
W4118 Operating Systems

Instructor: Junfeng Yang

Goals

� Identify patterns of concurrency errors (so
you can avoid them in your code)

� Learn techniques to detect concurrency errors
(so you can apply these techniques to your (so you can apply these techniques to your
code)

1

Outline

� Concurrency error patterns

� Concurrency error detection
� Deadlock detection

� Data race detection

2

Concurrency error classification

� Deadlock: a situation wherein two or more
processes are never able to proceed because
each is waiting for the others to do something
� Key: circular wait

Race condition: a timing dependent error � Race condition: a timing dependent error
involving shared state
� Data race: concurrent accesses to a shared variable

and at least one access is a write

� Atomicity bugs: code does not enforce the atomicity
programmers intended for a group of memory accesses

� Order bugs: code does not enforce the order
programmers intended for a group of memory accesses

3

Synchronization is hard. Why?

� Complex interactions: too many thread
schedule (exponential to program size)

� Global complexity, can’t divide-and-conquer
� Synchronization cross-cuts abstraction boundaries

Local correctness may not yield global correctness. � Local correctness may not yield global correctness.
i.e., properly synchronized modules don’t compose

� We’ll see a few error examples next

4

Example 1: good + bad � bad

withdraw() // no synchronization

-- *balance;

deposit() // properly sycnrhonized
lock();
++ balance;
unlock();

� Result: race between deposit() and withdraw()

5

Example 2: good + good � bad

int sum(Account *a1, Account *a2)
{

return balance(a1) + balance(a2)

int balance(Account *acnt)
{

int b;

void withdraw(Account *acnt)
{

lock(acnt->guard);
-- acnt->balance;
unlock(acnt->guard);

}

void deposit(Account *acnt)
{

lock(acnt->guard);
++ acnt->balance;
unlock(acnt->guard);

}

� Compose single-account operations to operations on two accounts
� deposit(), withdraw() and balance() are properly synchronized
� sum() and transfer()? Race

return balance(a1) + balance(a2)
}
void transfer(Account *a1, Account *a2)
{

withdraw(a1);
deposit(a2);

}

int b;
lock(acnt->guard);
b = acnt->balance;
unlock(acnt->guard);
return b;

}

6

Example 3: good + good � deadlock

int sum(Account *a1, Account *a2)
{

int s;
lock(a1->guard);
lock(a2->guard);
s = a1->balance;
s += a2->balance;
unlock(a2->guard);
unlock(a1->guard);

T1:
sum(a1, a2)

T2:
sum(a2, a1)

� 2nd attempt: use locks in sum()

� One sum() call, correct

� Two concurrent sum() calls? Deadlock

unlock(a1->guard);
return s

}

7

Example 4: monitors don’t compose as well

Monitor M1 {
cond_t cv;
foo() {

// releases monitor lock
wait(cv);

}
bar() {

Monitor M2 {
f1() {M1.foo();}
f2() {M1.bar();}

};’

� Usually bad to hold lock (in this case Monitor
lock) across abstraction boundary

bar() {
signal(cv);

}
};’

T1:
M2.f1();

T2:
M2.f2();

8

Outline

� Concurrency error patterns

� Concurrency error detection
� Deadlock detection

� Data race detection

9

Deadlock detection

� Root cause of deadlock: circular wait

� Detecting deadlock manually: system halts
� Can run debugger and see the wait cycle

Detecting deadlock automatically: resource � Detecting deadlock automatically: resource
allocation graph

� Detecting potential deadlocks automatically:
lock order

10

Resource allocation graph

� Nodes
� Locks (resources)
� Threads (processes)

� Edges
� Assignment edge: lock->thread

• Removed on unlock()

a1->guard

T1:
sum(a1,a2)

T2:
sum(a2,a1)

• Removed on unlock()

� Request edge: thread->lock
• Converted to assignment edges on

lock() return

� Cycles � deadlock

� Problem: can we detect potential
deadlocks before we run into
them?

a2->guard

Resource allocation graph for
example 3 deadlock

11

Detecting potential deadlocks

� Can deduce lock order: the order in which
locks are acquired
� For each lock acquired, order with locks held

� Cycles in lock order � potential deadlock

T1:
sum(a1, a2) // locks held

T2:
sum(a1, a2) // locks held

a1->guard

a2->guard

sum(a1, a2) // locks held
lock(a1->guard) // {}
lock(a2->guard) // {a1->guard}

sum(a1, a2) // locks held

lock(a2->guard) // {}
lock(a1->guard) // {a2->guard}

Cycle � Potential deadlock!

