
W4118 Operating Systems 

Instructor: Junfeng Yang



Outline

� Dynamic memory allocation
� Stack

� Heap
• Heap allocation strategies

Intro to memory management� Intro to memory management

1



Dynamic memory allocation

� Static (compile time) allocation is not possible 
for all data

� Two ways of dynamic allocation
� Stack allocation� Stack allocation

• Restricted, but simple and efficient

� Heap allocation
• More general, but less efficient

• More difficult to implement

2



Stack organization

� Memory is freed in opposite order from 
allocation.  Last in First out (LIFO)

� When useful?
� Memory usage pattern follows LIFO

• E.g., function call frames• E.g., function call frames

� Implementation
� Pointer separating allocated and free space

� Allocate: increment pointer

� Free: decrement pointer

3



Pros and cons of stack organization

� Pros
� Simple and efficient

� Keeps all free space continuous

� Cons� Cons
� Not for general data structures

4



Heap organization

� Allocate from random locations
� Memory consists of allocated area and free area (or 
holes)

� When useful?
Allocate and free are unpredictable� Allocate and free are unpredictable

� Complex data structures
• new in C++, malloc in C, kmalloc in Linux kernel

5



Pros and cons of heap organization

� Pros
� General, works on arbitrary allocation and free 
patterns

� Cons
� End up with small chunks of free space

6



Dynamic allocation issue: fragmentation

� Small trunks of free memory, too small for 
future allocation requests
� External fragment:  visible to system

� Internal fragment: visible to process (e.g. if allocate 
at some granularity)

� Goal
� Reduce number of holes

� Keep holes large

� Stack fragmentation v.s. heap fragmentation

7



Heap implementation

� Data structure: linked list of free blocks
� free list: chains free blocks together

� Allocation
� Choose block large enough for request

Update free list� Update free list

� Free
� Add block back to list

� Merge adjacent free blocks

8



Heap allocation strategies

� Best fit
� Search the whole list on each allocation

� Choose the smallest block that can satisfy request

� Can stop search if exact match found

First fit� First fit
� Choose first block that can satisfy request

� Worst fit
� Choose largest block (most leftover space)

Which is better?

9



Example

� Free space: 2 blocks, size 20 and 15

� Workload 1: allocation requests: 10 then 20

Best fit

First fit Request of 20: fail!

� Workload 2: allocation requests: 8, 12, then 13

10

Worse fit

Best fit

First fit

Worse fit

Request of 13: fail!

Request of 20: fail!

Request of 13: fail!



Comparison of allocation strategies

� Best fit
� Tends to leave very large holes and very small holes

� Disadvantage: very small holes may be useless

� First fit:
Tends to leave “average” size holes� Tends to leave “average” size holes

� Advantage: faster than best fit

� Worst fit:
� Simulation shows that worst fit is worst in terms of 
storage utilization

11



Outline

� Dynamic memory allocation
� Stack

� Heap
• Heap allocation strategies

Intro to memory management� Intro to memory management

12



Motivation for memory anagement

� Simple uniprogramming with a single segment 
per process

� Uniprogramming disadvantages
� Only one process can run a time

OS

� Only one process can run a time

� Process can destroy OS

� Want multiprogramming!

13

User 
Process



Multiple address spaces co-exist

AS1

max

max

0

AS2

AS3

14

Logical view Physical view

max

0

0



Multiprogramming wish-list

� Sharing
� multiple processes coexist in main memory

� Transparency
� Processes are not aware that memory is shared
� Run regardless of number/locations of other processes

� Protection
� Cannot access data of OS or other processes

� Efficiency: should have reasonable performance
� Purpose of sharing is to increase efficiency
� Do not waste CPU or memory resources

15



Memory translation and  protection

CPU MMU MEMORY

Virtual Addresses

Physical Addresses

� Map program-generated address (virtual 
address) to hardware address (physical 
address) dynamically at every reference
� MMU: Memory Management Unit

� Controlled by OS

16

Physical Addresses



Simple implementation of memory 
translation and protection

� Compare logical address to limit register
� If greater, generate exception

� Add base register to logical address to 
generate physical address

17

baselimit

<= limit? +Virtual 
Address

Physical 
Address

Exception

no

yes



Managing processes with base and limit

� Does base contain logical or physical address?

� How to relocate process?

� Are base and limit registers per-process or 
global?global?

� What to do on a context switch?

� Can user processes modify base and limit
registers?

18



Pros and cons of base and limit

� Advantages
� Supports dynamic relocation of address space

� Supports protection across multiple spaces

� Cheap: few registers and little logic

� Fast: add and compare can be done in parallel

� Disadvantages
� Process must be allocated contiguously

� May allocate memory not used

� Cannot share limited parts of address space

19


