to denote the start of a method
invoked with a sequence of variables which contain the arguments
to the method (denoted by x⃗). The statement exit m x is used to
denote the end of a method m. These statements do not affect the
program state (except the program counter). The meaning of the
other statements in the language is standard.

Executions An execution π is a (possibly infinite) sequence of
transitions π0, π1, . . ., where ∀i ≥ 0, πi ∈ TF and ∀j ≥
1. dst(πj−1) = src(πj). We use first(π) as a shortcut for src(π0),
i.e., the first state in the execution π, and, last(π) to denote the last
state in the execution π, i.e., last(π) = dst(π|π|−1). If a transition
t is performed in an execution π then t ∈ π is true, otherwise it is
false.

For a program Prog, we use [[Prog]] to denote the set of exe-
cutions for that program starting from initial states (e.g. states in
Init). Next, we define what it means for an execution π ∈ [[Prog]]
to be atomic:

Definition 3.1 (Atomic Execution). We say that an execution π is
executed atomically by process p when:

• All transitions are performed by p:
∀i. 0 ≤ i < |π|. proc(πi) = p.

• All transitions are atomic:
|π| = 1 or ∀i. 1 ≤ i < |π|, inatomicsrc(πi) = p.

We use π(i,j) to denote the substring of π occurring between
positions i and j (including the transitions at i and j).

Definition 3.2 (Maximal Atomic Cover). Given an execution π
and a transition πk ∈ π, the maximal atomic cover of πk in π is
the unique substring π(i,j) of π, where:

• π(i,j) is executed atomically by proc(πk), where i ≤ k ≤ j.

• inatomicsrc(πi) = ⊥.
• inatomicdst(πj) = ⊥.

Intuitively, we can understand the maximal atomic cover as
taking a transition and extending it in both directions until we reach
a leftmost state and a rightmost state where no process is inside an
atomic section in either of these two states.

Next, we define read-after-write executions:

Definition 3.3 (Read After Write Execution). We say that a process
p performs a read-after-write in execution π, if ∃i, j. 0 ≤ i < j <
|π| such that:

• πi performs a global write by process p.
• πj performs a global read by process p.
• mloc(πi) ̸= mloc(πj) (the memory locations are different).
• ∀k. i < k < j, if proc(πk) = p, then mloc(πk) ̸= mloc(πj).

Intuitively, these are executions where somewhere in the exe-
cution the process writes to global memory location A and then,
sometimes later, reads a global memory location B that is different
from A, and in-between the process does not access B. Note that
there could be transitions in π performed by processes other than
p. Note that in this definition there is no restriction on whether the
global accesses are performed atomically or not, the definition only
concerns itself with the ordering of accesses and not their atomicity.

We introduce the predicate RAW(π, p) which evaluates to true if
p performs a read-after-write in execution π and to false otherwise.

Next, we define atomic write-after-read executions. These are
executions where a process first reads from a global memory loca-
tion and then, sometimes later, writes to a global memory location
and these two accesses occur atomically, that is, in-between these
two accesses, no other process can perform any transitions. Note
that unlike read-after-write executions, here, the global read and
write need not access different memory locations.

Definition 3.4 (Atomic Write After Read Execution). We say that
a process p performs an atomic write-after-read in execution π, if
∃i, j. 0 ≤ i < j < |π| such that:

• process p performs a global read in πi.
• process p performs a global write in πj .
• π(i,j) is executed atomically by process p.

We introduce the predicate AWAR(π, p) which evaluates to true
if process p performs an atomic write-after-read in execution π and
to false otherwise.

3.3 Specification
3.3.1 Histories
A history H is defined as a finite sequence of actions, i.e., H =
ψ;ψ...;ψ, where an action denotes the start and end of a method:

ψ = (p, entrym a⃗) | (p, exitm r)

where p ∈ PID is a process identifier, m ∈ MID is a method
identifier, a⃗ is a sequence of arguments to the method and r is the
return value. For an actionψ, we use proc(ψ) to denote the process,
kind(ψ) to denote the kind of the action (entry or exit), and m(ψ)
to denote the name of the method. We use Hi to denote the action
at position i in the history, where 0 ≤ i < |H|. For a process p,
H �p is used to denote the subsequence of H consisting only of the
actions of process p. For a method m, H �m is used to denote the
subsequence of H consisting only of the actions of method m.

A method entry (p, entry m1 a⃗1) is said to be pending in a
history H if it has no matching exit, that is, ∃i. 0 ≤ i < |H|
such that proc(Hi) = p, kind(Hi) = entry, m(Hi) = m1

and ∀j. i < j < |H|, proc(Hj) ̸= p or kind(Hj) ̸= exit or

m(Hj) ̸= m1. A history H is said to be complete if it has no
pending calls. We use complete(H) to denote the set of histories
resulting after extending H with matching exits to a subset of
entries that are pending in H and then removing the remaining
pending entries.

