
W4118 Operating Systems

Instructor: Junfeng Yang

1

Outline

� x86 segmentation and paging hardware

� Linux address space translation

� Copy-on-write

� Linux page replacement algorithm

� Linux dynamic memory allocation

2

x86 segmentation and paging

� Using Pentium as example

� CPU generates virtual address (seg, offset)
� Given to segmentation unit

• Which produces linear addresses

� Linear address given to paging unit
• Which generates physical address in main memory

• Paging units form equivalent of MMU

2

3

x86 segmentation hardware

3

44

Specifying segment selector

� virtual address: segment selector + offset

� Segment selector stored in segment registers (16-bit)
� cs: code segment selector
� ss: stack segment selector
� ds: data segment selector
� es, fs, gs

� Segment register can be implicitly or explicitly
specified
� Implicit by type of memory reference

• jmp $8049780 // implicitly use cs
• mov $8049780, %eax // implicitly use ds

� Through special registers (cs, ss, es, ds, fs, gs on x86)
• mov %ss:$8049780, %eax // explicitly use ss

5

x86 paging hardware

5

6

Outline

� x86 segmentation and paging hardware

� Linux address space translation

� Copy-on-write

� Linux page replacement algorithm

� Linux dynamic memory allocation

7

Linux address translation

� Linux uses paging to translate virtual
addresses to physical addresses

� Linux does not use segmentation

� Advantages
� More portable since some RISC architectures don’t
support segmentation

� Hierarchical paging is flexible enough

7

8

Linux segmentation

� Since x86 segmentation hardware cannot be
disabled, Linux just uses NULL mappings

� Linux defines four segments
� Set segment base to 0x00000000, limit to 0xffffffff
� segment offset == linear addresses

� User code (segment selector: __USER_CS)
� User data (segment selector: __USER_DS)
� Kernel code (segment selector: __KERNEL_CS)
� Kernel data (segment selector: __KERNEL_DATA)

� arch/i386/kernel/head.S

9

Segment protection

� Current Privilege level (CPL) specifies privileged
mode or user mode
� Stored in current code segment descriptor
� User code segment: CPL = 3
� Kernel code segment: CPL = 0

� Descriptor Privilege Level (DPL) specifies
protection
� Only accessible if CPL <= DPL

� Switch between user mode and kernel mode (e.g.
system call and return)
� Hardware load the corresponding segment selector

(__USER_CS or __KERNEL_CS) into register cs

9

10

Paging

� Linux uses up to 4-level hierarchical paging
� A linear address is split into five parts, to seamlessly

handle a range of different addressing modes
� Page Global Dir
� Page Upper Dir
� Page Middle Dir
� Page Table
� Page Offset

� Example: 32-bit address space, 4KB page without
physical address extension (hardware mechanism to
extend address range of physical memory)
� Page Global dir: 10 bits
� Page Upper dir and Page Middle dir are not used
� Page Table: 10 bits
� Page Offset: 12 bits

10

11

Paging in 64 bit Linux

Platform
Page
Size

Address
Bits

Used

Paging
Levels

Address
Splitting

Alpha 8 KB 43 3 10+10+10+13

IA64 4 KB 39 3 9+9+9+12

PPC64 4 KB 41 3 10+10+9+12

sh64 4 KB 41 3 10+10+9+12

X86_64 4 KB 48 4 9+9+9+9+12

11

12

Page table operations

� Linux provides data structures and operations
to create, delete, read and write page
directories
� include/asm-i386/pgtable.h

� arch/i386/mm/hugetlbpage.c

� Naming convention
� pgd: Page Global Directory

� pmd: Page Middle Directory

� pud: Page Upper Directory

� pte: Page Table Entry

� Example: mk_pte(p, prot)

12

13

TLB operations

� x86 uses hardware TLB
� OS does not manage TLB

� Only operation: flush TLB entries
� include/asm-i386/tlbflush.h

� movl %0 cr3: flush all TLB entries

� invlpg addr: flush a single TLB entry
• More efficient than flushing all TLB entries

13

14

Outline

� x86 segmentation and paging hardware

� Linux address space translation

� Copy-on-write

� Linux page replacement algorithm

� Linux dynamic memory allocation

15

A cool trick: copy-on-write

� In fork(), parent and child often share
significant amount of memory
� Expensive to copy all pages

� COW Idea: exploit VA to PA indirection
� Instead of copying all pages, share them

� If either process writes to shared pages, only then
is the page copied

� How to detect page write?
• Mark pages as read-only in both parent and child
address space