12

Outline

� Concurrency error patterns

� Concurrency error detection
� Deadlock detection

� Data race detection

13

Race detection

� We will look at only data race detection
� Techniques exist to detect atomicity and order
bugs, but we won’t discuss them in this class

� Two approaches to data race detection� Two approaches to data race detection
� Happens-before

� Lockset (Eraser’s algorithm)

14

Happens-before definition

� Event A happens-before event B if
� B follows A in the same thread

� A inT1, and B inT2, and a synchronization event C
such that
• A happens in T1

• C is after A in T1 and before B in T2• C is after A in T1 and before B in T2

• B in T2

15

Happens-before race detection

� Tools before eraser are based on happens-
before

� Sketch
� Monitor all data accesses and synch operations

Watch for� Watch for
• Access of v in thread T1

• Access of v in thread T2

• No synchronization operation between the accesses

• One of the accesses is write

16

Problems with happens-before

� Problem I: expensive
� Requires per thread

• List of accesses to shared data

• List of synch operations

Problem II: false negatives� Problem II: false negatives
� Happens-before looks for actual
data races (moment in time when
multiple threads access shared
data w/o synchronization)

� Ignores programmer intention;
the synchronization op between
accesses may happen to be there

T1:

++ y
lock(m)
unlock(m)

T2:

lock(m);
unlock(m);
++ y;

17

Eraser: a different approach

� Idea: check invariants
� Violations of invariants � likely data races

� Invariant: the locking discipline
� Assume: accesses to shared variables are protected
by locksby locks

� Every access is protected by at least one lock
� Any access unprotected by a lock � an error

� Problem: how to find out what lock protects a
variable?
� Linkage between locks and variables undeclared

18

Lockset algorithm: infer the locks

� Intuition: it must be one of the locks held at
the time of access

� C(v): a set of candidate locks for protecting v

� Initialize C(v) to the set of all locksInitialize C(v) to the set of all locks

� On access to v by thread t, refine C(v)
� C(v) = C(v) ^ locks_held(t)

� If C(v) = {}, report error

� Question: is locks_held(t) per thread?

� Sounds good! But …

19

Implementing eraser

� Binary tool
� Pros: does not require source
� Cons: lose source semantics

• Track memory access at word granularity

� How to monitor memory access?
Binary instrumentation� Binary instrumentation

� How to track lockset efficiently?
� A shadow word for each memory word
� Each shadow word stores a lockset index
� A table maps lockset index to a set of locks
� Assumption: not many distinct locksets

20

Results

� Eraser works
� Find bugs in mature software
� Though many limitations

• Major: benign races (intended races)

� However, slow
� Monitoring each memory access: costly, 10-30X slowdown� Monitoring each memory access: costly, 10-30X slowdown
� Can be made faster

• With static analysis
• Smarter instrumentation

� Lockset algorithm is influential, used by many tools
� E.g. Helgrind (a race detection tool in Valgrind)

21

Backup slidesBackup slides

22

Problems w/ simple lockset algorithm

� Initialization
� When shared data is first created and initialized

� Read-shared data
� Shared data is only read (once initialized)

� Read/write lock
� We’ve seen it last week

� Locks can be held in either write mode or read mode

23

Initialization

� When shared data first created, only one
thread can see it � locking unnecessary with
only one thread

� Solution: do not refine C(v) until the creator
thread finishes initialization and makes the thread finishes initialization and makes the
shared data accessible by other threads

� How do we know when initialization is done?
� We don’t …
� Approximate with when a second thread accesses
the shared data

24

Read-shared data

� Some data is only read (once initialized) �
locking unnecessary with read-only data

� Solution: refine C(v), but don’t report warnings
� Question: why refine C(v) in case of read?

To catch the case when� To catch the case when
• C(v) is {} for shared read

• A thread writes to v

25

State transitions

� Each shared data value (memory location) is in
one of the four states

Virgin

write, first thread

Exclusive

Shared/

Modified
Shared

write, first thread

Read, new
thread

write, new thread

write

Refine
C(v) and
check

Refine C(v),
no check

26

Read-write locks

� Read-write locks allow a single writer and
multiple readers

� Locks can be held in read mode and write mode
� read_lock(m); read v; read_unlock(m)

write_lock(m); write v; write_unlock(m)� write_lock(m); write v; write_unlock(m)

� Locking discipline
� Lock can be held in some mode (read or write) for
read access

� Lock must be held in write mode for write access
• A write access with lock held in read mode � error

27

Handling read-write locks

� Idea: distinguish read and write access when
refining lockset

� On each read of v by thread t (same as
before)before)
� C(v) = C(v) ^ locks_held(t)

� If C(v) = {}, report error

� On each write of v by thread t
� C(v) = C(v) ^ write_locks_held(t)

� If C(v) = {}, report error

28