A historyH is sequential ifH is empty (H = ϵ) orH starts with
an entry action, i.e., kind(H0) = entry and if |H| > 1, entries
and exits alternate. That is, ∀i. 0 ≤ i < |H| − 1, kind(Hi) ̸=
kind(Hi+1) and each exit is matched by an entry that occurs
immediately before it in H , i.e., ∀i. 1 ≤ i < |H|, if kind(Hi) =
exit then kind(Hi−1) = entry and proc(Hi) = proc(Hi−1). A
complete sequential history H is said to be a complete invocation
of a method m1 iff |H| = 2, m(H0) = m1 and m(H1) = m1.
In the case where H is a complete sequential invocation, we use
entry(H) to denote the entry action in H and exit(H) to denote
the exit action in H . A history H is well-formed if for each process
p ∈ PID, H �p is sequential. In this work, we consider only well-
formed histories.

3.4 Histories and Executions
Given an execution π, we use the function hs(π) to denote the
history of π. hs(π) takes as input an execution π and produces
a sequence of actions by iterating over each transition t ∈ π in
order, and extracting proc(t) and stmt(t). If stmt(t) is an entry
statement of a methodm, then the transition t contributes the action
(proc(t), entrym a⃗), where a⃗ is the sequence of values obtained
from evaluating the variables used in the sequence stmt(t), in state
src(t). Similarly, for exit statements. If the transition t does not
perform an entry or an exit statement, then it contributes ϵ.

For a program Prog, we define its corresponding set of histories
as [[Prog]]H = {hs(π) | π ∈ [[Prog]]}. We use [[Prog]]HS to denote
the sequential histories in [[Prog]]H .

A transition t ∈ π is said to be a method transition if it is
performed in-between method entry and exit. That is, there exists
a preceding transition tprev ∈ π that performs an entry statement
with proc(tprev) = proc(t), such that proc(t) does not perform
an exit statement in-between tprev and t in π. We say that tprev is
a matching entry transition for t. Note that tprev may be the same
as t. A transition that is not a method transition is said to be a client
transition.

Definition 3.5 (Well-formed Execution). We say that an execution
π is well-formed if:

• hs(π) is well-formed.
• Any client transition t ∈ π:

mloc(t) = ⊥.
stmt(t) ̸= beg-atomic and stmt(t) ̸= end-atomic.

• For any transition t ∈ π, if stmt(t) is an exit statement, then
inatomicsrc(t) = ⊥.

• For any transition tr ∈ π, if tr is a method transition that
reads a local variable other than the variables specified in the
statement of its matching entry transition tm, then there exists a
transition tw performed by process proc(t), in-between tm and
tr , such that tw writes to that local variable.

That is, a well-formed execution is one where its history is well-
formed, only method transitions are allowed to access global mem-
ory or perform atomic statements, when a method exit statement is
performed, the inatomic should be ⊥, and methods must initial-
ize local variables which are not used for argument passing before
using them.

We say that π is a complete sequential execution of a method
m by process p, if π is a well-formed execution and hs(π) is a
complete invocation of m by process p. Note that π may contain
client transitions (both by process p and other processes).

A program Prog is well-formed if [[Prog]] contains only well-
formed executions. In this paper, we only consider well-formed
programs.

4. Synchronization in Mutual Exclusion
In this section, we consider implementations that provide mutually
exclusive access to a critical section among a set of processes. We
show that every deadlock-free mutual exclusion implementation
incurs either the RAW or the AWAR pattern in certain executions.

A mutual exclusion implementation exports the following meth-
ods: MID = {lock0, unlock0, . . . , lockn−1, unlockn−1}, where
n = |PID|. In this setting, we strengthen the definition of well-
formed executions by requiring that each process p ∈ PID only
invokes methods lockp and unlockp in an alternating fashion. That
is, for any execution π ∈ [[Prog]] and for any process p ∈ PID,
hs(π) �p is such that lock and unlock operations alternate, i.e.,
lockp, unlockp, lockp,

Given an execution π ∈ [[Prog]] andH = hs(π)�p, we say that p
is in its trying section if it has started, but not yet completed a lockp
operation, i.e., m(H|H|−1) = lockp and kind(H|H|−1) = entry.
We say that p is in its critical section if it has completed lockp
but has not yet started unlockp, that is, m(H|H|−1) = lockp and
kind(H|H|−1) = exit. We say that p is in its exit section if it has
started unlockp but has not yet finished it, that is, m(H|H|−1) =
unlockp and kind(H|H|−1) = entry. Otherwise we say that
p is in the remainder section (initially all processes are in their
remainder sections). A process is called active if it is in its trying
or exit section.

For the purpose of our lower bound, we assume the following
weak formulation of the mutual exclusion problem [11, 31]. In
addition to the classical mutual exclusion requirement, we only
require that the implementation is deadlock-free, i.e., if a number
of active processes concurrently compete for the critical section, at
least one of them succeeds.

Definition 4.1 (Mutual Exclusion). A deadlock-free mutual exclu-
sion implementation Prog guarantees:

• Safety: For all executions π ∈ [[Prog]], it is always the case that
at most one process is in its critical section at a time, that is, for
all p, q ∈ PID, if p is in its critical section in hs(π) �p and q is
in its critical section in hs(π)�q , then p = q.

