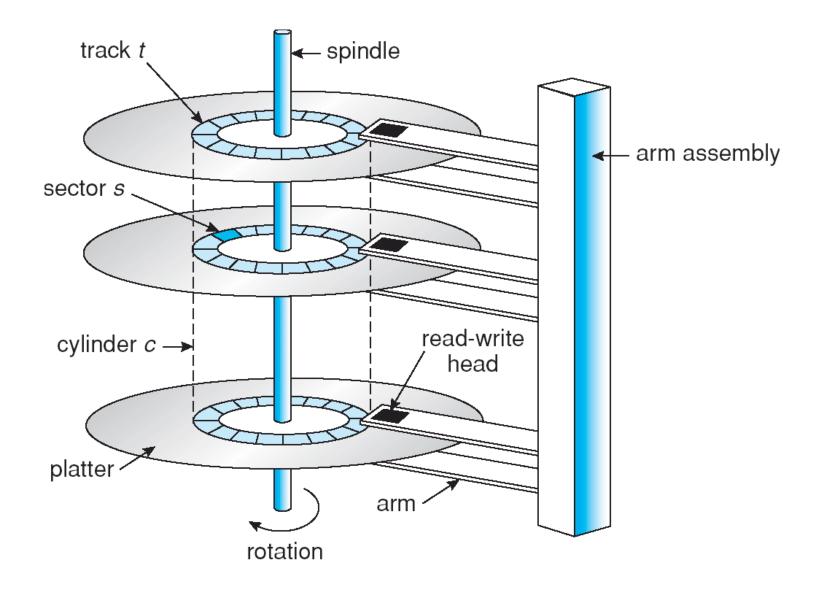
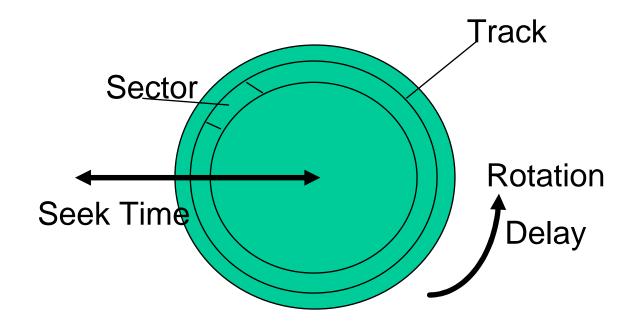
W4118 Operating Systems


Instructor: Junfeng Yang

Outline

Disk

Redundant Arrays of Inexpensive Disks (RAID)


Disk structure

Disk latencies

□ Latency includes:

- Rotational delay: to get to the sector
- Seek time: to get to the track
- Transfer time: get bits off the disk

Disk parameters

	Barracuda 180	Cheetah X15 36LP
Capacity	181GB	36.7GB
Platters/Heads	12/24	4/8
Cylinders	24,247	18,479
Sectors/track	~609	~485
Rotational speed	7200 RPM	15000 RPM
Rotational latency (ms)	4.17	2.0
Avg seek (ms)	7.4	3.6
Track-2-track(ms)	0.8	0.3

Disk interface

- From FS perspective: disk is addressed as a one dimension array of logical sectors
- Disk controller maps logical sector to physical sector identified by surface #, track #, and sector #
- Default mapping: sequential
 - Logical sector 0 is the first sector of the first (outermost) track of the first surface
 - Logical sector address incremented within track, then tracks within cylinder, then across cylinders, from outermost to innermost

Sequential v.s. random access latency

- Sequential access latency
 - Seek to the right track
 - Rotate to the right sector
 - Transfer
- Random access latency
 - Seek to the right track
 - Rotate to the right sector
 - Transfer
 - Repeat
- Sequential access is faster than random access because it needs less seek and rotation

Pros and cons of disk interface

Pros

- Simple to program
- Default mapping reduces seek time for sequential access
- Cons
 - FS can't precisely see mapping
 - Reverse-engineer mapping in OS is difficult
 - # of sectors per track changes
 - Disk silently remaps bad sectors

Disk technology trends

\Box Data \rightarrow more dense

- More bits per square inch
- Disk head closer to surface
- Create smaller disk with same capacity

\Box Disk geometry \rightarrow smaller

- Spin faster
 Increase b/w, reduce rotational delay
- Faster seek
- Lighter weight
- \Box Disk price \rightarrow cheaper
- Density improving more than speed (mechanical limitations)

New mass storage technologies

- New memory-based mass storage technologies avoid seek time and rotational delay
 - NAND Flash
 - Battery-backed DRAM (NVRAM)
- Disadvantages
 - Price: more expensive than same capacity disk
 - Reliability: more likely to lose data

Open research question: how to effectively use flash in commercial storage systems

Outline

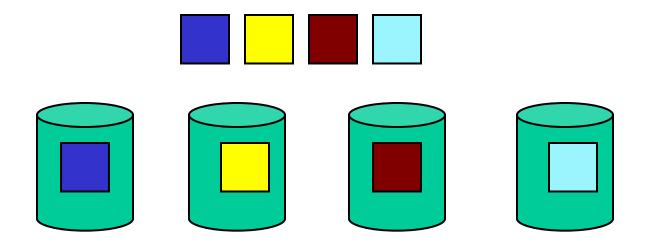
Disk

Redundant Arrays of Inexpensive Disks (RAID)

RAID motivation

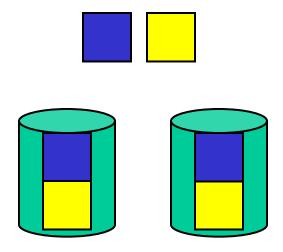
- Performance
 - Disks are slow compared to CPU
 - Disk speed improves slowly compared to CPU
- Reliability
 - In single disk systems, one disk failure → data loss
- Cost
 - A single fast, reliable disk is expensive

