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ABSTRACT
Program analysis has been increasingly used in software engineer-
ing tasks such as auditing programs for security vulnerabilities and
finding errors in general. Such tools often require analyses much
more sophisticated than those traditionally used in compiler opti-
mizations. In particular, context-sensitive pointer alias information
is a prerequisite for any sound and precise analysis that reasons
about uses of heap objects in a program. Context-sensitive analy-
sis is challenging because there are over1014 contexts in a typical
large program, even after recursive cycles are collapsed. Moreover,
pointers cannot be resolved in general without analyzing the entire
program.

This paper presents a new framework, based on the concept of
deductive databases, for context-sensitive program analysis. In this
framework, all program information is stored as relations; data ac-
cess and analyses are written as Datalog queries. To handle the
large number of contexts in a program, the database represents
relations with binary decision diagrams (BDDs). The system we
have developed, calledbddbddb, automatically translates database
queries into highly optimized BDD programs.

Our preliminary experiences suggest that a large class of anal-
yses involving heap objects can be described succinctly in Data-
log and implemented efficiently with BDDs. To make develop-
ing application-specific analyses easy for programmers, we have
also created a language called PQL that makes a subset of Datalog
queries more intuitive to define. We have used the language to find
many security holes in Web applications.

1. INTRODUCTION
While program analysis in the past has been used primarily in

compiler optimizations, it is increasingly being used in tools to
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aid software development. One important use is program auditing.
Software security vulnerabilities have caused billions of dollars in
damages in recent years. Program auditing tools provide an active
means of finding and fixing the errors other than just relying on
software testing. Several program auditing tools have been found
to be useful in finding generic errors common to many applica-
tions [12, 26]. However, programs also contain many non-generic,
application-specific errors. For instance, many libraries are avail-
able, each of which has its own pitfalls. A GUI library may have
resources that the programmer can easily mismanage, such as lis-
tener objects that the programmer fails to deregister. A database
library may allow attackers to execute arbitrary commands if the
application handles user input improperly. Because these errors are
specific to individual programs, it is important to empower pro-
grammers to write their own analyses, so that they can find bugs
specific to their applications. For example, upon finding a bug in a
program, they may wish to generalize and look for other code that
follows the same erroneous pattern.

Many of these analyses require reasoning about dynamically cre-
ated objects. For instance, we may wish to know if strings contain-
ing user input are eventually used in insecure ways, or if an entry of
an allocated resource is removed upon the deallocation of the ob-
ject. To answer these questions accurately, we must be able to track
pointers and references to these objects precisely, across different
calling contexts.

1.1 Context-Sensitive Analysis
Context-sensitive pointer alias analysis is especially expensive,

because it is not possible to tell in general what a reference or
pointer can point to without analyzing the entire program. In addi-
tion, what a pointer points to in a particular method invocation de-
pends greatly on the callers currently on the stack. Of course, there
can be an unbounded number of calling contexts in any program,
due to recursion. A reasonable approximation is to keep track of all
calls not involved in recursive cycles. Even then, in real programs,
we found that it is not unusual for Java applications to have over
1014 contexts. Coping with this explosion of contexts while still
producing a context-sensitive pointer analysis result is necessary to
answer any of a large number of interesting problems.

We have recently developed a newcloning-basedtechnique for
context-sensitive analysis, whereby results for all calling contexts
are computed and explicitly represented [55]. We represent the
exponentially many results by using binary decision diagrams or
BDDs [10], which are data structures that can represent data with
high levels of redundancy in a compact manner. This approach can
be used to develop many other context-sensitive analyses.



While BDDs can be powerful, they are not easy to use, as shown
vividly by our experience with the context-sensitive pointer anal-
ysis itself [55]. A direct implementation using BDDs ran out of
memory and did not finish at all. After one man-year of effort in
optimization, the algorithm was able to process some of the largest
open-source Java programs in under 12 minutes. The algorithm it-
self took several thousand lines of Java code. Getting the algorithm
to run efficiently involved applying many optimizations; doing so
expanded the code, obscured the algorithm, and introduced subtle
errors.

1.2 A Deductive Database Framework
We turned to deductive database technology to create a higher

abstraction for our cloning-based approach to context sensitivity.
The basic idea is to store the input program and all the information
generated for every possible calling context in a database. The full
power of a database query language, in this case Datalog [51], can
be used to select the information of interest. More importantly, new
analyses can also be defined relatively easily in Datalog.

A deductive database with a Datalog interface is well suited to
context-sensitive program analysis for several reasons. First, pro-
gram analysis is often expressed as computing the fixed-point to a
set of inference rules. As Datalog allows recursive rule definitions,
there is a simple and intuitive correspondence between inference
rules and Datalog. Second, this approach provides a uniform inter-
face for retrieving information, whether obtained directly from the
source code, previously computed, or to be computed according to
given Datalog rules. In program auditing or debugging tools, users
are usually interested in specific statements or calling contexts. The
database interface makes it easy for users to refer to an individual
program fact or a subset of facts. Third, most importantly, because
Datalog operates on entire relations at a time, Datalog rule resolu-
tion maps well onto BDD operations.

We have developed a deductive database calledbddbddb, which
stands for BDD-Based Deductive DataBase [55]. The database im-
plementation uses a large number of optimizations drawn not only
from the database, compiler, and BDD literature, but from the ma-
chine learning field as well.

1.3 Analyses in Datalog
We have developed a large number of program analyses in this

framework. We have developed pointer alias analyses for both
Java [55] and C [2]. These are the first context-sensitive,inclusion-
basedpoints-to analyses that have been demonstrated to scale to
large programs. A points-to analysis is inclusion-based if two
pointers can point to overlapping but not identical sets of targets.

We have used the C pointer analysis in tools for finding two crit-
ical security vulnerabilities in C: buffer overruns and format string
vulnerabilities [2]. We have used the Java pointer analysis to find
critical information such as the targets of virtual method calls, espe-
cially in the presence of reflection. We also used it to analyze multi-
threaded programs to determine the objects that escape the thread
in which they are created [55]. Each of these analyses would have
taken a long time to develop if not for thebddbddb framework.

To make it easy for programmers to write analyses, we have cre-
ated a little language called PQL, which, among other things, pro-
vides syntactic sugar that allows an important subset of analyses
to be specified intuitively. Programmers need not learn the names
or meanings of the relations in our database; they can simply write
code patterns of interest in Java, and the patterns are automatically
translated into Datalog. With this approach, we were able to find
dozens of previously unknown security errors in a variety of large,
widely used open-source applications relatively easily.

1.4 Background
The concept of formulating data-flow analysis in compilers as

a database query was first proposed by Ullman [51]. In 1994,
Reps investigated the use of deductive database queries as a means
of defining demand-driven interprocedural data-flow analysis [41,
42]. To get a feel for how the landscape has changed over the past
decade, it is interesting to compare our project to this seminal work.

