
W4118 Operating Systems

Instructor: Junfeng Yang

1

Outline

� File system concepts
� What is a file?

� What operations can be performed on files?

� What is a directory and how is it organized?

� File implementation
� How to allocate disk space to files?

1

2

What is a file

� User view
� Named byte array

• Types defined by user

� Persistent across reboots and power failures

� OS view
� Map bytes as collection of blocks on physical
storage

� Stored on nonvolatile storage device
• Magnetic Disks

2

3

Role of file system

� Naming
� How to “name” files
� Translate “name” + offset � logical block #

� Reliability
� Must not lose file data

� Protection
� Must mediate file access from different users

� Disk management
� Fair, efficient use of disk space
� Fast access to files

3

4

File metadata

� Name – only information kept in human-readable form

� Identifier – unique tag (number) identifies file within
file system (inode number in UNIX)

� Location – pointer to file location on device

� Size – current file size

� Protection – controls who can do reading, writing,
executing

� Time, date, and user identification – data for
protection, security, and usage monitoring

� How is metadata stored? (inode in UNIX)

4

5

File operations

� int creat(const char* pathname, mode_t mode)

� int unlink(const char* pathname)

� int rename(const char* oldpath, const char*
newpath)

� int open(const char* pathname, int flags, mode_t
mode)

� int read(int fd, void* buf, size_t count);

� int write(int fd, const void* buf, size_t count)

� int lseek(int fd, offset_t offset, int whence)

� int truncate(const char* pathname, offset_t len)

� ...

6

Open files

� Problem: expensive to resolve name to identifier on
each access

� Solution: open file before access
� Name resolution: search directories for file name and
check permission

� Read relevant file metadata into open file table in
memory

� Return index in open file table (file descriptor)

� Application pass index to OS for subsequent access

� System-wide open file table shared across processes

� Per-process open file table stores current pointer
position and index to system-wide open file table

7

Directories

� Organization technique
� Map file name to location on disk

� Also stored on disk

� Single-Level directory
� Single directory for entire disk

• Each file must have unique name

� Not very usable

� Two-level directory
� Directory for each user

� Still not very usable

7

8

Tree-structured directory

� Directory stored on disk just like files
� Data consists of <name, index> pairs

• Name can be another directory

� Designated by special bit in meta-data
� Reference by separating names with slashes
� Operations

• User programs can read (readdir())
• Only special system calls can write

� Special directories
� Root (/): fixed index for metadata
� . : this directory
� .. : parent directory

8

9

Acyclic-graph directories

� Directories can share files

� Create links from one file

� Two types of links
� Hard link

• Multiple directory entries point to same file

• Store reference count in file metadata

• Cannot refer to directories; why?

� Symbolic link
• Special file, designated by bit in meta-data

• File data is name to another file

9

10

Path names

� Absolute path name (full path name)
� Start at root directory

• E.g. /home/junfeng/teaching

� Relative path name
� Full path is lengthy and inflexible

� Give each process current working directory

� Assume file in current directory

10

11

Directories as files

� Direction as special files that store pointers
to the contained files
� File data is interpreted by FS code

� Separate functionality in two levels
� Lowest: storage management

� Highest: naming, directory

� Advantage: simplifies design and
implementation

12

Protection

� Type of access
� Read, write, execute, append, delete, list …

� Access control list
� Associate lists of users with access rights for every file

� Advantage: complete control

� Disadvantage
• Tedious to construct list (may not know in advance for all users)

• Require variable-size information

� Classify users
� user, group, other

� Advantage: easier to implement

� Disadvantage: no fine grained control

13

Outline

� File system concepts
� What is a file?

� What operations can be performed on files?

� What is a directory and how is it organized?

� File implementation
� How to allocate disk space to files?

13

14

Typical file access patterns

� Sequential Access
� Data read or written in order

• Most common access pattern
– E.g., copy files, compiler read and write files,

� Can be made very fast (peak transfer rate from
disk)

� Random Access
� Randomly address any block

• E.g., update records in a database file

� Difficult to make fast (seek time and rotational
delay)

14

15

Disk management

� Need to track where file data is on disk
� How should we map logical sector # to surface #,
track #, and sector #?
• Order disk sectors to minimize seek time for
sequential access

� Need to track where file metadata is on disk

� Need to track free versus allocated areas of
disk
� E.g., block allocation bitmap (Unix)

• Array of bits, one per block
• Usually keep entire bitmap in memory

15

16

Allocation strategies

� Various approaches (similar to memory allocation)
� Contiguous
� Extent-based
� Linked
� FAT tables
� Indexed
� Multi-Level Indexed

� Key metrics
� Fragmentation (internal & external)?
� Grow file over time after initial creation?
� Fast to find data for sequential and random access?
� Easy to implement?
� Storage overhead?

16

17

Contiguous allocation

� Allocate files like continuous memory
allocation (base & limit)
� User specifies length, file system allocates space all
at once

� Can find disk space by examining bitmap

� Metadata: contains starting location and size of file

17

18

Contiguous allocation example

19

Pros and cons

� Pros
� Easy to implement

� Low storage overhead (two variables to specify disk
area for file)

� Fast sequential access since data stored in
continuous blocks

� Fast to compute data location for random
addresses. Just an array index

� Cons
� Large external fragmentation

� Difficult to grow file

19

20

Extent-based allocation

� Multiple contiguous regions per file (like
segmentation)
� Each region is an extent

� Metadata: contains small array of entries
designating extents
• Each entry: start and size of extent

20

21

Pros and cons

� Pros
� Easy to implement

� Low storage overhead (a few entries to specify file
blocks)

� File can grow overtime (until run out of extents)

� Fast sequential access

� Simple to calculate random addresses

� Cons
� Help with external fragmentation, but still a
problem

21

22

Linked allocation

� All blocks (fixed-size) of a file on linked list
� Each block has a pointer to next

� Metadata: pointer to the first block

22

pointerblock

23

Linked allocation example

24

Pros and cons

� Pros
� No external fragmentation

� Files can be easily grown with no limit

� Also easy to implement, though awkward to spare
space for disk pointer per block

� Cons
� Moderate storage overhead (one pointer per block)

� Potentially slow sequential access

� Difficult to compute random addresses

24

25

Variation: FAT table

� Store linked-list pointers outside block in File-
Allocation Table
� One entry for each block

� Linked-list of entries for each file

� Used in MSDOS and Windows operating
systems

25

26

FAT example

27

Pros and cons

� Pros
� Fast random access. Only search cached FAT

� Cons
� Moderate storage overhead for FAT table

� Potentially slow sequential access

27

28

Indexed allocation

� File has array of pointers (index) to block
� Allocate block pointers contiguously in metadata

• Must set max length when file created

• Allocate pointers at creation, allocate blocks on
demand

• Cons:

� Maintain multiple lists of block pointers
• Last entry points to next block of pointers

• Cons:

28

block pointers

29

Indexed allocation example

30

Pros and cons

� Pros
� Easy to implement

� No external fragmentation

� Files can be easily grown with the limit of the array
size

� Fast random access. Use index

� Cons
� Large space overhead (index)

� Sequential access may be slow.
• Must allocate contiguous block for fast access

30

31

Multi-level indexed files

� Block index has multiple levels

31

M

outer-index

index table file

32

Multi-level indexed allocation example (UNIX
FFS and Linux ext2)

33

Pros and cons

� Pros
� No external fragmentation

� Files can be easily grown with much larger limit
compared to one-level index

� Fast random access. Use index

� Cons
� Large space overhead (index)

� Sequential access may be slow.
• Must allocate contiguous block for fast access

� Implementation can be complex

33