• Liveness: In every execution in which every active process takes
sufficiently many steps: i) if at least one process is in its trying
section and no process is in its critical section, then at some
point later some process enters its critical section, and ii) if at
least one process is in its exit section, then at some point later
some process enters its remainder section.

Theorem 4.2 (RAW or AWAR in Mutual Exclusion). Let Prog
be a deadlock-free mutual exclusion implementation for two or
more processes (|PID| > 1). Then, for every complete sequential
execution π of lockp by process p:

• RAW(π, p) = true, or
• AWAR(π, p) = true

Proof. Let πbase · π ∈ [[Prog]] such that π is a complete sequential
execution of lockp by process p. It follows that no process q ∈ PID,
q ̸= p, is in its critical section in hs(πbase) �q (otherwise mutual
exclusion would be violated). It also follows that p is not active in
hs(πbase)�p,

By contradiction, assume that π does not contain a global write.
Consider an execution πbase·ρ such that process p does not perform
transitions in ρ and every active process takes sufficiently many
steps in ρ until some process q ̸= p completes its lockq section,

i.e., q is in its critical section in hs(πbase · ρ) �q . The execution
πbase · ρ ∈ [[Prog]] since Prog is deadlock-free.

Since p does not write to a shared location in π, Glast(πbase) =
Glast(πbase·π). Further, the local state of all processes other than p
in last(πbase) is the same as their local state in last(πbase ·π), i.e.,
∀q ∈ PID, ∀var ∈ V ar, if q ̸= p, then localslast(πbase)(q, var) =
localslast(πbase·π)(q, var). Also, we know enabledlast(πbase) =
enabledlast(πbase·π) as transitions by process p do not access local
variables of other processes. Hence, we can build the execution
πnc = πbase · π · ρ′ where ρ′ is the execution with the same
sequence of statements as ρ (i.e., process p does not perform tran-
sitions in ρ′). Hence, hs(πnc) �q= hs(πbase · ρ) �q , that is, q is in
its critical section in hs(πnc) �q . But p is also in its critical section
in hs(πnc)�p — a contradiction.

Thus, π contains a global write, and let tw be the first global
write transition in π. Let π = πf · πw · πl, where πw is the
maximal atomic cover of tw in π. We proceed by contradiction and
assume that RAW(π, p) = false and AWAR(π, p) = false. Since
AWAR(π, p) = false and tw is the first write transition in π, it
follows that tw is the first global transition in πw.

Since πf contains no global writes, Gfirst(πf) = Glast(πf).
Applying the same arguments as before, there exists an execution
πbase · πf · τ ∈ [[Prog]] such that some process q, q ̸= p, is in its
critical section in hs(πbase · πf · τ)�q .

The assumption RAW(π, p) = false implies that no global read
transition by process p in πw · πl accesses a variable other than
mloc(tw) without having previously written to it. Note that tw
overwrites the only location that can be read by p in πw · πl. Thus,
applying the same arguments as before, there exists an execution
πc = πbase · πf · τ · π′

w · π′
l in [[Prog]] such that q is in its critical

section in hs(πc) �q and p is in its critical section in hs(πc) �p —a
contradiction.

Thus, either RAW(π, p) = true or AWAR(π, p) = true.

5. Synchronization in Linearizable Algorithms
In this section we state and prove that certain sequential execu-
tions of strongly non-commutative methods of algorithms that are
linearizable with respect to a deterministic sequential specification
must use RAW or AWAR.

5.1 Linearizability
Following [21, 23] we define linearizable histories. A history H
induces an irreflexive partial order <H on actions in the history:
a <H b if kind(a) = exit and kind(b) = entry and ∃i, j. 0 ≤
i < j < |H| such that Hi = a and Hj = b. That is, exit
action a precedes entry action b in H . A history H is said to be
linearizable with respect to a sequential history S if there exists a
history H ′ ∈ complete(H) such that:

1. ∀p ∈ PID, H ′ �p= S �p
2. <H⊆<S .

We can naturally extend this definition to a set of histories. Let
Spec be a sequential specification, a prefix-closed set of sequential
histories (that is, if s is a sequential history in Spec, then any
prefix of s is also in Spec). Then, given a set of histories Impl,
we say that Impl is linearizable with respect to Spec if for any
history H ∈ Impl there exists a history S ∈ Spec such that H is
linearizable with respect to S.

We say that a program Prog is linearizable with respect to a
sequential specification Spec when [[Prog]]H is linearizable with
respect to Spec.

5.2 Deterministic Sequential Specifications
In this paper, similarly to [8], we define deterministic sequen-
tial specifications. Given two sequential histories s1 and s2, let
maxprefix(s1, s2) denote the longest common prefix of the two
histories s1 and s2.

Definition 5.1 (Deterministic Sequential Specifications). A se-
quential specification Spec is deterministic, if for all s1, s2 ∈
Spec, s1 ̸= s2 and ŝ = maxprefix(s1, s2), we have ŝ = ϵ or
kind(ŝ|ŝ|−1) ̸= entry.