The original motivation in Reps’s work was to simplify imple-
mentation for demand-driven analysis; he observed that by defin-
ing the interprocedural analysis in Datalog, magic-set transforma-
tions [6, 50] can be used to automatically derive a demand-driven
implementation. Managing implementation complexity is also the
driving force behind this work. The complexity of implementation
we wish to hide is the optimization of BDD operations. In fact, this
is even more important as our goal is to help programmers, rather
than compiler writers, to write analyses. It turns out that for anal-
yses like pointer aliases, it is necessary to compute all the results
exhaustively, rather than in a demand-driven manner, as all pointer
updates are potentially inter-related. In contrast, Reps’s analysis
only handles stack-allocated objects. In our case, the magic-set
transformation is found to be useful for some of the lighter weight
analyses built on top of pointer analysis.

Reps’s implementation is based on Coral [40], which is a con-
ventional deductive database. A comparison with manually coded
analysis revealed that the database approach ran four to six times
slower. Our implementation,bddbddb, is a custom BDD-based
deductive database designed for our purpose. We found that anal-
yses run onbddbddb are faster even than applications we have
carefully hand-tuned for months.

1.5 Organization
The organization of the rest of this paper is as follows. Sec-

tion 2 motivates user-specified analysis. In Section 3 we show our
program database representation and specify an analysis in Data-
log. Section 4 explains our approach to context-sensitive analysis.
Section 5 shows how Datalog is translated into BDD operations.
Section 6 details howbddbddb optimizes Datalog programs. Sec-
tion 7 presents our experiences using and developing Datalog and
bddbddb for program analysis. Section 8 discusses related work,
and our conclusions are in Section 9.

2. USER-SPECIFIED ANALYSIS
Static analysis has been shown to be useful for finding errors in

programs. Today’s large, extensible applications are full of invari-
ants that programmers writing, extending, and maintaining these
applications must respect in order for the applications to work prop-
erly. Violations of these rules often lead to subtle, hard-to-detect
problems that may manifest long after the erroneous code is exe-
cuted. These programming rules or patterns are either specified in
comments or, more likely, not specified at all. Programmers work-
ing with large systems are often forced to learn programming in-
variants the hard way—by violating them. Static analysis can sys-
tematically check if the invariants are maintained throughout the
program and note all violations as errors.

One of the most important applications for our framework is
finding security errors, especially those residing in Web applica-
tions. More and more Web-based enterprise applications address
crucial business needs, often dealing with sensitive financial and
medical data; compromise can cause millions of dollars in dam-
ages. A security assessment by the Application Defense Center in-
cluded more than 250 Web applications from e-commerce, online
banking, enterprise collaboration, and supply chain management
sites [54]. It concluded that at least 92% of Web applications are



query simpleSQLInjection()
uses

object HttpServletRequest r;
object Connection c;
object String p;

matches {
p = r.getParameter(_);
c.execute(p);

}

Figure 1: Simple SQL injection query.

vulnerable to some form of hacker attacks. Another survey found
that about 75% of all attacks against Web servers target Web-based
applications [28].

Most of these vulnerabilities are caused by having unchecked in-
put take control of the application in unexpected ways. We discuss
a number of such vulnerabilities in this section to motivate why
programmers need to write their own analyses to check for viola-
tions of application-specific invariants. We also introduce the PQL
language to show how these analyses can be expressed simply, and
demonstrate that precise pointer information is necessary to gener-
ate high-quality checkers.

2.1 SQL Injection
SQL injection vulnerabilities are ranked as one of the top five

external threats to corporate IT systems [52]. They are caused by
unchecked user input propagating to a database for execution. A
hacker may be able to embed SQL commands into the SQL query
the application passes to the database for execution. These unau-
thorized commands may view, update, or delete records. This type
of vulnerability is especially critical in Web applications exposed
to a large audience; any vulnerabilities at all mean that database
information may be forged or stolen by anyone.

Let us look at a simple, concrete example. Here is a code frag-
ment that may be found in a Java servlet hosting a Web service:

String p = request.getParameter("query");
con.execute(p);

This code reads a parameter from an HTTP request and passes it
directly to a database back-end. By supplying a properly crafted
query, a malicious user can gain unauthorized access to data, dam-
age the contents in the database, and in some cases, even execute
arbitrary code on the server.

To catch this kind of vulnerability in applications, we wish to ask
if there exist some

• objectr of typeHttpServletRequest ,

• objectc of typeConnection , and

• objectp of typeString

in some possible run of the program such that the result of invoking
getParameter on r yields stringp, and that stringp is eventu-
ally used as a parameter to the invocation ofexecute on c. Note
that these two events need not happen consecutively; the stringp
can be passed around as a parameter or stored on the heap before it
is eventually used.

The PQL language allows us to describe this pattern simply, as
shown in Figure 1. PQL queries are expressed as a pattern of dy-
namically executed statements. The statements listed in the query
form a regular expression (in this case, a simple sequence of two
method invocations) and the variables represent parameterized ob-
jects. Variables whose values are immaterial are represented by the
“don’t care” symbol “_”. Conceptually, these statements represent

query main()
returns object Object source, tainted;
uses object java.sql.Statement stmt;
matches {

source = req.getParameter();
tainted := derivedString(source);
stmt.execute(tainted);

}

query derivedString( object Object x)
returns object Object y;
uses object Object temp;
matches

y := x
| { temp.append(x); y := derivedString(temp); }
| { temp = x.toString(); y := derivedString(temp); }

Figure 2: A more complete SQL injection query in PQL.

the smallest piece of code that could produce the behavior we are
searching for. We do not care about any statements that may occur
between them, nor do we care precisely how the objects are named
in the code.

It is easy to see how we can translate this to a static analysis. We
are looking for two static statements

p1 = r.getParameter("query");

and

c.execute(p2);

such thatp1 andp2 may point to the same object.
In general, SQL injections are more subtle and require more

sophisticated patterns to detect. In particular, the contents of the
string are typically processed in some way, often inserted into a
preformed query, before being passed to the database for execu-
tion.

Figure 2 gives a more complete PQL query for SQL injections.
The main query binds the variablesource to an initial input
drawn from an HTTP request, then bindstainted to any value
reachable with zero or more derivation steps. This is handled via
the derivedString subquery, a tail recursive loop that tracks
derivation through the functions involved in string concatenation.
Once a tainted object has been identified, it then searches for its
use by the database. This query can similarly be translated into a
static analysis.

2.2 Taint-Based Vulnerabilities
SQL injection is but one of many widespread vulnerabilities

caused by unchecked input in today’s Web-based systems. These
vulnerabilities can be generalized as atainted-dataproblem, which
is specified by a set ofsources, sinks, and derivation methods.
Sources are methods that return data obtained from user input.
Sinks are the sensitive methods that should not have tainted data
passed in. Derivation methods specify how tainted data propagates
from one object to another. By varying the composition of these
sets, one can express all the vulnerabilities mentioned below.

