
W4118 Operating Systems

Instructor: Junfeng Yang

Background: memory hierarchy

� Levels of memory in computer system

cache

registers

size speed

cost

a few cycles

< 1 cycle

1

disk

memory

cache

<100 ns

a few cycles

a few ms

Virtual memory motivation

� Previous approach to memory management
� Must completely load user process in memory
� One large AS or too many AS � out of memory

� Observation: locality of reference
� Temporal: access memory location accessed just now
� Spatial: access memory location adjacent to locations

2

� Spatial: access memory location adjacent to locations
accessed just now

� Implication: process only needs a small part of address
space at any moment!

Virtual memory idea

� OS and hardware produce illusion of a disk as
fast as main memory

� Process runs when not all pages are loaded in
memory

Only keep referenced pages in main memory

3

� Only keep referenced pages in main memory

� Keep unreferenced pages on slower, cheaper backing
store (disk)

� Bring pages from disk to memory when necessary

Virtual memory illustration

4

Virtual memory operations

� Detect reference to page on disk

� Recognize disk location of page

� Choose free physical page
� OS decision: if no free page is available, must � OS decision: if no free page is available, must

replace a physical page

� Bring page from disk into memory
� OS decision: when to bring page into memory?

� Above steps need hardware and software
cooperation

5

Detect reference to page on disk and
recognize disk location of page

� Overload the valid bit of page table entries

� If a page is on disk, clear valid bit in
corresponding page table entry and store disk
location using remaining bits

� Page fault: if bit is cleared then referencing
resulting in a trap into OS

� In OS page fault handler, check page table
entry to detect if page fault is caused by
reference to true invalid page or page on disk

6

Steps in handling a page fault

7

OS decisions

� Page selection
� When to bring pages from disk to memory?

� Page replacement
� When no free pages available, must select victim

page in memory and throw it out to disk

8

page in memory and throw it out to disk

Page selection algorithms

� Demand paging: load page on page fault
� Start up process with no pages loaded
� Wait until a page absolutely must be in memory

� Request paging: user specifies which pages are
needed

Requires users to manage memory by hand

9

� Requires users to manage memory by hand
� Users do not always know best
� OS trusts users (e.g., one user can use up all memory)

� Prepaging: load page before it is referenced
� When one page is referenced, bring in next one
� Do not work well for all workloads

• Difficult to predict future

Page replacement algorithms

� Optimal: throw out page that won’t be used for
longest time in future

� Random: throw out a random page

� FIFO: throw out page that was loaded in first

10

� FIFO: throw out page that was loaded in first

� LRU: throw out page that hasn’t been used in
longest time

10

Evaluating page replacement algorithms

� Goal: fewest number of page faults

� A method: run algorithm on a particular string
of memory references (reference string) and
computing the number of page faults on that
stringstring

� In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

11

Optimal algorithm

� Throw out page that won’t be used for longest
time in future

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 1 1 1 1 4 41 1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

5

1

2

3

5

1

2

3

5

1

2

3

5

4

2

3

5

4

2

3

5

6 page faults

Problem: difficult to predict future!

12

Fist-In-First-Out (FIFO) algorithm

� Throw out page that was loaded in first

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 5 5 5 5 4 41 1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

5

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

4

1

2

3

4

5

2

3

10 page faults

Problem: ignores access patterns

13

Fist-In-First-Out (FIFO) algorithm
(cont.)

� Results with 3 physical pages

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5 5 5 51 1

2

1

2

3

4

2

3

4

1

3

4

1

2

5

1

2

5

1

2

5

1

2

5

3

2

5

3

4

5

3

4

9 page faults

Problem: fewer physical pages � fewer faults!

belady anomaly
14

Ideal curve of # of page faults v.s. # of
physical pages

15

FIFO illustrating belady’s anomaly

16

Least-Recently-Used (LRU) algorithm

� Throw out page that hasn’t been used in
longest time. Can use FIFO to break ties

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 1 1 1 1 1 51 1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

5

4

1

2

5

4

1

2

5

4

1

2

5

3

1

2

4

3

5

2

4

3

8 page faults

Advantage: with locality, LRU approximates Optimal

17

Implementing LRU: hardware

� A counter for each page

� Every time page is referenced, save system
clock into the counter of the page

� Page replacement: scan through pages to find � Page replacement: scan through pages to find
the one with the oldest clock

� Problem: have to search all pages/counters!

