
W4118 Operating Systems

Instructor: Junfeng Yang

Outline

� Semaphores

� Producer-consumer problem

� Monitors and condition variables

2

3

Semaphore motivation

� Problem with lock: mutual exclusion, but no
ordering

� Producer-consumer problem: need order
� $ cat 1.txt | sort | uniq | wc

� Producer: creates a resource

� Consumer: uses a resource

� bounded buffer between them

� Scheduling order: producer waits if buffer full,
consumer waits if buffer empty

4

Semaphore definition

� A synchronization variable that:
� Contains an integer value

• Can’t access directly

• Must initialize to some value

• sem_init (sem_t *s, int pshared, unsigned int value)

� Has two operations to manipulate this integer

• sem_wait (or down(), P())

• sem_post (or up(), V())

int sem_post(sem_t *s) {
increment the value of

semaphore s by 1
if there are 1 or more

threads waiting, wake 1
}

int sem_wait(sem_t *s) {
wait until value of semaphore s

is greater than 0
decrement the value of

semaphore s by 1
}

5

Semaphore uses

� Mutual exclusion
� Semaphore as mutex

� Binary semaphore: X=1

� Mutual exclusion with more than one resources
� Counting semaphore: X>1

// initialize to X
sem_init(s, 0, X)

sem_wait(s);
// critical section
sem_post(s);

6

Semaphore uses (cont.)

� Scheduling order
� One thread waits for another

� What should initial value be?

//thread 0
… // 1st half of computation
sem_post(s);

// thread 1

sem_wait(s);
… //2nd half of computation

7

How to implement semaphores?

� Homework!

Outline

� Semaphores

� Producer-consumer problem

� Monitors and condition variables

8

9

Producer-Consumer (Bounded-Buffer)
Problem

� Bounded buffer: size N, Access entry 0… N-1, then “wrap
around” to 0 again

� Producer process writes data to buffer

� Consumer process reads data from buffer

� Order constraints

� Producer shouldn’t try to produce if buffer is full

� Consumer shouldn’t try to consume if buffer is empty

0 1

Producer Consumer

N-1

10

Solving Producer-Consumer problem

� Two semaphores
� sem_t full; // # of filled slots

� sem_t empty; // # of empty slots

� What should initial values be?

� Problem: mutual exclusion?

producer() {
sem_wait(empty);
… // fill a slot
sem_post(full);

}

consumer() {
sem_wait(full);
… // empty a slot
sem_post(empty);

}

sem_init(&full, 0, X);
sem_init(&empty, 0, Y);

11

Solving Producer-Consumer problem: final

� Three semaphores
� sem_t full; // # of filled slots

� sem_t empty; // # of empty slots

� sem_t mutex; // mutual exclusion

producer() {
sem_wait(empty);
sem_wait(&mutex);
… // fill a slot
sem_post(&mutex);
sem_post(full);

}

consumer() {
sem_wait(full);
sem_wait(&mutex);
… // empty a slot
sem_post(&mutex);
sem_post(empty);

}

sem_init(&full, 0, 0);
sem_init(&empty, 0, N);
sem_init(&mutex, 0, 1);

Outline

� Semaphores

� Producer-consumer problem

� Monitors and condition variables

12

13

Monitors

� Background: concurrent programming meets object-
oriented programming

� When concurrent programming became a big deal, object-
oriented programming too

� People started to think about ways to make concurrent
programming more structured

� Monitor: object with a set of monitor procedures
and only one thread may be active (i.e. running one
of the monitor procedures) at a time

14

Schematic view of a monitor

� Can think of a
monitor as one big
lock for a set of
operations/ methods

� In other words, a
language
implementation of
mutexes

15

How to implement monitor?

Compiler automatically inserts lock and unlock operations
upon entry and exit of monitor procedures

class account {
int balance;
public synchronized void deposit() {
++balance;

}
public synchronized void withdraw() {
--balance;

}
};

lock(this.m);
++balance;
unlock(this.m);

lock(this.m);
--balance;
unlock(this.m);

16

Condition Variables

� Need wait and wakeup as in semaphores

� Monitor uses Condition Variables
� Conceptually associated with some conditions

� Operations on condition variables:
� wait(): suspends the calling thread and releases the
monitor lock. When it resumes, reacquire the lock. Called
when condition is not true

� signal(): resumes one thread waiting in wait() if any. Called
when condition becomes true and wants to wake up one
waiting thread

� broadcast(): resumes all threads waiting in wait(). Called
when condition becomes true and wants to wake up all
waiting threads

17

Monitor with condition variables

18

Subtle difference between condition
variables and semaphores

� Semaphores are sticky: they have memory,
sem_post() will increment the semaphore, even
if no one has called sem_wait()

� Condition variables are not: if no one is waiting
for a signal(), this signal() is not saved

� Despite the difference, they are as powerful

19

Producer-consumer with monitors

� Two condition variables
� has_empty: at least one slot
is empty

� has_full: at least one slot is
full

� nfull: number of filled slots
� Need to do our own counting
for condition variables

monitor ProducerConsumer {
int nfull = 0;
cond has_empty, has_full;

producer() {
if (nfull == N)
wait (has_empty);

… // fill a slot
++ nfull;
signal (has_full);

}

consumer() {
if (nfull == 0)

wait (has_full);
… // empty a slot
-- nfull;
signal (has_empty);

}
};

20

Condition variable semantics

� Design question: when signal() wakes up a waiting
thread, which thread to run inside the monitor, the
signaling thread, or the waiting thread?

� Hoare semantics: suspends the signaling thread, and
immediately transfers control to the woken thread
� Difficult to implement in practice

� Mesa semantics: signal() moves a single waiting thread
from the blocked state to a runnable state, then the
signaling thread continues until it exits the monitor
� Easy to implement
� Problem: race! Before a woken consumer continues,
another consumer comes in and grabs the buffer

21

Fixing the race in mesa monitors

� The fix: when woken, a
thread must recheck the
condition it was waiting on

� Most systems use mesa
semantics

monitor ProducerConsumer {
int nfull = 0;
cond has_empty, has_full;

producer() {
while (nfull == N)
wait (has_empty);

… // fill slot
++ nfull;
signal (has_full);

}

consumer() {
while (nfull == 0)

wait (has_full);
… // empty slot
-- nfull
signal (has_empty);

}
};

22

Monitor with pthread

� C/C++ don’t provide
monitors; but we can
implement monitors using
pthread mutex and
condition variable

� For producer-consumer
problem, need 1 pthread
mutex and 2 pthread
condition variables
(pthread_cond_t)

� Manually lock and unlock
mutex for monitor procedures

� pthread_cond_wait (cv, m):
atomically waits on cv and
releases m

class ProducerConsumer {
int nfull = 0;
pthread_mutex_t m;
pthread_cond_t has_empty, has_full;

public:
producer() {
pthread_mutex_lock(&m);
while (nfull == N)
ptherad_cond_wait (&has_empty, &m);

… // fill slot
++ nfull;
pthread_cond_signal (has_full);
pthread_mutex_unlock(&m);

}
…

};