Cross-site scriptingis an attack on applications that fail to filter
or quote HTML metacharacters in user input used in dynamically
generated Web pages. Typically, the attacker tricks the victim into
visiting a trusted URL containing a cross-site scripting vulnerabil-
ity. This allows the attacker to embed malicious JavaScript code
into the dynamically generated page and execute the script on the
machine of any user that views the page [18]. When executed,
malicious scripts may hijack the user’s account, change the user’s
settings, steal the user’s cookies, or insert unwanted content (such
as ads) into the page.



HTTP response splitting is an attack on applications that fail
to filter or quote newlines in header information. It enables vari-
ous other attacks such as Web cache poisoning, cross user deface-
ment, hijacking pages with sensitive user information, and cross-
site scripting [31]. The crux of the HTTP response splitting tech-
nique is that the attacker may cause two HTTP responses to be
generated in response to one maliciously constructed request. For
HTTP splitting to be possible, the vulnerable application must in-
clude unchecked input as part of a response header sent back to the
client.

Path traversal vulnerabilities allow a hacker to access or control
files outside of the intended path [24, 38]. They occur when appli-
cations use unchecked user input in a path or file name; input nor-
mally arrives via URL input parameters, cookies, or HTTP request
headers. Often the file in question is part of an ad-hoc database, for
instance an image in a theme. In addition to reading or removing
sensitive files, the attacker may attempt a denial-of-service attack
by causing the application to access a file for which it does not have
permissions.

All tainted-data problems, and many other error patterns, can be
expressed easily in PQL. PQL allows programmers to use a familiar
Java syntax to track operations applied to objects simply, regardless
of how these objects are referred to in the program text. To find
matches of such patterns statically requires precise pointer infor-
mation: we need to know if statements, often dispersed throughout
methods and files of the program, may refer to the same run-time
object. As we shall show next, we derive static checkers for PQL
queries by translate them into Datalog, which is a more general
interface to a large class of static analyses.

3. PROGRAM ANALYSIS IN DATALOG
In this section we show how programs and analysis results are

represented in our database, and how analyses are specified in Dat-
alog.

3.1 Datalog
A relation is a set ofn-ary tuples of attribute values. Each re-

lation attribute is associated with adomainD of values that the
attribute may take on. An expressionR(x1, . . . , xn) is true iff the
tuple (x1, . . . , xn) is in relationR. Likewise,¬R(x1, . . . , xn) is
true iff the tuple(x1, . . . , xn) is not in relationR.

A Datalog program is a set of rules of the form:

E0 : −E1, . . . , Ek.

where, for any particular variable assignment, expressionE0 (the
rulehead) is inferred to be true iff expressionsE1, . . . , Ek (the rule
subgoals) are true. The rule head is of the formR(x1, . . . , xn),
while subgoal expressions may be of the formR(x1, . . . , xn) or
the form¬R(x1, . . . , xn). bddbddb allows negation only instrat-
ifiable programs [14], those in which the rules can be grouped into
strata such that every negated predicate refers only to relations fully
computed in previous strata.

3.2 Program Representation
We store all information available in a source program as a set

of database relations; such a representation abstracts away the pro-
gram syntax and makes the information easily accessible. For the
sake of simplicity, let us limit our discussion here to the subset of
Java bytecodes relevant to pointer analysis.

The domains of the relations of interest include Java bytecodes
B, program variablesV , methodsM , fieldsF , calling contextsC,
heap objects named by their allocation siteH, and integersZ. A

front end translates the source program into a set of input relations.
The ones relevant to this paper are:

assign: V × V . assign(v1, v2) is true iff the program contains
the assignmentv1 = v2.

vP0: V × H. vP0(v, h) is true iff the program directly places a
reference to heap objecth in variablev in an operation such
ass = new String() .

fldld : B×V ×F ×V . fldld(b, v1, f, v2) means that bytecodeb
executes “v1 = v2.f ”.

fldst : B × V × F × V . fldst(b, v1, f, v2) means that bytecodeb
executes “v1.f = v2”.

actual : B × Z × V . actual(b, z, v) means that variablev is zth
argument of the method call at bytecodeb.

ret : B×V . ret(b, v), means that variablev is the return result of
the method call at bytecodeb.

3.3 SQL Injection
For our first example of a program analysis in Datalog, let us

look at the simple version of the SQL injection query shown in
Figure 1. The expression of this query in Datalog is simple if a
previous context-sensitive analysis has already been performed to
find the targets of references and virtual method invocations. We
will discuss how these results can be found in Section 4, but for
now, we assume that the following two relations are available:

calls: C × B × C × M . Targets of virtual method invoca-
tions.calls(c1, b, c2, m) holds if the method call at bytecode
b, when executed in contextc1, may invoke contextc2 of
methodm.

vPc: C×V ×H. Context-sensitive points-to results.vPc(c, v, h)
means that variablev in contextc may point to heap object
h.

Given these relations, the Datalog to rule to find basic SQL in-
jections is simply:

SQLInjection(h) : – calls(c1, b1, _, “getParameter”),
ret(b1, v1), vPc(c1, v1, h),
calls(c2, b2, _, “execute”),
actual(b2, 1, v2), vPc(c2, v2, h).

This Datalog rule says that an objecth is the cause of a SQL injec-
tion if:

1. there is a bytecodeb1 in contextc1 that callsgetParameter ,

2. the returned value is store in some variablev1,

3. v1 in contextc1 is found to point to objecth,

4. similarly, there is a bytecodeb2 in contextc2 that invokes
execute ,

5. some variablev2 is passed in as the first argument, and

6. v2 in contextc2 is also found to point to objecth.

Note that it is possible thatc1 andc2 refer to the same context, for
example if the two calls occur consecutively in the program text.

One important thing to note about this query is that it isflow
insensitive. That is, it does not necessarily respect the order of
execution of statements within the program. The analysis would
report a match even if the call togetParameter occursafter the
call to execute .

Comparing this Datalog program with the PQL query in Figure 1
shows that there is a direct correspondence between the two, and



RELATIONS

input vP0 (variable : V, heap : H)
input fldst (bytecode : B, base : V,field : F, source : V)
input fldld (bytecode : B, dest : V,field : F, base : V)
input assign (dest : V, source : V)
output vP (variable : V, heap : H)
output hP (base : H,field : F, target : H)

RULES

vP(v, h) : − vP0(v, h). (1)

vP(v1, h) : − assign(v1, v2), vP(v2, h). (2)

hP(h1, f, h2) : − fldst(_, v1, f, v2),
vP(v1, h1), vP(v2, h2). (3)

vP(v2, h2) : − fldld(_, v1, f, v2),
vP(v1, h1), hP(h1, f, h2). (4)

Figure 3: Datalog program for context-insensitive points-to an-
alysis

that translation from PQL to Datalog is a simple syntactic transla-
tion. This example illustrates how important error patterns can be
expressed easily once context-sensitive points-to information and
virtual method resolution are available.

