
W4118 Operating Systems 

Instructor: Junfeng Yang



1

File system examples

� BSD Fast File System (FFS)
� What were the problems with Unix FS?

� How did FFS solve these problems?

� Log-Structured File system (LFS)
� What was the motivation of LFS?

� How did LFS work?

1



2

Original Unix FS

� From Bell Labs

� Simple and elegant

� Problem: slow
� 2% of maximum disk bandwidth even for sequential 

disk transfer (20KB/s)

data blocks (512 bytes)inodes

s
u
p
e
r

Unix disk layout



3

Why so slow?

� Problem 1: blocks too small
� Fixed costs per transfer (seek and rotational 

delays)
� Require more indirect blocks

� Problem 2: unorganized freelist
� Consecutive file blocks are not close together
� Pay seek cost even for sequential access

� Problem 3: no data locality
� inodes far from data blocks
� inodes of files in directory not close together



4

Problem 1: original Unix FS performance

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

512B 1024B 2048B 4096 1MB

Block size

Space Wasted Bandwidth



5

Larger blocks

� BSD FFS: make block 4096 or 8192 bytes

� Solve the internal fragmentation problem by chopping 
large blocks into small ones called fragments
� Algorithm to ensure fragments only used for end of file

� Limit number of fragments per block to 2, 4, or 8

� Keep track of free fragments

� Pros
� Transfer speeds of larger blocks

� Greatly reduce wasted space for small files or ends of 
files 



6

Problem 2: unorganized freelist

� Leads to random allocation of sequential file 
blocks overtime

Initial performance good Get worse over time



7

Fixing the unorganized free list

� Periodical compact/defragment disk
� Cons: locks up disk bandwidth during operation

� Keep adjacent free blocks together on freelist
� Cons: costly to maintain

� Bitmap of free blocks
� Bitmap: 010001000101010000001

� Used in BSD FFS



8

Problem 3: data Locality

� Locality techniques
� Store related data together
� Spread unrelated data apart

• Make room for related data

� Always find free block nearby
• Rule of thumb: keep some free space on disks (10%) 

� FFS new organization: cylinder group
� Set of adjacent cylinders
� Fast seek between cylinders in same group
� Each cylinder group contains superblock, inodes, 

bitmap of free blocks, usage summary for block 
allocation, data blocks



9

Achieving locality in FFS

� Maintain locality of each file
� Allocate data blocks within a cylinder group

� Maintain locality of inodes in a directory
� Allocate inodes in same dir in a cylinder group

� Make room for locality within a directory
� Spread out directories to cylinder groups

� Switch to a different cylinder group for large files



10

BSD FFS performance improvements

� Achieve 20-40% of disk bandwidth on large 
files
� 10X improvements over original Unix FS

� Stable over FS lifetime

� Can be further improved with additional placement 
techniques

� Better small file performance

� More enhancements



11

File system examples

� BSD Fast File System (FFS)
� What were the problems with Unix FS?

� How did FFS solve these problems?

� Log-Structured File system (LFS)
� What was the motivation of LFS?

� How did LFS work?

11



12

Log-structured file system

� Motivation
� Faster CPUs: I/O becomes more and more of a 

bottleneck

� More memory: file cache is effective for reads

� Implication: writes compose most of disk traffic

� Problems with previous FS
� Perform many small writes

• Good performance on large, sequential writes, but 
most writes are small, random

� Synchronous operation to avoid data loss

� Depends upon knowledge of disk geometry



13

LFS idea

� Insight: treat disk like a tape-drive
� Best performance from disk for sequential access

� Write data to disk in a sequential log
� Delay all write operations

� Write metadata and data for all files intermixed in 
one operation

� Do not overwrite old data on disk



14

Pros and cons

� Pros
� Always Large sequential writes � good performance

� No knowledge of disk geometry
• Assume sequential better than random

� Potential problems
� How do you find data to read?

� What happens when you fill up the disk?



15

Read in LFS

� Same basic structures as Unix
� Directories, inodes, indirect blocks, data blocks

� Reading data block implies finding the file’s inode
• Unix: inodes kept in array

• LFS: inodes move around on disk

� Solution: inode map indicates where each inode
is stored
� Small enough to keep in memory

� inode map written to log with everything else

� Periodically Written to known checkpoint location on 
disk for crash recovery



16

Disk cleaning

� Disk runs low on free space
� Run a disk cleaning process
� Compacts live information to contiguous blocks of disk

� Problem: long-lived data repeatedly copied over time
� Solution: partition disk in to segments

• Group older files into same segment
• Do not clean segments with old files

� Try to run cleaner when disk is not being used

� LFS: neat idea, influential
� Paper on LFS is likely the most widely cited OS paper
� Real file systems based on the idea