That is, a specification is deterministic, if we cannot find two
different histories whose longest common prefix ends with an entry.
If we can find such a prefix, then that would mean that there was
a point in the execution of the two histories s1 and s2 up to which
they behaved identically, but after they both performed the same
entry, they produced different results (or one had no continuation).

5.3 Strong Non-Commutativity
We define a strongly non-commutative method as follows:

Definition 5.2 (Strongly Non-Commutative Method). We say that
a method m1 is strongly non-commutative in a sequential specifi-
cation Spec if there exists a methodm2 (possibly the same asm1),
and there exist histories base, s1, s2, s3, s4 such that:

1. s1 and s4 are complete invocations of m1 with
entry(s1) = entry(s4) and exit(s1) ̸= exit(s4).

2. s2 and s3 are complete invocations of m2 with
entry(s2) = entry(s3) and exit(s2) ̸= exit(s3).

3. proc(entry(s1)) ̸= proc(entry(s2)).
4. base is a complete sequential history in Spec.
5. base · s2 · s4 ∈ Spec.
6. base · s1 · s3 ∈ Spec.

In other words, the method m1 is strongly non-commutative if
there is another method m2 and a history base in Spec such that
we can distinguish whether m1 is applied right after base or right
afterm2 (which is applied after base). Similarly we can distinguish
whether m2 is applied right after base or right after m1 (which is
applied after base). Note that m2 may be the same method as m1.

In this work we focus on programs where the specification Spec
can be determined by the sequential executions of the program.

Assumption 1. Spec = [[Prog]]HS .

5.4 RAW and AWAR for Linearizability
Next, we state and prove the main result of this section:

Theorem 5.3 (RAW or AWAR in Linearizable Algorithms). Let
m1 be a strongly non-commutative method in a deterministic se-
quential specification Spec and let Prog be a linearizable imple-
mentation of Spec. Then there exists a complete sequential execu-
tion πa of m1 by process p such that:

• RAW(πa, p) = true, or
• AWAR(πa, p) = true

Proof. From the premise that m1 is a strongly non-commutative
method and Assumption 1, we know that there exist executions
πbase1 · πa · πc ∈ [[Prog]] and πbase2 · πb · πd ∈ [[Prog]] such
that:

1. hs(πbase1) and hs(πbase2) are complete sequential histories.
2. hs(πbase1) = hs(πbase2).
3. πa and πd are complete sequential executions of m1.
4. πb and πc are complete sequential executions of m2.
5. entry(hs(πa)) = entry(hs(πd)).

6. entry(hs(πb)) = entry(hs(πc)).
7. exit(hs(πa)) ̸= exit(hs(πd)).
8. exit(hs(πb)) ̸= exit(hs(πc)).
9. proc(entry(hs(πa))) ̸= proc(entry(hs(πb))).

From the fact that executions in the program are well-formed,
we know that if π, ρ ∈ [[Prog]] and hs(π), hs(ρ) are complete
sequential invocations such that entry(hs(π)) = entry(hs(ρ)),
and Gfirst(π) = Gfirst(ρ), it follows that hs(π) = hs(ρ) and
Glast(π) = Glast(ρ). That is, if a process completes the same
method invocation from two program states with identical global
memory, the method will always produce the same result and global
memory (Fact 1). Fact 1 follows directly from the fact that transi-
tions are deterministic, processes cannot access the local state of
another process, arguments to both methods are the same, and the
starting global states are the same.

From Fact 1 and hs(πbase1), hs(πbase2) being complete sequen-
tial histories, we can show that Glast(πbase1

) = Glast(πbase2
). That

is, from first(πbase1) = first(πbase2) (both are initial states),
we can inductively show that any complete sequential invocation
preserves the fact that the global state in the last states of the two
executions are the same. From Glast(πbase1

) = Glast(πbase2
), it fol-

lows that Gfirst(πa) = Gfirst(πb).
Let p = proc(entry(hs(πa))) and q = proc(entry(hs(πb))).

We first prove that a method transition performed by process pmust
perform a global write in πa. Let us assume the execution πa does
not contain a method transition where process p performs a global
write. As πa is well-formed, we know that any client transitions
performed in πa do not access global memory. It then follows that
Gfirst(πa) = Glast(πa). However, from the premise we know that
Glast(πa) = Gfirst(πc) and hence Gfirst(πa) = Gfirst(πc). Transi-
tively, we know that Gfirst(πb) = Gfirst(πc). From item 4 above
we know that πb and πc are complete sequential executions of m2

with entry(hs(πb)) = entry(hs(πc)) (item 6). Then, it follows
from Fact 1 that exit(hs(πb)) = exit(hs(πc)) which contradicts
with item 8. Therefore, there must exist a method transition in πa

by process p that performs a global write.
Let us proceed by contradiction and assume that both RAW(πa, p)

= false and AWAR(πa, p) = false. Let πa = πf ·πw ·πℓ, where tw
is the first method transition in πa that writes to global memory and
πw is the maximal atomic cover of tw in πa. As πa is well-formed,
we know that all transitions in πw are method transitions. Since
AWAR(πa, p) = false and tw is the first global write transition in
πa, it follows that there can be no global read transitions in πw

that occur before tw (otherwise we would contradict AWAR). This
means that tw is the first global read or write transition in πw.