3.4 Context-Insensitive Points-to Analysis
To illustrate how a more complex algorithm can be expressed

in Datalog, let us use acontext-insensitive, flow-insensitive points-
to analysis as our second example. We shall keep the discussion
simple by assuming that all the virtual method targets have already
been discovered, so parameter passing in a context-insensitive an-
alysis can simply be modeled with assignments between actual and
formal parameters.

This pointer analysis produces two relations:

vP(v, h): V × H is the context-insensitive version ofvPc; it is
true if variablev may point to heap objecth at any point
during program execution.

hP(h1, f, h2): H × F ×H is true if heap object fieldh1.f may
point to heap objecth2.

The points-to analysis can be expressed simply in 4 lines of Dat-
alog, as shown in Figure 3. Rule 1 incorporates the initial points-to
relations intovP . Rule 2 computes the transitive closure over as-
signments. If variablev2 can point to objecth andv2 is assigned to
v1, thenv1 can also point toh. Rule 3 models the effect of stores
to fields in an object. Given a statementv1.f = v2, if v1 can point
to h1 andv2 can point toh2, thenh1.f can point toh2. Rule 4 re-
solves loads of fields. Given a statementv2 = v1.f , if v1 can point
to h1 andh1.f can point toh2, thenv2 can point toh2. Applying
the rules repeatedly, until no rule application produces new relation
elements, finds all the points-to relations in the source program.

3.5 A Pointer Analysis Example
Let us illustrate this analysis in action using the simple Java pro-

gram listed in Figure 4. In this code,getString returns the string
held by aStringHolder object’s fieldf . It is easy to see that at
the end of the program,p points to the string “select name... ”,
and that the “select” statement is executed.

Applying our context-insensitive algorithm in Figure 3 to this
program would, however, incorrectly infer that the code might also

1 class StringHolder {
2 String f;
3 }
4
5 String getString(StringHolder sh) {
6 String x = sh.f;
7 return x;
8 }
9

10 StringHolder a = new StringHolder();
11 StringHolder b = new StringHolder();
12
13 a.f = "select name from users where id=12";
14 b.f = "drop table users";
15
16 String p = getString(a);
17 String q = getString(b);
18
19 database.execute(p);

Figure 4: Example program for Java pointer analysis

execute the dangerous SQL query “drop table users ”, destroy-
ing a table in our database. The variablex in getString is as-
signed to the strings held bya.f andb.f in two different contexts.
Incapable of distinguishing between different contexts, the analysis
concludes that both strings will be returned for each of the calls to
getString .

A context-sensitive analysis would distinguish between the dif-
ferent calls togetString , correctly determining thatp may only
point to “select... ”. This example illustrates how imprecision
due to context insensitivity can potentially lead to many false-
positive warnings.

4. CONTEXT-SENSITIVE ANALYSIS
Adding context sensitivity to an analysis greatly increases its

complexity. If we consider the calling context for a particular
method invocation to be all calls on the call stack, there can be
an unbounded number of calling contexts in any program execu-
tion due to recursion. Even if we approximate by only keeping
track of calls not involved in recursive cycles, the number of possi-
ble contexts can be huge. We found that it is not unusual for Java
applications to have over1014 contexts, not counting recursive cy-
cles. Thus, explicitly representing all of the contexts seems to be
infeasible.

4.1 Summary-Based versus Cloning-Based
The traditional approach to context-sensitive analysis is to use

summaries. Summary-based techniques generate a summary for
each method in the program that encapsulates the effects of that
method. They then apply that summary at each call site that may
target that method. There are two problems that render this ap-
proach unsuitable for pointer alias analysis. First, as the summaries
of points-to analysis tend not to be compact, such approaches fail to
scale to large programs [46, 57, 58]. Second, after the summaries
have been generated, to associate the results with any particular
context requires the information be passed down the call graph. A
query such as determining which variable can point to a particular
object would require computing the points-to results across all the
exponentially many contexts.

Instead, we use acloning-basedapproach, in which we create
a separate copy of each method for every calling context of inter-
est [21, 55]. Algorithmically, this greatly simplifies the analysis;
the context-sensitive algorithm is simply the context-insensitive al-
gorithm applied to the cloned program. Although the cloned pro-
gram becomes exponentially larger, many of the contexts turn out



RELATIONS

input vP0 (variable : V, heap : H)
input fldst (bytecode : B, base : V,field : F, source : V)
input fldld (bytecode : B, dest : V,field : F, base : V)
input assignc (destc : C, dest : V, srcc : C, src : V)
output vPc (context : C, variable : V, heap : H)
output hP (base : H,field : F, target : H)

RULES

vPc(_, v, h) : − vP0(v, h). (5)

vPc(c1, v1, h) : − assignc(c1, v1, c2, v2), vPc(c2, v2, h).(6)

hP(h1, f, h2) : − fldst(_, v1, f, v2),
vPc(c, v1, h1), vPc(c, v2, h2). (7)

vPc(c, v2, h2) : − fldld(_, v1, f, v2),
vPc(c, v1, h1), hP(h1, f, h2). (8)

Figure 5: Datalog program for context-sensitive points-to anal-
ysis

to be similar. For example, parameters to the same method often
have the same types or similar aliases. As we shall show below, we
can take advantage of the similarities by using the binary decision
diagram (BDD) data structure.

4.2 Adding Context Sensitivity to Pointer
Alias Analysis

The simple context-insensitive analysis shown in Figure 3 as-
sumes that a call graph has been computed a priori. With the
addition of just a couple of Datalog rules, we can modify the al-
gorithm to discover call targets on-the-fly as points-to results are
computed [55].

The context-sensitivepoints-to analysis consists of the follow-
ing steps. First, it uses a context-insensitive points-to analysis to
discover the call graph. Then, it clones all the methods in the call
graph, one per context of interest, linking each call site to its unique
clone. Every clone of a method is given a unique contextc ∈ C.
This step generates thecalls relation used in Section 3.3. Finally, it
runs the original context-insensitive analysis over the exploded call
graph to get context-sensitive results.

As shown in Figure 5, the Datalog rules for this last step are
nearly identical to those in the context-insensitive algorithm shown
in Figure 3. As before, assignments are used to model parameter
passing and returned results between the cloned callers and callees.
We replace theassign andvP relations with their context-sensitive
counterparts,assignc andvPc, by adding a context for each at-
tribute that represents a variable in the program. We then modify
the rules that useassignc andvPc so that they obey the context
number.

Formulating context sensitivity in this way makes it easy to ex-
tract the points-to information for individual contexts. It also allows
more powerful queries, such as extracting the set of contexts under
which a given points-to relation can or cannot occur.

