
W4118 Operating Systems

Instructor: Junfeng Yang

2

Learning goals of this lecture

� Different flavors of synchronization
primitives and when to use them, in the
context of Linux kernel

� How synchronization primitives are
implemented for real

� “Portable” tricks: useful in other context as
well (when you write a high performance
server)
� Optimize for common case

3

Synchronization is complex and subtle

� Already learned this from the code examples
we’ve seen

� Kernel synchronization is even more complex
and subtle
� Higher requirements: performance, protection …

� Code heavily optimized, “fast path” often in
assembly, fit within one cache line

Recall: Layered approach to
synchronization

Hardware-provided low-level
atomic operations

High-level synchronization
primitives

Properly synchronized application

� Hardware provides simple low-level atomic
operations, upon which we can build high-level,
synchronization primitives, upon which we can
implement critical sections and build correct
multi-threaded/multi-process programs

4

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Futex

� Mutex

5

Architectural dependency

� Implementation of synchronization primitives:
highly architecture dependent

� Hardware provides atomic operations

� Most hardware platforms provide test-and-set
or similar: examine and modify a memory
location atomically

� Some don’t, but would inform if operation
attempted was atomic

6

Memory barrier motivation

� Evil compiler!

� Reorder code as long as it correctly maintains
data flow dependencies within a function and
with called functions

� Evil hardware!
� Reorder instruction execution as long as it
correctly maintains register flow dependencies

� Reorder memory modification as long as it
correctly maintains data flow dependencies

7

Memory barrier definition

� Memory Barriers: instructions to compiler
and/or hardware to complete all pending
accesses before issuing any more
� Prevent compiler/hardware reordering

� Read memory barriers: prevent reordering
of read instructions

�Write memory barriers: prevent
reordering of write instructions

8

Linux barrier operations

� barrier – prevent only compiler reordering
� mb – prevents load and store reordering
� rmb – prevents load reordering
� wmb – prevents store reordering

� smp_mb – prevent load and store reordering only in
SMP kernel

� smp_rmb – prevent load reordering only in SMP kernels
� smp_wmb – prevent store reordering only in SMP
kernels

� set_mb – performs assignment and prevents load and
store reordering

� include/asm-i386/system.h

9

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Mutex

� Futex

10

Atomic operations

� Some instructions not atomic in hardware
(smp)
� Read-modify-write instructions that touch
memory twice, e.g., inc, xchg

� Most hardware provides a way to make these
instructions atomic
� Intel lock prefix: appears to lock the memory bus

� Execute at memory speed

11

Linux atomic operations

� ATOMIC_INIT – initialize an atomic_t variable
� atomic_read – examine value atomically
� atomic_set – change value atomically
� atomic_inc – increment value atomically
� atomic_dec – decrement value atomically
� atomic_add - add to value atomically
� atomic_sub – subtract from value atomically
� atomic_inc_and_test – increment value and test for zero
� atomic_dec_and_test – decrement from value and test for

zero
� atomic_sub_and_test – subtract from value and test for zero
� atomic_set_mask – mask bits atomically
� atomic_clear_mask – clear bits atomically

� include/asm-i386/atomic.h

12

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Futex

� Mutex

13

Linux interrupt operations

� local_irq_disable - disables interrupts on the
current CPU
� local_irq_enable - enable interrupts on the
current CPU
� local_save_flags - return the interrupt state of
the processor
� local_restore_flags - restore the interrupt
state of the processor

� Dealing with the full interrupt state of the
system is officially discouraged. Locks should
be used

14

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Mutex

� Futex

15

Linux spin lock operations

� spin_lock_init – initialize a spin lock before using it
for the first time

� spin_lock – acquire a spin lock, spin waiting if it is
not available

� spin_unlock – release a spin lock
� spin_unlock_wait – spin waiting for spin lock to

become available, but don't acquire it
� spin_trylock – acquire a spin lock if it is currently

free, otherwise return error
� spin_is_locked – return spin lock state

� include/asm-i386/spinlock.h and kernel/spinlock.c

16

Spin lock usage rules

� Spin locks should not be held for long
periods because waiting tasks on other
CPUs are spinning, and thus wasting CPU
execution time

� Remember, don’t call blocking operations (any
function that may call schedule()) when holding
a spin lock

17

18

Linux spin lock implementation

__raw_spin_lock_string

1: lock; decb %0 # atomically decrement

jns 3f # if clear sign bit (>=0) jump forward to 3

2: rep; nop # wait

cmpb $0, %0 # spin – compare to 0

jle 2b # go back to 2 if <= 0 (locked)

jmp 1b # unlocked; go back to 1 to try again

3: # we have acquired the lock …

spin_unlock merely writes 1 into the lock field.