18

Implementing LRU: software

� A doubly linked list of pages

� Every time page is referenced, move it to the
front of the list

� Page replacement: remove the page from back

19

� Page replacement: remove the page from back
of list
� Avoid scanning of all pages

� Problem: too expensive
� Requires 6 pointer updates for each page reference

� High contention on multiprocessor

LRU: concept vs. reality

� LRU is considered to be a reasonably good
algorithm

� Problem is in implementing it efficiently
� Hardware implementation: counter per page, copied per
memory reference, have to search pages on page

20

memory reference, have to search pages on page
replacement to find oldest

� Software implementation: no search, but pointer swap on
each memory reference, high contention

� In practice, settle for efficient approximate LRU
� Find an old page, but not necessarily the oldest

� LRU is approximation anyway, so approximate more

Clock (second-chance) algorithm

� Goal: remove a page that has not been
referenced recently
� good LRU-approximate algorithm

� Idea
A reference bit per page� A reference bit per page

� Memory reference: hardware sets bit to 1

� Page replacement: OS finds a page with reference
bit cleared

� OS traverses all pages, clearing bits over time

� Combining FIFO with LRU: give the page FIFO
selects to replace a second chance

21

Clock algorithm implementation

� OS circulates through pages, clearing
reference bits and finding a page with
reference bit set to 0

� Keep pages in a circular list = clock

� Pointer to next victim = clock hand

22

A single step in Clock algorithm

23

Clock algorithm example

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 1 1 1 1 1 1 5 1 5 1 5 1 5 1 4 1 4 1

10 page faults

Advantage: simple to implemet!

1 1 1

2

1

1

1

2

3

1

1

1

1

2

3

4

1

1

1

1

1

2

3

4

1

1

1

1

1

2

3

4

1

1

1

1

5

2

3

4

1

0

0

0

5

1

3

4

1

1

0

0

5

1

2

4

1

1

1

0

5

1

2

3

1

1

1

1

4

1

2

3

1

0

0

0

4

5

2

3

1

1

0

0

24

Clock algorithm extension

� Problem of clock algorithm: does not
differentiate dirty v.s. clean pages

� Dirty page: pages that have been modified and
need to be written back to disk

25

need to be written back to disk
� More expensive to replace dirty pages than clean

pages

� One extra disk write (5 ms)

Clock algorithm extension (cont.)

� Use dirty bit to give preference to dirty pages

� On page reference
� Read: hardware sets reference bit
� Write: hardware sets dirty bit

� Page replacement� Page replacement
� reference = 0, dirty = 0 � victim page
� reference = 0, dirty = 1 � skip (don’t change)
� reference = 1, dirty = 0 � reference = 0, dirty = 0
� reference = 1, dirty = 1 � reference = 0, dirty = 1
� advance hand, repeat
� If no victim page found, run swap daemon to flush

unreferenced dirty pages to the disk, repeat

26

Summary of page replacement algorithms

� Optimal: throw out page that won’t be used for longest time
in future
� Best algorithm if we can predict future
� Good for comparison, but not practical

� Random: throw out a random page
� Easy to implement
� Works surprisingly well. Why? Avoid worst case

27

� Works surprisingly well. Why? Avoid worst case

� Random
� FIFO: throw out page that was loaded in first

� Easy to implement

� Fair: all pages receive equal residency
� Ignore access pattern

� LRU: throw out page that hasn’t been used in longest time
� Past predicts future
� With locality: approximates Optimal
� Simple approximate LRU algorithms exist (Clock)

Current trends in memory management

� Less critical now
� Personal computer v.s. time-sharing machines
� Memory is cheap � Larger physical memory

� Virtual to physical translation is still useful
� “All problems in computer science can be solved using
another level of indirection” David Wheeler

� Larger page sizes (even multiple page sizes)� Larger page sizes (even multiple page sizes)
� Better TLB coverage
� Smaller page tables, less page to manage
� Internal fragmentation

� Larger virtual address space
� 64-bit address space
� Sparse address spaces

� File I/O using the virtual memory system
� Memory mapped I/O: mmap()

28