5. FROM DATALOG TO BDDS
In this section, we explain how we translate Datalog first into re-

lational algebra operations, then into boolean functions and finally
into BDD operations.

5.1 Relational Algebra
A Datalog query with finite domains and stratified negation can

be solved by applying sequences of relational algebra operations
corresponding to the Datalog rules iteratively, until a fixed-point
solution is reached. We shall illustrate this translation simply by
way of an example, since it is relatively well understood.

The set of relational operations used include join, union, project,
rename, difference, and select.R1 1 R2 denotes thenatural join
of relationsR1 andR2, which returns a new relation where tuples
in R1 have been merged with tuples inR2 in which corresponding
attributes have equal values.R1 ∪ R2 denotes theunion of rela-
tions R1 andR2, which returns a new relation that contains the
union of the sets of tuples inR1 andR2. πa1,...,ak (R) denotes
theprojectoperation, which forms a new relation by removing at-
tributesa1, . . . , ak from tuples inR. ρa→a′(R) denotes there-
nameoperation, which returns a new relation with the attributea
of R renamed toa′. R1−R2 denotes thedifferenceof relationsR1

andR2, which contains the tuples that are inR1 but not inR2. The
selectoperation, denoted asσa=c(R), restricts attributea to match
a constant valuec. It is equivalent to performing a natural join with
a unary relation consisting of a single tuple with attributea holding
valuec.

To illustrate, an application of the rule

vP(v1, h) : −assign(v1, v2), vP(v2, h).

corresponds to this sequence of relational algebra operations:

t1 = ρvariable→source(vP);
t2 = assign 1 t1;
t3 = πsource(t2);
t4 = ρdest→variable(t3);
vP = vP ∪ t4;

Note that rename operations are inserted before join, union, or
difference operations to ensure that corresponding attributes have
the same name, while non-corresponding attributes have different
names.

5.2 Boolean Functions
We encode relations as boolean functions over tuples of binary

values. Elements in a domain are assigned numeric values con-
secutively, starting from 0. Thus, a value in a domain withm
elements can be represented indlog2(m)e bits. Suppose each of
the attributes of ann-ary relationR is associated with numeric
domainsD1, D2, . . . , Dn, respectively. We can representR as
a boolean functionf : D1 × . . . × Dn → {0, 1} such that
(d1, . . . , dn) ∈ R iff f(d1, . . . , dn) = 1, and(d1, . . . , dn) /∈ R
iff f(d1, . . . , dn) = 0.

Let relationR be a set of tuples{(1, 1), (2, 0), (2, 1), (3, 0),
(3, 1)} overD1 ×D2, whereD1 = {0, 1, 2, 3} andD2 = {0, 1}.
The binary encoding forR is functionf , displayed in Figure 6,
where the first attribute ofR is represented by bitsb1 andb2 and
the second attribute byb3.

For each relational algebra operation, there is a logical op-
eration that produces the same effect when applied to the cor-
responding binary function represention. SupposeR1 is repre-
sented by functionf1 : D1 × D2 → {0, 1} and R2 by func-
tion f2 : D2 × D3 → {0, 1}. The relationR1 1 R2 is rep-
resented by functionf3 : D1 × D2 × D3 → {0, 1}, where
f3(d1, d2, d3) = f1(d1, d2) ∧ f2(d2, d3). Similarly, the union
maps to the binary∨ operator, andl − r ≡ l ∧ ¬r. The project
operation can be represented using existential quantification. For
example,πa2(R1) is represented byf : D1 → {0, 1} where
f(d1) = ∃d2.f1(d1, d2).



D1 D2 R
b1 b2 b3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Figure 6: Binary encoding of a relation.

5.3 Binary Decision Diagrams
Large boolean functions can be represented efficiently using

BDDs, which were originally invented for hardware verification to
efficiently store a large number of states that share many common-
alities [10].

A BDD is a directed acyclic graph (DAG) with a single root node
and two terminal nodes which represent the constants one and zero.
This graph represents a boolean function over a set of input deci-
sion variables. Each non-terminal node in the DAG is labeled with
an input decision variable and has exactly two outgoing edges: a
high edge and a low edge. To evaluate the function for a given set
of input values, one simply traces a path from the root node to one
of the terminal nodes, following the high edge of a node if the cor-
responding input variable is true, and the low edge if it is false. The
terminal node gives the value of the function for that input. Fig-
ure 7(a) shows a BDD representation for functionf from Figure 6.
Each non-terminal node is labeled with the corresponding decision
variable, and a solid line indicates a high edge while a dashed line
indicates a low edge.

0 1

1b

2b

3b

1b 1b

2b

3b

10
(a) (b)

Figure 7: Relation from Figure 6 encoded as a BDD with deci-
sion variable order (a) b1, b2, b3 and (b) b2, b1, b3.

We specifically use a variant of BDDs calledreduced ordered bi-
nary decision diagrams, or ROBDDs [10]. In anorderedBDD, the
sequence of variables evaluated along any path in the DAG is guar-
anteed to respect a given totaldecision variable order. The choice
of the decision variable order can significantly affect the number
of nodes required in a BDD. The BDD in Figure 7(a) uses variable
orderb1, b2, b3, while the BDD in Figure 7(b) represents the same
function, only with variable orderb2, b1, b3. Though the change in
order only adds one extra node in this example, in the worst case an
exponential number of nodes can be added. In addition, ROBDDs
aremaximally reducedmeaning common BDD subgraphs are col-
lapsed into a single graph, and the nodes are shared. Therefore, the
size of the ROBDD depends on whether there are common boolean

subexpressions in the encoded function, rather than the number of
entries in the set.

5.4 BDD Operations
The boolean function operations discussed in Section 5.2 are a

standard feature of BDD libraries [17]. The∧ (and),∨ (or), and
− (difference) boolean function operations can be applied to two
BDDs, producing a BDD of the resulting function. The BDD exis-
tential quantification operationexist is used to produce a new
BDD where nodes corresponding to projected attributes are re-
moved. This operation combines the low and high successors of
each removed node by applying an∨ operation. Rename opera-
tions are implemented using the BDDreplace operation, which
computes a new BDD where decision variables corresponding to
the old attributes have been replaced with decision variables corre-
sponding to the new attribute names.

Natural join operations are frequently followed by project opera-
tions to eliminate unnecessary attributes. The BDD relational prod-
uct operation, orrelprod , efficiently combines this sequence in
a single operation. Similarly, the select and project operations can
be combined into a single BDD operation, known asrestrict .

BDD operations operate on entire relations at a time, rather than
one tuple at a time. Thus, the cost of BDD operations depends
on the size and shape of the BDD relations, which depends on the
encoding, rather than the number of tuples in a relation. Also, due
to caching in BDD packages, identical subproblems only have to
be computed once.