As πf does not contain global writes, it follows that Gfirst(πa) =
Glast(πf). From the premise we know that Gfirst(πa) = Gfirst(πb)

and hence Gfirst(πb) = Glast(πf). As πw is a maximal atomic
cover, we know that inatomiclast(πf) = ⊥.

From the fact that client transitions cannot synchronize (they
cannot execute atomic statements or access global memory), and
that a process cannot access the local variables of another process,
it follows that process q can execute m2 concurrently with m1

from state last(πf). That is, there exists an execution πbase1 ·
πf · π′

b ∈ [[Prog]] where π′
b is a complete sequential execution of

m2 by process q such that entry(hs(πb)) = entry(hs(π′
b)). As

Gfirst(π′
b
) = Glast(πf), it follows that Gfirst(π′

b
) = Gfirst(πb).

Then, by Fact 1, it follows that hs(π′
b) = hs(πb).

As p ∈ enabledfirst(π′
b
) and π′

b is a complete sequential exe-
cution by process q, it follows that p ∈ enabledlast(π′

b
). Process p

can now continue execution of method m1 and build the execution
πbase1 · πconc ∈ [[Prog]] where πconc = πf · π′

b · π′
w · π′

ℓ.

By assumption, we know that RAW(πa, p) and AWAR(πa, p) are
false and it follows that πw ·πℓ does not contain a method transition
which reads a global memory location other thanmloc(tw) without
previously having written to it. In both, πw and π′

w, process p
overwrites the only global memory location mloc(tw) that it can
read without previously having written to it. Then, πw · πℓ and
π′
w · π′

ℓ will contain the same sequence of statements, with all
global transitions accessing and reading/writing identical values.
Thus, hs(πconc)�m1= hs(πa).

Given that the implementation is linearizable the two possible
linearizations of πbase1 · πconc are:

1. hs(πbase1) · hs(πconc) �m1 ·hs(π′
b). We already established

that hs(πconc) �m1= hs(πa) and hs(π′
b) = hs(πb), and hence

by substitution we get hs(πbase1) · hs(πa) · hs(πb). From the
premise, we know that hs(πbase1) · hs(πa) · hs(πc) ∈ Spec.
As the specification is deterministic, it follows that hs(πb) =
hs(πc), a contradiction with item 8.

2. hs(πbase1) · hs(π′
b) · hs(πconc) �m1 . We already established

that hs(πconc) �m1= hs(πa) and hs(π′
b) = hs(πb) and hence

by substitution we get hs(πbase1) · hs(πb) · hs(πa). From the
premise, we know that hs(πbase2) ·hs(πb) ·hs(πd) ∈ Spec and
hs(πbase1) = hs(πbase2). As the specification is deterministic,
it follows that hs(πa) = hs(πd), a contradiction with item 7.

Therefore, RAW(πa, p) = true or AWAR(πa, p) = true.

5.5 A Note on Commutativity and Idempotency
The notion of strongly non-commutative method is related to
traditional notions of non-commutative methods [44] and non-
idempotent methods. Let us again consider Definition 5.2.

Non-Idempotent Method vs. Strongly Non-Commutative Method
If it is the case that method m2 is the same as method m1, then the
definition instantiates to non-idempotent methods. That is, given
base, if we apply m1 twice in a row, the second invocation will re-
turn a different result than the first. Consider again the Set specifi-
cation in Fig. 4. The method add is non-idempotent. As discussed
in the example in Section 2, we can start with S = ∅ and base = ϵ.
Then, if we perform two methods add(5) in a row, each one of
the add(5)’s will return a different result.

Classic Non-Commutativity vs. Strong Non-Commutativity In
the classic notion of non-commutativity [44], it is enough for one
of the methods to not commute with the other, while here, it is
required that both methods do not commute from the same pre-
fix history. In the classic case, if two methods do not commute, it
does not mean that either of them is a strongly non-commutative
method. However, if a method is strongly non-commutative, then
it is always the case that there exists another method with which it
does not commute (by definition). Consider again the Set specifi-
cation in Fig. 4. Although add and contains do not commute,
contains is not a strongly non-commutative method. That is,
add influences the result of contains, but contains does not
influence the result of add.

6. Strongly Non-Commutative Specifications
In this section we provide a few examples of well-known sequential
specifications that contain strongly non-commutative methods as
defined in Definition 5.2.

6.1 Stacks
Definition 6.1 (Stack Sequential Specification). A stack object S
supports two methods: push and pop. The state of a stack is a
sequence of items S = ⟨v0, ..., vk⟩. The stack is initially empty.

The push and pop methods induce the following state transitions of
the sequence S = ⟨v0, . . . , vk⟩, with appropriate return values:

• push(vnew): changes S to be ⟨v0, ..., vk, vnew⟩ and returns ack.
• pop(): if S is non-empty, changes S to be ⟨v0, ..., vk−1⟩ and re-

turns vk. If S is empty, returns empty and S remains unchanged.

We let Specs denote the sequential specification of a stack object
as defined above.

