W4118 Operating Systems

Instructor: Junfeng Yang

Goals

a Identify patterns of concurrency errors (so
you can avoid them in your code)

Q Learn techniques to detect concurrency errors
(so you can apply these techniques to your
code)

Outline

Q Concurrency error patterns

a Concurrency error detection
= Deadlock detection
» Data race detection

Concurrency error classification

a Deadlock: a situation wherein two or more
processes are never able to proceed because
each is waiting for the others to do something

= Key: circular wait

Q Race condition: a timing dependent error
involving shared state

-« Data race: concurrent accesses to a shared variable
and at least one access is a write

= Atomicity bugs: code does not enforce the atomicity
programmers intended for a group of memory accesses

= Order bugs: code does not enforce the order
programmers intended for a group of memory accesses

3

Synchronization is hard. Why?

a Complex interactions: foo many thread
schedule (exponential to program size)

Q Global complexity, can't divide-and-conquer
» Synchronization cross-cuts abstraction boundaries

« Local correctness may not yield global correctness.
i.e., properly synchronized modules don't compose

a0 We'll see a few error examples next

Example 1: good + bad = bad

deposit() // properly sycnrhonized withdraw() // no synchronization
lock();
++ balance; -- *balance;
unlock();

0 Result: race between deposit() and withdraw()

Example 2: good + good = bad

void deposit(Account *acnt) void withdraw(Account *acnt)
{ {

lock(acnt->qguard); lock(acnt->guard);

++ acnt->balance; -- acnt->balance;

unlock(acnt->guard); unlock(acnt->guard);
))

i b S b S

int balance(Account *acnt) |{nt sum(Account *al, Account *a2)
{

: return balance(al) + balance(a2)
int b;)

lock(acnt->quard);

b = acnt->balance;
unlock(acnt->guard);
return b;

/)
0 Compose single-account operations to operations on two accounts

deposit(), withdraw() and balance() are properly synchronized
sum() and transfer()? Race

void transfer(Account *al, Account *a2)

{
withdraw(al);

deposit(a2);

Example 3: good + good = deadlock

int sum(Account *al, Account *a2)
{
int s;
lock(al->guard);
lock(a2->guard);
s = al->balance; T1: T2:
S += a2->balance; sum(al, a2) sum(az, al)
unlock(a2->guard);
unlock(al->guard);
return s

¥

0 2" attempt: use locks in sum()
a One sum() call, correct
a Two concurrent sum() calls? Deadlock

Example 4: monitors don't compose as well

Monitor M1 {
cond_t cv; Monitor M2 {
foo() { f1() {M1.foo();}
/| releases monitor lock 12() {M1.bar();}
wait(cv); ¥
y
bar() {
signal(cv); T1: T2:
) M2.f1(); M2.f2();
3

0 Usually bad to hold lock (in this case Monitor
lock) across abstraction boundary

Outline

Q Concurrency error patterns

a Concurrency error detection
« Deadlock detection
» Data race detection

Deadlock detection

0 Root cause of deadlock: circular wait

a Detecting deadlock manually: system halts
= Can run debugger and see the wait cycle

0 Detecting deadlock automatically: resource
allocation graph

Q Detecting potential deadlocks automatically:
lock order

10

Resource allocation graph

a Nodes
= Locks (resources)
» Threads (processes)

0 Edges
= Assignment edge: lock->thread
+ Removed on unlock()
« Request edge: thread->lock

- Converted to assignment edges on
lock() return

0 Cycles < deadlock

Resource allocation graph for
Q Problem: can we detect potential example 3 deadlock

deadlocks before we run into
them?

11

Detecting potential deadlocks

Q Can deduce lock order: the order in which
locks are acquired
= For each lock acquired, order with locks held
» Cycles in lock order = potential deadlock

T1: T2:
sum(al, a2) // locks held sum(al, a2) // locks held
lock(al->guard) // {}
lock(a2->guard) // {al->guard}

lock(a2->guard) // {}
lock(al->guard) // {a2->guard}

Cycle = Potential deadlock!