6. BDDBDDB
bddbddb is a deductive database that accepts Datalog queries

and implements relations as BDDs. As described below, the
database derives its efficiency from numerous optimizations ad-
dressing issues specific to each level of abstraction used: Datalog,
relational algebra, and BDDs. It also includes special optimizations
to support context-sensitive analyses.

6.1 Optimizing Context-Sensitive Analyses
Our cloning-based approach to context sensitivity creates an ex-

ponential number of contexts. Our binary encoding of contexts is
designed to allow a compact BDD representation. For each method,
clones are assigned context IDs starting from 0. The IDs are chosen
such that for each call site, ifc1 andc2 are the context IDs of match-
ing caller and callee pairs, then the difference betweenc1 andc2 is
constant. This numbering scheme allows the BDD representation
to take advantage of similarities across related contexts.

6.2 Optimizing Datalog Rules
Stratification . We first remove rules that do not contribute to the

output relations. Next, we stratify the rules. We compute depen-
dencies between rules, and assign each strongly connected compo-
nent in the dependency graph to a separate stratum [14]. The strata
are executed in topological order with respect to their dependency
relation. Our system requires that programs with negated subgoals
are stratifiable; that is, before negation, relations can be fully com-
puted by a previous stratum.

Magic-set transformation. Magic-set transformations can po-
tentially speed up the evaluation of a Datalog program by only gen-
erating relation tuples relevant to the output relations [6, 50]. How-
ever, they can have the opposite effect when applied to recursive
Datalog rules. Since BDDs can efficiently represent and manipu-
late large relations, removing unnecessary tuples does not necessar-
ily speed up the computation. The transformation can also increase
the number of iterations before recursive rules reach closure. In the



case of pointer analysis, the chain of dependencies between point-
ers can be so long that applying the magic-set transformation to a
pointer lookup would be slower than simply computing the global
solution and querying that result. Magic-set transformations are ap-
plied by default only to strata with no recursive rules, and they have
been found to speed up the resolution of some queries significantly.

Rule application order. Recursive rules within a stratum are
evaluated by iteration until closure. We use heuristics to transform
recursively defined rules into nested cycles of dependencies. We
begin iteration at the entry of the top level loop. Upon encoun-
tering the entry of an inner loop, we iterate the inner loop until
convergence is reached before continuing with the outer loop. Our
heuristics are designed so that cycles that involve fewer rules are
iterated before cycles that involve more rules, and rules with fewer
subgoals are iterated before rules that have more subgoals.

6.3 Optimizing Relational Algebra Opera-
tions

bddbddb next translates the rules into relational algebra opera-
tions, introducing temporary relations where necessary. We showed
in Section 5.1 how a rule might be translated directly into rela-
tional algebra operations. We optimize iterative rule applications
with semi-näıve rule evaluation [3] by default. Instead of applying
a rule to all the tuples found so far in a relation, we only need to
apply it to the ones that are newly found. Because this optimization
requires storing the old value of every subgoal, we allow the user
to control semi-näıve evaluation on a per-rule basis.

We apply a set of standard compiler optimizations to the rela-
tional algebraic operations. They include constant propagation,
dead code elimination, common subexpression elimination using
global value numbering, hoisting invariants out of loops, copy
propagation to eliminate unnecessary temporary relations, and live-
ness analysis to reclaim storage as soon as relations are no longer
live.

6.4 Optimizations of BDD Operations
Relational algebra operations are next replaced with equivalent

BDD operations. Pairs of natural joins and project operations are
replaced by the singlerelprod operation, and pairs of select
and project operations are replaced with therestrict operation.
There are two important optimizations at the BDD level; the first
assigns attributes to decision variables, the second orders these de-
cision variables.

6.4.1 Decision Variable Assignment
As discussed in Section 5.1, rename operations are introduced

so that corresponding attributes in a rule are given the same name,
while non-corresponding attributes have different names. Simi-
larly, corresponding attributes must be assigned the same decision
variables, and non-corresponding ones assigned different ones. Re-
name operations are translated intoreplace operations. Rename
operations can be eliminated altogether if the renamed attribute is
assigned the same set of decision variables as the original attribute.
We extract equivalence and non-equivalence constraints on variable
assignments from the rules. We consider these constraints greedily
starting with constraints on the most expensive and frequently per-
formed operations; replace operations need to be introduced only
when there is an inconsistency in constraints.

6.4.2 BDD Variable Ordering
As discussed in Section 5.3, the ordering of the decision vari-

ables can greatly affect the size of the relations and the execution
time of the BDD operations. The difference between a good or

bad ordering can mean the termination or non-termination (due to
memory exhaustion) of an analysis.

We automatically derive the decision variable ordering with a
few techniques. First, the choice of variable orderings is reduced
by exploiting the high-level relational semantics [33]. We treat each
attribute in a relation as a unit; the bits representing an attribute
can either precede, succeed, or interleave with those of another.
This greatly reduces the space of the orderings, but the number of
possible orderings for a relation is still large, and is given by the
sequence of ordered Bell numbers [47], which grows rapidly. The
number of orderings for 1 through 8 variables are 1, 3, 13, 75, 541,
4683, 47293, 545835 and 7087261.

Our experience from exhaustively searching for the best variable
order in the case of small programs suggests that the best order is
non-intuitive. We have therefore formulated the search for good
variable orderings as anactive machine learningproblem. As op-
posed to passive learning, an active learner takes a role in selecting
the variable orderings on which execution-time measurements are
to be taken. The careful selection of inputs can greatly reduce the
number of instances needed to find a good answer, which is critical
here because the measurements take a nontrivial amount of time.

Our machine learning algorithm is embedded in the interpreta-
tion of Datalog programs in thebddbddb system. Whenbddbddb
encounters a rule application that takes longer than a parameterized
amount of time, it initiates a learning episode to find a better vari-
able ordering. By measuring the execution time of a set of carefully
selected alternative variable orderings, we can extract their salient
features so as to reason about the performance of other, related or-
ders. Because rule applications can be expensive,bddbddb max-
imizes the effectiveness of each learning episode by actively seek-
ing out those variable orderings whose effects are least known in
an effort to quickly increase its knowledge of the search space.

7. EXPERIENCES
We have used Datalog to build a variety of analyses. In addition

to a pointer analysis for Java [55], we have also implemented a
pointer analysis for C [2]. We used our C pointer analysis to address
two of the most prominent security threats in C: buffer overruns and
format string vulnerabilities. Building upon the Java analysis, we
developed a number of fundamental Java analyses that would have
been difficult to create otherwise.

Our experiences with Datalog andbddbddb suggest that they
make it much easier to develop context-sensitive program analy-
ses. It is now trivial to combine results of multiple analyses. As
each analysis takes tens of lines rather than thousands, it is easier to
ensure its correctness. In addition, we found thatbddbddb can of-
ten execute program analyses faster than a well-tuned hand-coded
implementation. Our active learning algorithm even found vari-
able orderings that outperformed those we laboriously optimized
by hand or found by exhaustively searching a subset of the space of
orderings. Finally, we found that, with the help of PQL, program-
mers can easily create analyses that address important problems
such as finding vulnerabilities in programs.