• On write, page fault occurs

15

16

Share pages

� copy_process() in kernel/fork.c

� copy_mm()

� dup_mmap() // copy page tables

� copy_page_range() in mm/memory.c

� copy_pud_range()

� copy_pmd_range()

� copy_pte_range()

� copy_one_pte() // mark readonly

16

17

Copy page on page fault

� set_intr_gate(14, &page_fault) in
arch/i386/kernel/traps.c

� ENTRY(page_fault) calls do_page_fault in
arch/i386/kernel/entry.s

� do_page_fault in arch/i386/mm/fault.c

� cr2 stores faulting virtual address
� handle_mm_fault in mm/memory.c

� handle_pte_fault in mm/memory.c

� if(write_access)

� do_wp_page()

17

18

Outline

� x86 segmentation and paging hardware

� Linux address space translation

� Copy-on-write

� Linux page replacement algorithm

� Linux dynamic memory allocation

19

Linux page replacement algorithm

� Two lists in struct zone
� active_list: hot pages

� inactive_list: cold pages

� Two bits in struct page
� PG_active: is page on active list?

� PG_referenced: has page been referenced recently?

� Approximate LRU algorithm
� Replace a page in inactive list

� Move from active to inactive under memory pressure

� Need two accesses to go from inactive to active

19

20

Functions for page replacement

� lru_cache_add*(): add to inactive or active list

� mark_page_accessed(): called twice to move a
page from inactive to active

� page_referenced(): test if a page is referenced

� refill_inactive_zone(): move pages from active
to inactive

21

How to swap out page

� free_more_memory() in fs/buffer.c called

� try_to_free_pages in mm/vmscan.c

� shrink_caches

� shrink_zone

� refill_inactive_zone

� shrink_cache

� shrink_list

� if(PageDirty(page))

� pageout()

21

22

How to load page

� On page fault, cr2 stores faulting virtual
address

� handle_mm_fault() in mm/memory.c

� handle_pte_fault()

� if(!pte_present(entry))

� do_no_page() // anonymous page

� do_file_page() // file mapped page

� do_swap_page() // swapped out page

22

23

Outline

� x86 segmentation and paging hardware

� Linux address space translation

� Copy-on-write

� Linux page replacement algorithm

� Linux dynamic memory allocation

24

Dynamic memory allocation

� How to allocate pages?
� Data structures for page allocation

� Buddy algorithm for page allocation

� How to allocate objects?
� Slab allocation

24

25

Page descriptor

� Keep track of the status of each physical page
� struct page, include/linux/mm.h

� All stored in mem_map array

� Simple mapping between a page and its
descriptor
� Nth page’s descriptor is mem_map[N]

� virt_to_page

� page_to_pfn

26

Memory zone

� Keep track of pages in different zones
� struct zone, include/linux/mmzone.h

� ZONE_DMA: <16MB

� ZONE_NORMAL: 16MB-896MB

� ZONE_HIGHMEM: >896MB

27

Linux page allocator

� Linux use a buddy allocator for page allocation
� Fast, simple allocation for blocks that are 2^n bytes
[Knuth 1968]

� Idea: a free list for each size of block users
want to allocate

� __page_alloc() in mm/page_alloc.c

28

Linux buddy allocator implementation

� Data structure
� 11 free lists of blocks of pages of size 2^0, 2^1, …, 2^10

� Allocation restrictions: 2^n pages, 0<= n <= 10

� Allocation of 2^n pages:
� Search free lists (n, n+1, n+2, …) for appropriate size

• Recursively divide larger blocks until reach block of correct
size

• Insert “buddy” blocks into free lists

� Free
� Recursively coalesce block with buddy if buddy free

29

Pros and cons of buddy allocator

� Advantages
� Fast and simple compared to general dynamic
memory allocation

� Avoid external fragmentation by keeping free
physical pages contiguous

� Disadvantages
� Internal fragmentation

• Allocation of block of k pages when k != 2^n

30

Slab allocator

� For objects smaller than a page
� Implemented on top of page allocator
� Memory managed by slab allocator is called cache

� Two types of slab allocator
� Fixed-size slab allocator: cache contains objects of
same size
• for frequently allocated objects

� General-purpose slab allocator: caches contain
objects of size 2^n
• for less frequently allocated objects
• For allocation of object with size k, round to nearest 2^n

� _kmem_cache_create() and _kmalloc() in mm/slab.c

31

Pros and cons of slab allocator

� Advantages
� Reduce internal fragmentation: many objects in one
page

� Fast

� Disadvantages
� Memory overhead for bookkeeping
� Internal fragmentation for general-purpose slab
allocator