Lemma 6.2 (Pop is Strongly Non-Commutative). The pop stack
method is strongly non-commutative.

Proof. Let base ∈ Specs be a complete sequential history after
which S = ⟨v⟩ for some v. Let p and q be two processes, let
s1 and s4 be complete invocations of pop by p, and let s2 and
s3 be complete invocations of pop by q. From Definition 6.1,
{base · s1 · s3, base · s2 · s4} ⊂ Specs, ret(s1) = ret(s2) = v,
and ret(s3) = ret(s4) = empty. The claim now follows from
Definition 5.2.

It also follows from Definition 5.2 that push methods are not
strongly non-commutative.

6.2 Work Stealing
As we now prove, the (non-idempotent) work stealing object, dis-
cussed in section 2.2, is an example of an object for which two
different methods are strongly non-commutative.

Definition 6.3 (Work Stealing Sequential Specification). A work
stealing object supports three methods: put, take, and steal. The
state of each process i is a sequence of itemsQi = ⟨vi0, ..., viki

⟩. All
queues are initially empty. The put and take methods are performed
by each process i on its local queue Qi and induce on it the
following state transitions, with appropriate return values:

• put(vnew): changes Qi to be ⟨vnew, v
i
0, ..., v

i
ki
⟩ and returns

ack.
• take(): if Qi is non-empty, it changes Qi to be ⟨vi1, ..., viki

⟩ and
returns vi0. If Qi is empty, it returns empty and Qi remains
unchanged.

The steal method is performed by each process i on some queue
Qj = ⟨vj0, ..., v

j
kj
⟩ for j ̸= i. if Qj is non-empty, it changes Qj to

be ⟨vj0, ..., vikj−1⟩ and returns vjkj
. If Qj is empty, it returns empty

and Qj remains unchanged. We let Specws denote the sequential
specification of a work stealing object as defined above.

Lemma 6.4 (Take & Steal are Strongly Non-Commutative). The
take and steal methods are strongly non-commutative.

Proof. Let base ∈ Specws be a complete sequential history after
whichQj = ⟨v⟩ for some value v and process j. Let i ̸= j be some
process other than j, let s1 and s4 be complete invocations of steal
by process i on Qj , and let s2 and s3 be complete invocations of
take by process i. From Definition 6.3, {base·s1·s3, base·s2·s4} ⊂
Specs, ret(s1) = ret(s2) = v, and ret(s3) = ret(s4) = empty.
The claim now follows from Definition 5.2.

It is easily shown that specifications for queues, hash-tables
and sets have strongly non-commutative methods. The proofs are
essentially identical to the proofs of Lemmas 6.2 and 6.4 and are
therefore omitted.

6.3 Compare-and-Swap (CAS)
We now prove that CAS is strongly non-commutative.

Definition 6.5 (Compare-and-swap Sequential Specification). A
compare-and-swap object C supports a single method called CAS
and stores a scalar value over some domain V . The method
CAS(exp,new), for exp, new ∈ V , induces the following state
transition of the compare-and-swap object. If C’s value is exp, C’s
value is changed to new and the method returns true; otherwise,
C’s value remains unchanged and the method returns false.
We let SpecC denote the sequential specification of a compare-
and-swap object as defined above.

Lemma 6.6 (CAS is Strongly Non-Commutative). The CAS
method is strongly non-commutative.

Proof. Let base ∈ SpecC be a complete sequential history after
which C’s value is v, let i and j be two processes, let s1 and s4
be complete invocations of CAS(v,v’) by process i, for some v ̸=
v′ ∈ V , and let s2 and s3 be complete invocations of CAS(v,v’) by
process j. From Definition 6.5, {base · s1 · s3, base · s2 · s4} ⊂
SpecC , ret(s1) = ret(s2) = true, and ret(s3) = ret(s4) =
false. The claim now follows from Definition 5.2.

It follows from lemma 6.6 that any software implementation of
CAS is required to use either AWAR or RAW. Proving a similar
result for all non-trivial read-modify-write specifications (such as
fetch-and-add, swap, test-and-set and load-link/store-conditional)
is equally straightforward.

7. Related Work
Numerous papers present implementations of concurrent data
structures, several of these are cited in Section 2. We refer the
reader to Herlihy and Shavit’s book [22] for many other examples.

Modern architectures often execute instructions issued by a sin-
gle process out-of-order, and provide fence or barrier instructions
to order the execution (cf. [1, 33]). There is a plethora of fence
and barrier instructions (see [35]). For example, DEC Alpha pro-
vides two different fence instructions, a memory barrier (MB) and
a write memory barrier (WMB). PowerPC provides a lightweight
(lwsync) and a heavyweight (sync) memory ordering fence in-
structions, where sync is a full fence, while lwsync guarantees
all other orders except RAW. SPARC V9 RMO provides several
flavors of fence instructions, through a MEMBAR instruction that
can be customized (via four-bit encoding) to order a combination of
previous read and write operations with respect to future read and
write operations. Pentium 4 supports load fence (lfence), store
fence (sfence) and memory fence (mfence) instructions. The
mfence instruction can be used for enforcing the RAW order.