7.1 C Pointer Alias Analysis and Applications
The semantics of the C language makes a pointer analysis for C

much more complex than one for Java. Because C is not type-safe,
more opportunities for security vulnerabilities exist, and a pointer
analysis must be able to model the effects of all possible program
behavior. While Java enforces type safety by limiting user access to
memory, C affords the user complete, direct control. A C program-
mer can take the address of any field within an object, access any
portion of memory as a contiguous region of bytes, perform arbi-



trary address arithmetic, and perform arbitrary object casts. With-
out a sound C pointer analysis, a conservative security tool must
assume that every pointer may point to any location in memory.

While our Java analysis consists of 33 rules and 10 relations, our
C pointer analysis has 234 rules and 63 relations (176 rules and 21
relations are used for modeling system calls). We originally hand-
coded a context-insensitive C pointer analysis directly in terms of
BDD operations. We spent a long time optimizing or correcting
physical domain assignments on a per-operation basis. We rewrote
the algorithm in Datalog and were able to create a context-sensitive
analysis easily by just adding context attributes to existing rela-
tions. Such a modification would have required rewriting hundreds
of lines of low-level BDD operations in the hand-coded analysis.

7.1.1 Buffer Overruns
Buffer overruns are responsible for over 50% of all program vul-

nerabilities. Programs are exploited by supplying input data that
exceeds the length of destination buffers, causing the program to
overwrite unintended memory locations. Since the length of input
data is unknown in a static analysis, we can only dynamically detect
buffer overruns. Static analysis can reduce the dynamic overhead
by eliminating unnecessary checks.

The C Range Error Detector (CRED) is a recently developed
dynamic bounds checker [43]. Because buffer overflows are typ-
ically transported as user input strings, CRED can be run with less
overhead by checking only string buffer overflows. CRED oper-
ates by implementing an object table to track the base address and
extent of allocated objects. It instruments pointer arithmetic, deref-
erences, and string-manipulation functions such asmemcpy to as-
sociate pointer addresses with the objects to which they refer and
verify that out-of-bounds pointers are not dereferenced. Because C
is unsafe, all objects need to be entered into the object table because
any object can be used as a string.

With the results from our C points-to analysis, we can statically
determine which objects will never be used as strings and avoid the
overhead of entering those objects into the object table [2]. This op-
timization significantly reduces the overhead of applications whose
strings are used only for inputs. We found that other optimizations
are still necessary for applications that operate mostly on strings.

7.1.2 Format String Vulnerability
Another common security threat is the format string vulnerabil-

ity exploit. A program may be exploited if it passes a user-supplied
string as the format string argument to a system function such as
printf . This string may contain format specifiers that cause the
program to write to unintended memory locations. Static detection
of user-supplied format strings is another example of the tainted-
data problem, which requires the results of a pointer analysis.

To avoid false-positive results, a previous format string vulner-
ability analysis unsoundly assumed that pointers are unaliased un-
less proven otherwise with just local information [45]. Because the
analysis was unsound, it could not find all potential vulnerabilities.

We have developed a static analysis for format string vulnera-
bities using our C pointer analysis [2]. It is a sound analysis—
it guarantees that all potentially tainted format strings will be re-
ported. When applied to a suite of twelve applications, we found
that three contain format string vulnerabilities. The analysis re-
ported only fifteen false-positive errors, which were all contained
in one application.

7.2 Fundamental Java Analyses
Our simple formulation of context sensitivity lends itself to easy

implementation of various fundamental Java analyses. We describe

three Java analyses: type analysis, escape analysis, and analysis of
Java reflection.

7.2.1 Type Analysis
We used the context-sensitive pointer analysis to find the possi-

ble types for each variable. This information is used to discover
an accurate call graph for the program, and can also be used to
optimize the program by resolving virtual call sites, eliminating
dynamic type casts and helping method inlining. More accurate
analyses will have fewer possible types for each variable. In our
experiments, the percentage of multi-typed variables (variables that
point to objects of different types) was between 6–10% when using
context-insensitive pointer analysis, but dropped by up to a factor
of 20 to less than 1% when using full context sensitivity [55]. This
highlights the great improvement in accuracy from using a context-
sensitive analysis.

7.2.2 Escape Analysis
Thread escape analysis determines if objects created by one

thread may be used by another. The results of the analysis can be
used for optimizations such as synchronization elimination and al-
locating objects in thread-local heaps, as well as for understanding
programs and checking for possible race conditions due to missing
synchronizations [55, 57].

Previous implementations were extremely complex; there have
been numerous publications devoted to escape analysis implemen-
tations [57]. By usingbddbddb and the results of our context-
sensitive pointer analysis, we are able to build an implementation
of escape analysis in just 4 lines of Datalog. This analysis was able
to find a significant number of thread-local objects and unnecessary
synchronization operations.

7.2.3 Resolving Java Reflection
Java’s reflection mechanism accepts strings and grants access to

the corresponding classes, fields, or methods. This is problematic
for static analysis tools. Without a full treatment of reflection, static
analysis tools may be unsound due to missing parts of the call graph
or writes to object fields. However, resolving reflective accesses is
difficult because it depends on the values of the strings passed into
the reflective methods. Most static analysis tools treat reflection in
an unsound manner or just ignore it entirely. This is unsatisfactory
as many modern Java applications make significant use of reflec-
tion.

By adding a few Datalog rules to our pointer analysis specifica-
tion, we can use the current results of the pointer analysis to resolve
reflective method invocations, object creations, and field accesses.
This allows us to discover the call graph, including reflective calls,
on-the-fly and obtain a very accurate and complete call graph. Our
experiments indicate that adding support for reflection in the anal-
ysis increases the number of methods in an application’s call graph
by 2%–128%. These extra methods would have otherwise been
missed by the analysis.

7.3 Vulnerabilities in Java Web Applications
We have developed a set of analyses to check for the vulnera-

bilities discussed in Section 2. These analyses are written in PQL,
each taking tens of lines of code. We applied the analyses to a
set of representative open-source applications:jboard , blojsom ,
snipsnap , andblueblog are Web-based bulletin board and blog-
ging applications;webgoat is a J2EE application designed as a test
case and teaching tool; androad2hibernate is a test program for
the popular object persistence libraryhibernate .