12

Outline

Q Concurrency error patterns

a Concurrency error detection
= Deadlock detection
» Data race detection

13

Race detection

a0 We will look at only data race detection

» Techniques exist to detect atomicity and order
bugs, but we won't discuss them in this class

QO Two approaches to data race detection
« Happens-before
« Lockset (Eraser's algorithm)

14

Happens-before definition

a Event A happens-before event B if
= B follows A in the same thread

« AinTl,and B inT2, and a synchronization event C
such that
* A happens in T1
- Cisafter Ain Tl and before B in T2
- BinT2

15

Happens-before race detection

Q Tools before eraser are based on happens-
before

a Sketch
= Monitor all data accesses and synch operations

- Watch for
» Access of v in thread T1
+ Access of v in thread T2
* No synchronization operation between the accesses
* One of the accesses is write

16

Problems with happens-before

Q Problem I: expensive

= Requires per thread
- List of accesses to shared data
- List of synch operations

Q Problem II: false negatives

» Happens-before looks for actual
data races (moment in time when
multiple threads access shared
data w/o synchronization)

» Ignores programmer intention;
the synchronization op between
accesses may happen to be there

T1: T2:
++y
lock(m)
unlock(m)
~~Jock(m);
unlock(m);
Ty,

17

Eraser: a different approach

Q Idea: check invariants
= Violations of invariants =» likely data races

a Invariant: the locking discipline

= Assume: accesses to shared variables are protected
by locks

= Every access is protected by at least one lock
= Any access unprotected by a lock = an error

a Problem: how to find out what lock protects a
variable?

» Linkage between locks and variables undeclared

18

Lockset algorithm: infer the locks

a Intuition: it must be one of the locks held at
the time of access

a C(v): a set of candidate locks for protecting v
Q Initialize C(v) to the set of all locks

0 On access to v by thread t, refine C(v)
« C(v) = C(v) ” locks_held(t)
« If C(v)={}, report error

0 Question: is locks_held(t) per thread?

a Sounds good! Buft ...

19

Implementing eraser

a Binary tool
= Pros: does not require source
= Cons: lose source semantics
* Track memory access at word granularity

0 How to monitor memory access?
= Binary instrumentation

0 How to track lockset efficiently?
= A shadow word for each memory word
« Each shadow word stores a lockset index
= A table maps lockset index to a set of locks
= Assumption: not many distinct locksets

20

Results

0 Eraser works
= Find bugs in mature software

« Though many limitations
* Major: benign races (intended races)

a However, slow
= Monitoring each memory access: costly, 10-30X slowdown

« Can be made faster
+ With static analysis
« Smarter instrumentation

QO Lockset algorithm is influential, used by many tools
« E.g. Helgrind (a race detection tool in Valgrind)

21

Backup slides

22

Problems w/ simple lockset algorithm

a Initialization
« When shared data is first created and initialized

0 Read-shared data
» Shared data is only read (once initialized)

a Read/write lock
« We've seen it last week
« Locks can be held in either write mode or read mode

23

Tnitialization

a0 When shared data first created, only one
thread can see it = locking unnecessary with
only one thread

0 Solution: do not refine C(v) until the creator
thread finishes initialization and makes the
shared data accessible by other threads

0 How do we know when initialization is done?
« We don't ...

« Approximate with when a second thread accesses
the shared data

24

Read-shared data

Q Some data is only read (once initialized) =
locking unnecessary with read-only data

Q Solution: refine C(v), but don't report warnings
» Question: why refine C(v) in case of read?

« To catch the case when
* C(v) is {} for shared read
- A thread writes to v

25

State transitions

a Each shared data value (memory location) is in
one of the four states

write, first thread

write, new thread

Refine
C(v) and

Read, new hock

thread

Refine C(v),
no check

write

26

Read-write locks

Q Read-write locks allow a single writer and
multiple readers

0 Locks can be held in read mode and write mode
» read_lock(m); read v; read_unlock(m)
« write_lock(m); write v; write_unlock(m)

Q Locking discipline
« Lock can be held in some mode (read or write) for
read access

« Lock must be held in write mode for write access
- A write access with lock held in read mode = error

27

Handling read-write locks

a Idea: distinguish read and write access when
refining lockset

a On each read of v by thread t (same as
before)
« C(v) = C(v) ” locks_held(t)
« If C(v)={}, report error

Q On each write of v by thread t
= C(v) = C(v) ” write_locks_held(t)
« If C(v)={}, report error

28

