
W4118 Operating Systems

Instructor: Junfeng Yang

Outline

� Advanced scheduling issues
� Multilevel queue scheduling

� Multiprocessor scheduling issues

� Real-time scheduling

� Scheduling in Linux
� Scheduling algorithm

� Setting priorities and time slices

� Other implementation issues

1

Motivation

� No one-size-fits-all scheduler
� Different workloads

� Different environment

� Building a general scheduler that works well
for all is difficult!

� Real scheduling algorithms are often more
complex than the simple scheduling algorithms
we’ve seen

Combining scheduling algorithms

� Multilevel queue scheduling: ready queue is
partitioned into multiple queues

� Each queue has its own scheduling algorithm
� Foreground processes: RR

� Background processes: FCFS

� Must choose scheduling algorithm to schedule
between queues. Possible algorithms
� RR between queues

� Fixed priority for each queue

Outline

� Advanced scheduling issues
� Multilevel queue scheduling

� Multiprocessor scheduling issues

� Real-time scheduling

� Scheduling in Linux
� Scheduling algorithm

� Setting priorities and time slices

� Other implementation issues

4

Multiprocessor scheduling issues

� Shared-memory Multiprocessor

� How to allocate processes to CPU?

CPU0 CPU1 CPU2 CPU3

processes

5

Symmetric multiprocessor

� Architecture

� Small number of CPUs

� Same access time to main memory

� Private cache

CPU0 CPU1 CPU2 CPU3

Shared Memory

$ $ $ $

6

Global queue of processes

� One ready queue shared across all CPUs

� Advantages
� Good CPU utilization
� Fair to all processes

� Disadvantages
� Not scalable (contention for global queue lock)
� Poor cache locality

� Linux 2.4 uses global queue

CPU0 CPU1 CPU2 CPU3

7

Per-CPU queue of processes

� Static partition of processes to CPUs

� Advantages
� Easy to implement
� Scalable (no contention on ready queue)
� Better cache locality

� Disadvantages
� Load-imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilization

CPU0 CPU1 CPU2 CPU3

8

Hybrid approach

� Use both global and per-CPU queues

� Balance jobs across queues

� Processor Affinity
� Add process to a CPU’s queue if recently run on the CPU

• Cache state may still present

� Linux 2.6 uses a very similar approach

CPU0 CPU1 CPU2 CPU3

9

SMP: “gang” scheduling

� Multiple processes need coordination
� Should be scheduled simultaneously

� Scheduler on each CPU does not act independently
� Coscheduling (gang scheduling): run a set of processes
simultaneously

� Global context-switch across all CPUs

CPU0 CPU1 CPU2 CPU3

10

Outline

� Advanced scheduling issues
� Multilevel queue scheduling

� Multiprocessor scheduling issues

� Real-time scheduling

� Scheduling in Linux
� Scheduling algorithm

� Setting priorities and time slices

� Other implementation issues

11

Real-time scheduling

� Real-time processes have timing constraints
� Expressed as deadlines or rate requirements

� E.g. gaming, video/music player, autopilot…

� Hard real-time systems – required to complete a
critical task within a guaranteed amount of time

� Soft real-time computing – requires that critical
processes receive priority over less fortunate
ones

� Linux supports soft real-time

12

Outline

� Advanced scheduling issues
� Multilevel queue scheduling

� Multiprocessor scheduling issues

� Real-time scheduling

� Scheduling in Linux
� Scheduling algorithm

� Setting priorities and time slices

� Other implementation issues

13

Linux scheduling goals

� Avoid starvation

� Boost interactivity
� Fast response to user despite high load
� Achieved by inferring interactive processes and dynamically

increasing their priorities

� Scale well with number of processes
� O(1) scheduling overhead

� SMP goals
� Scale well with number of processors
� Load balance: no CPU should be idle if there is work
� CPU affinity: no random bouncing of processes

� Reference: Documentation/sched-design.txt

14

Algorithm overview

� Multilevel Queue Scheduler
� Each queue associated with a priority

� A process’s priority may be adjusted dynamically

� Two classes of processes
� Real-time processes: always schedule highest priority
processes

• FCFS (SCHED_FIFO) or RR (SCHED_RR) for processes
with same priority

� Normal processes: priority with aging

• RR for processes with same priority (SCHED_NORMAL)

• Aging is implemented efficiently

15

Priority partition

� Total 140 priorities [0, 140)
� Smaller integer = higher priority

� Real-time: [0,100)

� Normal: [100, 140)

� MAX_PRIO and MAX_RT_PRIO
� include/linux/sched.h

16

runqueue data structure

� kernel/sched.c

� struct prio_array

� Array of priority queues

� struct runqueue

� Two arrays, active and expired

17

Scheduling algorithm

1. Find highest priority non-empty queue in rq-
>active; if none, simulate aging by swapping
active and expired

2. next = first process on that queue

3. Adjust next’s priority

4. Context switch to next

5. When next used up its time slice, insert next
to the right queue and call schedule again

schedule() in kernel/sched.c

18

19

Aging: the traditional algorithm

for(pp = proc; pp < proc+NPROC; pp++) {

if (pp->prio != MAX)

pp->prio++;

if (pp->prio > curproc->prio)

reschedule();

}

Problem: O(N). Every process is examined on
each schedule() call!