Herlihy [22] proved that linearizable wait-free implementations
of many widely-used concurrent data-structures, such as counters,
stacks and queues, must use AWAR. These results do not mention
RAW and do not apply to obstruction-free [15] implementations of
such objects or to implementations of mutual exclusion, however,
whereas our results do.

Recently, there has been a renewed interest in formalizing mem-
ory models (cf. [40, 42, 43]), and model checking and synthesizing
programs that run on these models [29]. Our result is complemen-
tary to this direction: it states that we may need to enforce certain
order, i.e., RAW, regardless of what weak memory model is used.
Further, our result can be used in tandem with program testing and
verification: if both RAW and AWAR are missing from a program
that claims to satisfy certain specifications, then that program is
certainly incorrect and there is no need test it or verify it.

Kawash’s PhD thesis [28] (also in papers [24, 25]) investi-
gates the ability of weak consistency models to solve mutual exclu-
sion, with only reads and writes. This work shows that many weak
models (Coherence, Causal consistency, P-RAM, Weak Ordering,

SPARC consistency and Java Consistency) cannot solve mutual ex-
clusion. Processor consistency [17] can solve mutual exclusion, but
it requires multi-write registers; for two processes, solving mutual
exclusion requires at least three variables, one of which is multi-
writer. In contrast, we show that particular orders of operations or
certain atomicity constraints must be enforced, regardless of the
memory model; moreover, our results apply beyond mutual exclu-
sion and hold for a large class of important linearizable objects.

Boehm [7] studies when memory operations can be reordered
with respect to PThread-style locks, and shows that it is not safe to
move memory operations into a locked region by delaying them
past a lock call. On the other hand, memory operations can be
moved into such a region by advancing them to be before an unlock
call. However, Boehm’s paper does not address the central subject
of our paper, namely, the necessity that certain ordering patterns
(RAW or AWAR) must be present inside the lock operations.

Our proof technique employs the covering technique, originally
used by Burns and Lynch [9] to prove a lower bound on the number
of registers needed for solving mutual exclusion. This technique
had many applications, both with read / write operations [4, 5,
12, 14, 27, 39], and with non-trivial atomic operations, such as
compare&swap [13]. Some steps of our proofs can be seen as a
formalization of the arguments Lamport uses to derive a fast mutual
exclusion algorithm [32].

In terms of our result for mutual exclusion, while one might
guess that some form of RAW should be used in the entry code of
read/write mutual exclusion, we are not aware of any prior work
that states and proves this claim. Burns and Lynch [9] show that
you need to have n registers, and as part of their proof show that a
process needs to write, but they do not show that after it writes, the
process must read from a different memory location. Lamport [32]
also only hints to it. These works neither state nor prove the claim
we are making (and they also do not discuss AWAR).

8. Conclusion and Future Work
In this work, we focused on two common synchronization idioms:
read-after-write (RAW) and atomic write after read (AWAR). Un-
fortunately, enforcing any of these two patterns is costly on all cur-
rent processor architectures.

We showed that it is impossible to eliminate both RAW and
AWAR in the sequential execution of a lock section of any mutual
exclusion algorithm. We also proved that RAW or AWAR must
be present in some of the sequential executions of strongly non-
commutative methods that are linearizable with respect to a deter-
ministic sequential specification. Further, we proved that many
classic specifications such as stacks, sets, hash tables, queues,
work-stealing structures and compare-and-swap operations have
strongly non-commutative operations, making implementations of
these specifications subject to our result. Finally, as RAW or AWAR
cannot be avoided in most practical algorithms, our result suggests
that it is important to improve the hardware costs of store-load
fences and compare-and-swap operations, the instructions that en-
force RAW and AWAR.

An interesting direction for future work is taking advantage of
our result by weakening its basic assumptions in order to build
useful algorithms that do not use RAW and AWAR.

9. Acknowledgements
We thank Bard Bloom and the anonymous reviewers for valuable
suggestions which improved the quality of the paper. Hagit Attiya’s
research is supported in part by the Israel Science Foundation
(grants number 953/06 and 1227/10). Danny Hendler’s research is
supported in part by the Israel Science Foundation (grants number
1344/06 and 1227/10).

References
[1] Sarita V. Advee and Kourosh Gharachorloo. Shared memory consis-

tency models: A tutorial. IEEE Computer, 29(12):66–76, 1996.

[2] Thomas E. Anderson. The performance of spin lock alternatives for
shared-money multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
1(1):6–16, 1990.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In Proceedings
of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA, pages 119–129, June 1998.

[4] Hagit Attiya, Faith Fich, and Yaniv Kaplan. Lower bounds for adaptive
collect and related objects. In Proceedings of the Twenty-Third Annual
ACM Symposium on Principles of Distributed Computing, pages 60–
69, 2004.

[5] Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally
anonymous asynchronous shared memory systems. Information and
Computation, 173(2):162–183, March 2002.

[6] Yoah Bar-David and Gadi Taubenfeld. Automatic discovery of mu-
tual exclusion algorithms. In Proceedings of the 17th International
Conference on Distributed Computing, DISC, pages 136–150, 2003.