We found that every application suffers from one or more vul-



Program SQL HTTP Cross-Site Path Total False
Injection Splitting Scripting Traversal Errors Warnings

jboard 0 0 0 0 0 0
blueblog 0 0 1 0 1 0
webgoat 5 0 1 0 6 0
blojsom 0 0 0 2 2 0
personalblog 2 0 0 0 2 0
snipsnap 1 11 0 3 15 12
road2hibernate 1 0 0 0 1 0
pebble 0 0 1 0 1 0
roller 0 0 1 0 1 0

Total 9 11 4 5 29 12

Figure 8: Vulnerabilities found in 9 Web applications (preliminary result summary).

nerabilities we tested, except for the smallest applicationjboard .
snipsnap is the only application that suffers from the HTTP split-
ting vulnerability; it has eleven such errors. Path traversal vulnera-
bilities are found in two applications, whereas potential SQL injec-
tion and cross-site scripting errors are located in four applications.
In total, our experiment turned up 29 errors.

It is important also to note that our queries raised only 12 false
warnings, all withinsnipsnap . This is significant because it
is relatively easy to go over all the warnings generated to pick
out the true errors. In contrast, if we had substituted our ad-
vanced context-sensitive pointer analysis with a more conventional
context-insensitive approach, the queries would have generated
hundreds of warnings for some of the larger programs and would
not have been effective. In addition, not only can we find many
errors with little effort, the analysis is sound. We can be assured
that there are no more vulnerabilities of the kind we are looking for
among the codes we have analyzed.

8. RELATED WORK
Our system builds on many areas of research. We briefly de-

scribe some of the most directly related work, organized into sev-
eral areas.

Program analysis with databases. Ullman first suggested for-
mulating data-flow analysis as database queries [51]. Reps used
a deductive database for demand-driven interprocedural data-flow
analysis [41, 42].

Finding program errors . Much attention has been given re-
cently to the topic of detecting errors in programs. Penetration test-
ing, which involves attempting to determine input values that ex-
ploit holes in an application, is the current typical approach [1, 11,
44]. This approach cannot guarantee that all vulnerabilities will be
located. Penetration testers often use “fuzzing” tools, which gener-
ate random input, to help locate vulnerabilities.

Others have attempted to locate errors statically; Chess and Mc-
Graw provide an overview of these approaches [16]. These tools
range from simple lexical analysis to sophisticated program analy-
ses. Of the latter, most practical tools make unsound assumptions
regarding pointer aliasing. Intrinsa and Metal, which locate errors
in C and C++ programs, and WebSSARI, which finds errors in PHP
code, fall into this category [12, 26]. Other approaches, such as
those based on type qualifiers [30, 45, 53] may suffer from impre-
cision or a need for user annotations. Our approach is novel in that
it is a sound static analysis with a low false positive rate. Using
powerful pointer alias analysis allows us to avoid making unsound
assumptions without imprecision producing many false positives.

User-specified program queries. Other systems allow the user
to specify program analyses. Metal [26] and SLIC [4] both de-
fine state machines with respect to variables. These machines are
used to configure a static analysis that searches the program for sit-

uations where error transitions can occur. Metal restricts itself to
finite state machines, but has more flexible event definitions and
limited ability to handle pointers. SLIC machines are capable of
counting but cannot exploit pointer information.

Pointer analysis. Pointer alias analysis is a problem with a long
history. Here we present only a sampling of the most directly re-
lated work. One line of research has focused on scalable pointer
analyses; it began with an imprecise but very fast algorithm due to
Steensgaard [48]. Recently several more precise algorithms have
been shown to scale to large programs [7, 27, 33, 56]. These algo-
rithms are all context-insensitive, except for one due to Das, which
includes a single level of context sensitivity [20]. Some attempts at
context sensitivity, such as the C pointer analysis due to Fähndrich
et al. [22], achieve moderate scalability by sacrificing precision on
other dimensions, for example by not distinguishing between dif-
ferent fields of structures. Other lines of work have focused on
increasing precision. Many earlier attempts at context sensitivity
have not been shown to scale [21, 32, 57, 58]. Our work is similar
to Emami et al. in that they also compute context-sensitive points-to
results for all different contexts. However, their technique has only
been demonstrated to work for programs of less than 3000 lines.

Program analysis with BDDs. BDDs have recently been used
in a number of program analyses such as predicate abstraction [5],
shape analysis [36, 59], class analyses of object-oriented pro-
grams [8] and, in particular, points-to analysis [7, 60, 61]. These
analyses use BDD libraries directly, without additional abstraction
to ease implementation. Jedd is a Java language extension that pro-
vides a relational algebra abstraction over BDDs [34].

Optimizing Datalog. Liu and Stoller described a method of ef-
ficiently implementing Datalog, however, they optimized with re-
spect to a metric that does not apply when using BDDs [35]. There
has been much research on optimizing Datalog evaluation strate-
gies; for example, semi-naı̈ve evaluation [3], bottom-up evalua-
tion [13, 37, 50], top-down with tabling [15, 49], the role of rule
ordering in computing fixed-points [39], etc. We use an evaluation
strategy geared towards the peculiarities of the BDDs—for exam-
ple, to maximize cache locality, we iterate around inner loops first.
Other work transforms Datalog programs to reduce the amount of
work necessary to compute a solution. For example, the magic-set
transformation is a general algorithm for rewriting logical rules to
reduce the number of irrelevant facts generated [6].

Logic programming with BDDs. Iwaihara et al. described a
technique for using BDDs for logic programming [29]. They com-
pared two different relation encodings, including the one we use.
The Toupie system translates logic programming queries into an
implementation based on decision diagrams [19]. Crocopat is a
tool for relational computation that is used for structural analysis
of software systems [9]. Likebddbddb, they use BDDs to repre-
sent relations.



Machine learning BDD variable orders. Recently, Grumberg
et al. have tackled the BDD variable order problem with machine
learning [25]. Their framework is inherently different from ours,
as they lack the higher level notion of domains and, instead, seek
to order individual BDD variables. Our search space is therefore
smaller and we can search more effectively. Also, we evaluate
variable orderings based on running times rather than BDD sizes;
smaller BDDs do not necessarily mean faster BDD operations.bd-
dbddb employs active learning to maximize the value of each trial
run [23].

9. CONCLUSIONS
This paper describes a deductive database framework that greatly

simplifies the development of context-sensitive program analyses.
This framework allows users to express a whole-program analy-
sis succinctly with a small number of Datalog rules that operate
on a cloned call graph. The deductive database implementation
hides the complexity in managing the exponentially many calling
contexts in a program. Efficiency is achieved through a large num-
ber of techniques, which include using BDDs to represent relations
compactly, database query optimizations, compiler optimizations
to remove redundant operations, a custom technique to optimize
BDD decision variable assignment, as well as the use of active ma-
chine learning to find a suitable decision variable ordering.

We have used this framework to develop a large number of anal-
yses: C and Java pointer alias analyses, tools for finding buffer
overruns and format strings in C programs, fundamental Java anal-
yses including type inference, escape, and reflection analyses. On
top of Datalog, we have implemented a little language called PQL
that allows Java programmers to express error patterns intuitively.
We have used it to find numerous vulnerabilities in Java web appli-
cations.
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