This code is taken almost verbatim from 6th

Edition Unix, circa 1976.)

Simulate aging

� Swapping active and expired gives low priority
processes a chance to run

� Advantage: O(1)
� Processes are touched only when they start or
stop running

� schedule() in kernel/sched.c

20

Find highest priority non-empty queue

� Use the bitmap field of struct runqueue
� 140 queues � 5 integers

� Time complexity: O(1)
� depends on the number of priority levels, not the
number of processes

� Implementation: only a few compares to find
the first that is non-zero
� Hardware instruction to find the first 1-bit

• bsfl on Intel

� sched_find_first_bit() in include/asm-
i386/bitops.h

21

Outline

� Advanced scheduling issues
� Multilevel queue scheduling

� Multiprocessor scheduling issues

� Real-time scheduling

� Scheduling in Linux
� Scheduling algorithm

� Setting priorities and time slices

� Other implementation issues

22

Priority related fields in struct task_struct

� static_prio: static priority set by
administrator/users
� Default: 120 (even for realtime processes)
� Set use sys_nice() or sys_setpriority()

• Both call set_user_nice()

� prio: dynamic priority
� Index to prio_array

� rt_priority: real time priority
� prio = 99 – rt_priority

� include/linux/sched.h

23

Adjusting priority

� Goal: dynamically increase priority of interactive
process

� How to determine interactive?
� Sleep ratio
� Mostly sleeping: I/O bound
� Mostly running: CPU bound

� Implementation: sleep_avg in struct task_struct
� Before switching out a process, subtract from sleep_avg
how many ticks a task ran, in schedule()

� Before switching in a process, add to sleep_avg how many
ticks it was blocked up to MAX_SLEEP_AVG (10 ms), in
schedule()� recalc_task_prio()� effective_prio()

24

Calculating time slices

� Stored in field time_slice in struct task_struct

� Higher priority processes also get bigger time-slice

� task_timeslice() in sched.c
� If (static_priority < 120) time_slice = (140-static_priority) *
20

� If (static_priority >= 120) time_slice = (140-static_priority)
* 5

25

Example time slices

Priority: Static Pri Niceness Quantum

Highest 100 -20 800 ms

High 110 -10 600 ms

Normal 120 0 100 ms

Low 130 10 50 ms

Lowest 139 20 5 ms

26

Outline

� Advanced scheduling issues
� Multilevel queue scheduling

� Multiprocessor scheduling issues

� Real-time scheduling

� Scheduling in Linux
� Scheduling algorithm

� Setting priorities and time slices

� Other implementation issues

27

Bookkeeping on each timer interrupt

� scheduler_tick()
� Called on each tick

• timer_interrupt � do_timer_interrupt � do_timer_interrupt_hook
� update_process_times

� If realtime and SCHED_FIFO, do nothing
� SCHED_FIFO is non-preemptive

� If realtime and SCHED_RR and used up time slice, move to
end of rq->active[prio]

� If SCHED_NORMAL and used up time slice
� If not interactive or starving expired queue, move to end of rq-

>expired[prio]

� Otherwise, move to end of rq->active[prio]
• Boost interactive

� Else // SCHED_NORMAL, and not used up time slice
� Break large time slice into pieces
TIMESLICE_GRANULARITY

Real-time scheduling

� Linux has soft real-time scheduling
� No hard real-time guarantees

� All real-time processes are higher priority
than any conventional processes

� Processes with priorities [0, 99] are real-time
� saved in rt_priority in the task_struct

� scheduling priority of a real time task is: 99 -
rt_priority

� Process can be converted to real-time via
sched_setscheduler system call

29

Real-time policies

� First-in, first-out: SCHED_FIFO
� Static priority

� Process is only preempted for a higher-priority
process

� No time quanta; it runs until it blocks or yields
voluntarily

� RR within same priority level

� Round-robin: SCHED_RR
� As above but with a time quanta

� Normal processes have SCHED_NORMAL
scheduling policy

30

Multiprocessor scheduling

� Per-CPU runqueue

� Possible for one processor to be idle while
others have jobs waiting in their run queues

� Periodically, rebalance runqueues
� Migration threads move processes from one runque
to another

� The kernel always locks runqueues in the same
order for deadlock prevention

31

Processor affinity

� Each process has a bitmask saying what CPUs
it can run on
� By default, all CPUs

� Processes can change the mask

� Inherited by child processes (and threads), thus
tending to keep them on the same CPU

� Rebalancing does not override affinity

32