RAID idea


- RAID idea: use redundancy to improve performance and reliability
 - Redundant array of cheap disks as one storage unit
 - Fast: simultaneous read and write disks in the array
 - Reliable: use parity to detect and correct errors
- RAID can have different redundancy levels, achieving different performance and reliability
 - Seven different RAID levels (0-6)

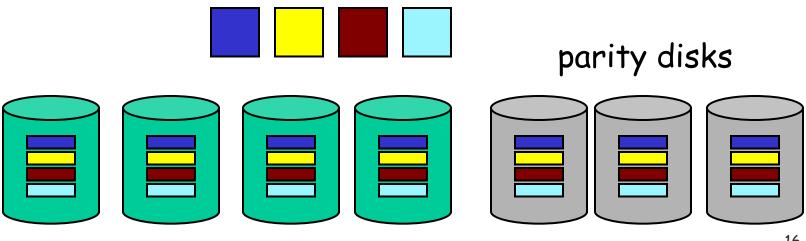
Evaluating RAID

- Performance
 - (Large) sequential read, write, read-modify-write
 - (Small) random read, write, read-modify-write
- Reliability
 - Tolerance of disk failures
- Cost
 - Storage utilization: data capacity / total capacity

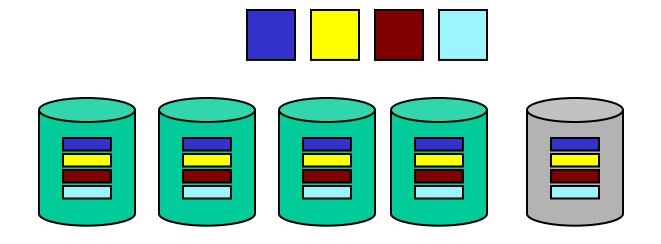

RAID 0: non-redundant striping

- Structure
 - Data striped across all disks in an array
 - No parity
- Advantages:
 - Good performance: with N disks, speed up N times
- Disadvantages:
 - Poor reliability: one disk failure → data loss

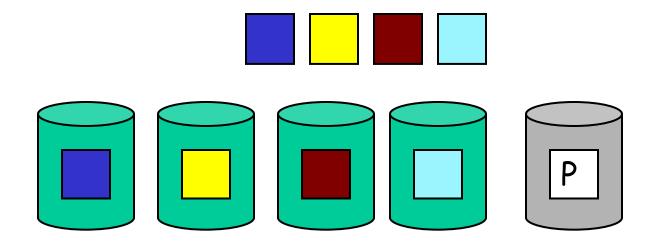
RAID 1: mirroring


- Structure
 - Keep a mirrored (shadow) copy of data
- Advantages
 - Good reliability: one disk failure OK
 - Good read performance
- Disadvantage
 - High cost: one data disk requires one parity disk

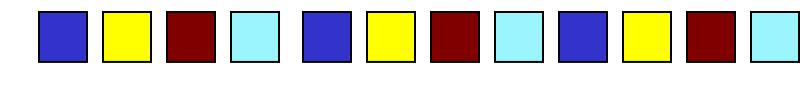
RAID2: error-correction parity

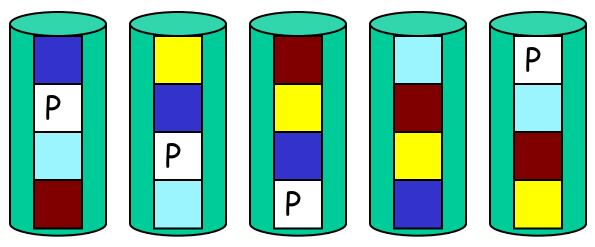

Structure

- A data sector striped across data disks
- Compute error-correcting parity and store in parity disks
- Advantages
 - Good reliability with higher storage utilization than mirroring
- Disadvantages
 - Unnecessary cost: disk can already detect failure
 - Poor random performance

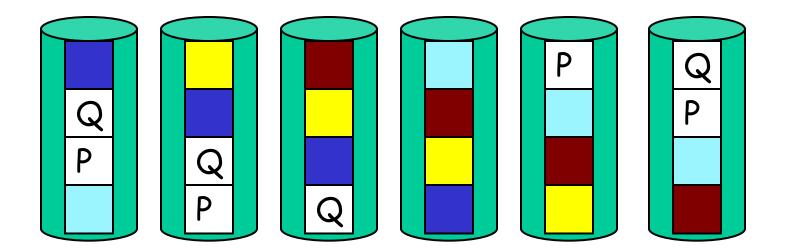

RAID3: bit-interleaved parity

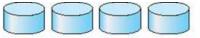
- Structure
 - Single parity disk (XOR of each stripe of a data sector)
- Advantages
 - Same reliability with one disk failure as RAID2 since disk controller can determine what disk fails
 - Higher storage utilization
- Disadvantages
 - Poor random performance


RAID4: block-interleaved parity


- Structure
 - A set of data sectors (parity group) striped across data disks
- Advantages
 - Same reliability as RAID3
 - Good random read performance
- Disadvantages
 - Poor random write and read-modify-write performance

RAID5: block-interleaved distributed parity


- □ Structure
 - Parity sectors distributed across all disks
- Advantages
 - Good performance



RAID6: P+Q redundancy

- Structure
 - Same as RAID 5 except using two parity sectors per parity group
- Advantages
 - Can tolerate two disk failures

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.