Variant of spin locks and operations

� Spin locks that serialize with interrupts

� Read-write spin locks (rwlock_t)

� Read-write spin locks that serialize with
interrupts

� Big reader lock (brlock)

� Sequential lock (seqlock)

19

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Futex

� Mutex

20

21

Completions

� Simple way to ensure execution order: wait
and wake-up semantics

� wait_for_complete(struct completion*) – wait for
another thread to call complete()

� compute(struct completion*) – wake up threads
waiting inside wait_for_complete()

� Implemented using spinlock and wait_queue

� include/linux/completion.h and kernel/sched.c

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Futex

� Mutex

22

Linux semaphore operations

� up – release the semaphore

� down – get the semaphore (can block)

� down_interruptible – get the semaphore, can be
woken up if interrupt arrives

� down_trylock – try to get the semaphore
without blocking, otherwise return an error

� include/asm-i386/semaphore.h and
arch/i386/kernel/semaphore.c

23

Linux semaphore implementation

� Goal: optimize for uncontended (common) case

� Implementation idea

� Uncontended case: use atomic operations

� Contended case: use spin locks and wait queues

24

25

Linux semaphore structure

� Struct semaphore

� count (atomic_t):
• > 0: free;
• = 0: in use, no waiters;
• < 0: in use, waiters

� sleepers:
• 0 (none)
• 1 (some), occasionally 2

� wait: wait queue

� implementation requires lower-level
synchronization primitives
� atomic updates, spinlock, interrupt

disabling

atomic_t count

int sleepers

wait_queue_head_t wait

lock next

struct semaphore

prev

Contrived (buggy) semaphore
implementation

� Common case: only one atomic instruction

� Problem
� Concurrent calls to up() and down()?

� Concurrent calls to down()?

26

up (struct semaphore* s)
{

if(atomic_inc_positive(&s->count))
return;

wake_up(&s->wait);
}

down (struct smaphore *s)
{

if(!atomic_dec_negative(&s->count))
return; // uncontended

// contended
add_wait_queue_exclusive(&s-

>wait, self);
}

27

The real down()

inline down:
movl $sem, %ecx # why does this work?
lock; decl (%ecx)# atomically decr sem count
jns 1f # if not negative jump to 1
lea %ecx, %eax # move into eax
call __down_failed #

1: # we have the semaphore

include/asm-i386/semaphore.h and arch/i386/kernel/semaphore.c

down_failed:
pushl %edx # push edx onto stack (C)
pushl %ecx # push ecx onto stack
call __down # call C function
popl %ecx # pop ecx
popl %edx # pop edx
ret

28

__down()
tsk->state = TASK_UNINTERRUPTIBLE;
spin_lock_irqsave(&sem->wait.lock, flags);
add_wait_queue_exclusive_locked(&sem->wait, &wait);
sem->sleepers++;
for (;;) {

int sleepers = sem->sleepers;
/*

* Add "everybody else" into it. They aren't playing,
* because we own the spinlock in the wait_queue head
*/

if (!atomic_add_negative(sleepers - 1, &sem->count)) {
sem->sleepers = 0;
break;

}
sem->sleepers = 1; /* us - see -1 above */
spin_unlock_irqrestore(&sem->wait.lock, flags);
schedule();
spin_lock_irqsave(&sem->wait.lock, flags);
tsk->state = TASK_UNINTERRUPTIBLE;

}
remove_wait_queue_locked(&sem->wait, &wait);
wake_up_locked(&sem->wait);
spin_unlock_irqrestore(&sem->wait.lock, flags);
tsk->state = TASK_RUNNING;

Linux/lib/semaphore-sleepers.c

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Futex

� Mutex

29

Futex motivation

� Synchronization of kernel-level threads:
expensive
� Each synchronization operation traps into kernel

� Futex: optimize for the uncontended (common)
case
� Uncontended� no kernel involvement

� Contended � trap into kernel

30

Futex implementation

� Borrows from Linux kernel semaphore
implementation

� Data structure
� An aligned integer in user space
� A wait queue in kernel space

� Operations
� Uncontended case: atomic operations, user space
� Contended case: spin locks and wait queues, kernel space

� pthread mutex, semaphore, and condition variables
use futex

31

Outline

� Low-level synchronization primitives in Linux
� Memory barrier

� Atomic operations

� Synchronize with interrupts

� Spin locks

� High-level synchronization primitives in Linux
� Completion

� Semaphore

� Futex

� Mutex

32

Linux mutexes: motivation

� Introduced in 2.6.16.

� “90% of semaphores in kernel are used as
mutexes, 9% of semaphores should be
spin_locks.“ Andrew Morton

� Slow paths are more critical for highly
contended semaphores on SMP

� Mutexes are simpler

33

Linux mutex operations

� mutex_unlock – release the mutex

� mutex_lock – get the mutex (can block)

� mutex_lock_interruptible – get the mutex, but
allow interrupts

� mutex_trylock – try to get the mutex without
blocking, otherwise return an error

� mutex_is_locked – determine if mutex is locked

34

