
W4118 Operating Systems

Instructor: Junfeng Yang

Outline

� Paging
� Overview

� Page translation

� Page allocation

� Page protection

� Translation Look-aside Buffers (TLB)

� Page sharing

� Page table structure

� Combining paging with segmentation

1

Paging overview

� Goal
� Eliminate external fragmentation
� Don’t allocate memory that will not be used
� Enable sharing

� Paging: divide memory into fixed-sized pages� Paging: divide memory into fixed-sized pages
� Both virtual and physical memory are composed of
pages

� Another terminology
� A virtual page: page
� A physical page: frame

2

Page translation

� Address bits = page number + page offset

� Translate virtual page number (vpn) to physical
page number (ppn) using page table

pa = page_table[va/pg_sz] + va%pg_sz

3

CPU vpn off ppn off

Page table

ppnvpn

Memory

ppn

Page translation example

Page 0

Page 1

Page 2

Page 3

Page 0

Page 2

0

1

2

1

4

3

4

Page 3 Page 2

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

2

3

3

7

Page translation exercise

� 8-bit virtual address, 10-bit physical address,
and each page is 64 bytes
� How many virtual pages?

� How many physical pages?

� How many entries in page table?

Given page table = [2, 5, 1, 8], what’s the physical � Given page table = [2, 5, 1, 8], what’s the physical
address for virtual address 241?

� m-bit virtual address, n-bit physical address,
k-bit page size
� What are the answers to the above questions?

5

Page protection

� Implemented by associating protection bits
with each virtual page in page table

� Protection bits
� valid bit: map to a valid physical page?

read/write/execute bits: can read/write/execute?� read/write/execute bits: can read/write/execute?

� Checked by MMU on each memory access

6

Page protection example

Page 0

Page 1

Page 3

Page 00

1

2

1

4

3

1110

0000

vrwe

1100

7

Page 3

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

2

3

3

7 1111

Page allocation

� Free page management
� E.g., can put page on a free list

� Allocation policy
� E.g., one page at a time, from
head of free list

free_page_list

Page 0

head of free list

8

Page 1

Page 3

2, 3, 6, 5, 0

Implementation of page table

� Page table is stored in memory
� Page table base register (PTBR) points to the base
of page table

� OS stores the value of this register in process
control block (PCB)

� OS switches PTBR on each context switch� OS switches PTBR on each context switch

� Problem: each data/instruction access requires
two memory accesses
� Extra memory access for page table

9

Avoiding extra memory access

� Fast-lookup hardware cache called
associative memory or translation look-
aside buffers (TLBs)

� Fast parallel search (CPU speed)� Fast parallel search (CPU speed)

� Small

10

VPN PPN

Paging hardware with TLB

11

TLB Miss

� Can be handled in hardware and software

� Hardware (CISC: x86)
� Pros: hardware doesn’t have to trust OS !

� Cons: complexity

� Software (RISC: MIPS, SPARC)
� Pros: flexibility

� Cons: code may have bug

� Question: what can’t a TLB miss handler do?

12

TLB and context switches

� What happens to TLB on context switches?

� Option 1: flush entire TLB
� x86

Option 2: attach process ID to TLB entries� Option 2: attach process ID to TLB entries
� ASID: Address Space Identifier

� MIPS, SPARC

13

Effective access time

� Associative Lookup = ε time unit
� Assume memory cycle time is 1 ms
� Hit ratio – α

� Percentage of times that a page number is
found in the associative registers; ratio
related to number of associative registersrelated to number of associative registers

� Effective Access Time (EAT)
EAT = (1 + ε) α + (2 + ε)(1 – α)

= α + εα + 2 + ε - εα - 2α
= 2 + ε – α

14

Motivation for page sharing

� Efficient communication. Processes
communicate by write to shared pages

� Memory efficiency. One copy of read-only
code/data shared among processescode/data shared among processes
� Example 1: multiple instances of the shell program

� Example 2: parent and forked child share AS

15

Page sharing example

16

Page table size issues

� Given:
� A 32 bit address space (4 GB)
� 4 KB pages
� A page table entry of 4 bytes

� Implication: page table is 4 MB per process!� Implication: page table is 4 MB per process!

� Observation: address space are often sparse
� Few programs use all of 2^32 bytes

� Change page table structures to save memory
� Trade translation time for page table space

17

Page table structures

� Hierarchical paging

� Hashed page tables

� Inverted page tables� Inverted page tables

18

Hierarchical page table

� Break up virtual address space into multiple
page tables at different levels

19

Two-level paging example

� 32-bit address space, 4 KB page
� 4KB page � 12 bits for page offset

� How many bits for 2nd-level page table?
� Desirable to fit a 2nd-level page table in one page

4KB/4B = 1024 10 bits for 2nd-level page table � 4KB/4B = 1024 � 10 bits for 2nd-level page table

� Address bits for top-level page table: 32 – 12
– 12 = 10

20

page number page offset

pi p2 d

121010

Address-translation scheme

21

Hashed page table

� Common in address spaces > 32 bits

� Page table contains a chain of elements
hashing to the same location

� On page translation� On page translation
� Hash virtual page number into page table

� Search chain for a match on virtual page number

22

Hashed page table example

23

Inverted page table

� One entry for each real page of memory
� Entry consists of the virtual address of the page
stored in that real memory location, with
information about the process that owns that page

� Can use hash table to limit the search to one � Can use hash table to limit the search to one
or at most a few page-table entries

24

Inverted page table example

25

Combine paging and segmentation

� Structure
� Segments: logical units in program, such as code, data,
and stack

• Size varies; can be large

� Each segment contains one or more pages
• Pages have fixed size

26

� Two levels of mapping to reduce page table size
� Page table for each segment
� Base and limit for each page table
� Similar to multi-level page table

� Logical address divided into three portions

seg # page # offset