[7] Hans-J. Boehm. Reordering constraints for pthread-style locks. In
Proceedings of the Twevelth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP, pages 173–182, 2007.

[8] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
Line-up: a complete and automatic linearizability checker. In PLDI
’10: Proceedings of the 2010 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 330–340, New York,
NY, USA, 2010. ACM.

[9] James Burns and Nancy Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171–184, December
1993.

[10] David Chase and Yossi Lev. Dynamic circular work-stealing deque.
In Proceedings of the Seventeenth Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA, pages 21–28, July 2005.

[11] Edsger W. Dijkstra. Solution of a problem in concurrent programming
control. Commun. ACM, 8(9):569, 1965.

[12] Faith Ellen, Panagiota Fatourou, and Eric Ruppert. Time lower bounds
for implementations of multi-writer snapshots. Journal of the ACM,
54(6):30, 2007.

[13] Faith Fich, Danny Hendler, and Nir Shavit. On the inherent weakness
of conditional primitives. Distributed Computing, 18(4):267–277,
2006.

[14] Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity
of randomized synchronization. Journal of the ACM, 45(5):843–862,
September 1998.

[15] Faith Fich, Victor Luchangco, Mark Moir, and Nir Shavit.
Obstruction-free step complexity: Lock-free dcas as an example. In
DISC, pages 493–494, 2005.

[16] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The imple-
mentation of the cilk-5 multithreaded language. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design
and Implementation, PLDI, pages 212–223, June 1998.

[17] James R. Goodman. Cache consistency and sequential consistency.
Technical report, 1989. Technical report 61.

[18] Gary Graunke and Shreekant S. Thakkar. Synchronization algorithms
for shared-memory multiprocessors. IEEE Computer, 23(6):60–69,
1990.

[19] Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-
sized nonblocking work stealing deque. Distributed Computing,
18(3):189–207, 2006.

[20] Danny Hendler and Nir Shavit. Non-blocking steal-half work queues.
In Proceedings of the Twenty-First Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 280–289, July 2002.

[21] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, 1991.

[22] Maurice Herlihy and Nir Shavit. The art of multiprocessor program-
ming. Morgan Kaufmann, 2008.

[23] Maurice Herlihy and Jeannette Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[24] Lisa Higham and Jalal Kawash. Java: Memory consistency and pro-
cess coordination. In DISC, pages 201–215, 1998.

[25] Lisa Higham and Jalal Kawash. Bounds for mutual exclusion with
only processor consistency. In DISC, pages 44–58, 2000.

[26] IBM System/370 Extended Architecture, Principles of Operation,
1983. Publication No. SA22-7085.

[27] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower
bounds for nonblocking implementations. SIAM Journal on Comput-
ing, 30(2):438–456, 2000.

[28] Jalal Kawash. Limitations and Capabilities of Weak Memory Consis-
tency Systems. PhD thesis, University of Calgary, January 2000.

[29] Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic
inference of memory fences. In Formal Methods in Computer Aided
Design, 2010.

[30] Leslie Lamport. Specifying concurrent program modules. ACM Trans.
Program. Lang. Syst., 5(2):190–222, April 1983.

[31] Leslie Lamport. The mutual exclusion problem: part II - statement and
solutions. J. ACM, 33(2):327–348, 1986.

[32] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans.
Comput. Syst., 5(1):1–11, 1987.

[33] Jaejin Lee. Compilation Techniques for Explicitly Parallel Programs.
PhD thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1999.

[34] Victor Luchangco, Mark Moir, and Nir Shavit. On the uncontended
complexity of consensus. In Proceedings of the 17th International
Conference on Distributed Computing, pages 45–59, October 2003.

[35] Paul E. McKenney. Memory barriers: a hardware view for software
hackers. Linux Technology Center, IBM Beaverton, June 2010.

[36] John M. Mellor-Crummey and Michael L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors. ACM
Trans. Comput. Syst., 9(1):21–65, 1991.

[37] Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In Proceed-
ings of the Fifteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 267–275, May 1996.

[38] Maged M. Michael, Martin T. Vechev, and Vijay Saraswat. Idempotent
work stealing. In Proceedings of the Fourteenth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP,
pages 45–54, February 2009.

[39] Shlomo Moran, Gadi Taubenfeld, and Irit Yadin. Concurrent counting.
Journal of Computer and System Sciences, 53(1):61–78, August 1996.

[40] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-tso. In TPHOLs, pages 391–407, 2009.

[41] Gary L. Peterson. Myths about the mutual exclusion problem. Inf.
Process. Lett., 12(3):115–116, 1981.

[42] Vijay A. Saraswat, Radha Jagadeesan, Maged M. Michael, and
Christoph von Praun. A theory of memory models. In Proceedings
of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP, pages 161–172, March 2007.

[43] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens,
Tom Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave.
The semantics of x86-cc multiprocessor machine code. In POPL,
pages 379–391, 2009.

[44] William E. Weihl. Commutativity-based concurrency control for ab-
stract data types. IEEE Trans. Computers, 37(12):1488–1505, 1988.

[45] Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.

