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Semaphore motivation

� Problem with lock: mutual exclusion, but no 
ordering

� Producer-consumer problem: need order
� $ cat 1.txt | sort | uniq | wc

� Producer: creates a resource

� Consumer: uses a resource

� bounded buffer between them

� Scheduling order: producer waits if buffer full, 
consumer waits if buffer empty
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Semaphore definition

� A synchronization variable that:
� Contains an integer value

• Can’t access directly

• Must initialize to some value

• sem_init (sem_t *s, int pshared, unsigned int value)

� Has two operations to manipulate this integer

• sem_wait (or down(), P())

• sem_post (or up(), V())

int sem_post(sem_t *s) {
increment the value of 

semaphore s by 1
if there are 1 or more 

threads waiting, wake 1
}

int sem_wait(sem_t *s) {
wait until value of semaphore s 

is greater than 0
decrement the value of 

semaphore s by 1
}
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Semaphore uses

� Mutual exclusion
� Semaphore as mutex

� Binary semaphore: X=1

� Mutual exclusion with more than one resources
� Counting semaphore: X>1

// initialize to X 
sem_init(s, 0, X)

sem_wait(s);
// critical section
sem_post(s);
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Semaphore uses (cont.)

� Scheduling order
� One thread waits for another

� What should initial value be?

//thread 0
… // 1st half of computation
sem_post(s);

// thread 1

sem_wait(s);
… //2nd half of computation
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How to implement semaphores?

� Homework!
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Producer-Consumer (Bounded-Buffer) 
Problem

� Bounded buffer: size N, Access entry 0… N-1, then “wrap 
around” to 0 again

� Producer process writes data to buffer

� Consumer process reads data from buffer

� Order constraints

� Producer shouldn’t try to produce if buffer is full

� Consumer shouldn’t try to consume if buffer is empty

0 1

Producer Consumer

N-1
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Solving Producer-Consumer problem

� Two semaphores
� sem_t full; // # of filled slots

� sem_t empty; // # of empty slots

� What should initial values be?

� Problem: mutual exclusion?

producer() {
sem_wait(empty);
… // fill a slot
sem_post(full);

}

consumer() {
sem_wait(full);
… // empty a slot
sem_post(empty);

}

sem_init(&full, 0, X);
sem_init(&empty, 0, Y);
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Solving Producer-Consumer problem: final

� Three semaphores
� sem_t full; // # of filled slots

� sem_t empty; // # of empty slots

� sem_t mutex; // mutual exclusion

producer() {
sem_wait(empty);
sem_wait(&mutex);
… // fill a slot
sem_post(&mutex);
sem_post(full);

}

consumer() {
sem_wait(full);
sem_wait(&mutex);
… // empty a slot
sem_post(&mutex);
sem_post(empty);

}

sem_init(&full, 0, 0);
sem_init(&empty, 0, N);
sem_init(&mutex, 0, 1);
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Monitors

� Background: concurrent programming meets object-
oriented programming

� When concurrent programming became a big deal, object-
oriented programming too

� People started to think about ways to make concurrent 
programming more structured

� Monitor: object with a set of monitor procedures 
and only one thread may be active (i.e. running one 
of the monitor procedures) at a time
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Schematic view of a monitor

� Can think of a 
monitor as one big 
lock for a set of 
operations/ methods

� In other words, a 
language 
implementation of 
mutexes
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How to implement monitor?

Compiler automatically inserts lock and unlock operations 
upon entry and exit of monitor procedures

class account {
int balance;
public synchronized void deposit() {
++balance;

}
public synchronized void withdraw() {
--balance;

}
};

lock(this.m);
++balance;
unlock(this.m);

lock(this.m);
--balance;
unlock(this.m);
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Condition Variables

� Need wait and wakeup as in semaphores

� Monitor uses Condition Variables
� Conceptually associated with some conditions

� Operations on condition variables:
� wait(): suspends the calling thread and releases the 
monitor lock.  When it resumes, reacquire the lock.  Called 
when condition is not true

� signal(): resumes one thread waiting in wait() if any. Called 
when condition becomes true and wants to wake up one 
waiting thread

� broadcast(): resumes all threads waiting in wait(). Called 
when condition becomes true and wants to wake up all 
waiting threads
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Monitor with condition variables
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Subtle difference between condition 
variables and semaphores

� Semaphores are sticky:  they have memory, 
sem_post() will increment the semaphore, even 
if no one has called sem_wait()

� Condition variables are not: if no one is waiting 
for a signal(), this signal() is not saved

� Despite the difference, they are as powerful
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Producer-consumer with monitors

� Two condition variables
� has_empty:   at least one slot 
is empty

� has_full: at least one slot is 
full

� nfull: number of filled slots
� Need to do our own counting 
for condition variables

monitor ProducerConsumer {
int nfull = 0;
cond has_empty, has_full;

producer() {
if (nfull == N)
wait (has_empty);

… // fill a slot
++ nfull;
signal (has_full);

}

consumer() {
if (nfull == 0)

wait (has_full);
… // empty a slot
-- nfull;
signal (has_empty);

} 
};
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Condition variable semantics

� Design question: when signal() wakes up a waiting 
thread,  which thread to run inside the monitor, the 
signaling thread, or the waiting thread?

� Hoare semantics: suspends the signaling thread, and 
immediately transfers control to the woken thread
� Difficult to implement in practice

� Mesa semantics: signal() moves a single waiting thread 
from the blocked state to a runnable state, then the 
signaling thread continues until it exits the monitor
� Easy to implement
� Problem: race!  Before a woken consumer continues, 
another consumer comes in and grabs the buffer
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Fixing the race in mesa monitors

� The fix: when woken, a 
thread must recheck the 
condition it was waiting on

� Most systems use mesa 
semantics

monitor ProducerConsumer {
int nfull = 0;
cond has_empty, has_full;

producer() {
while (nfull == N)
wait (has_empty);

… // fill slot
++ nfull;
signal (has_full);

}

consumer() {
while (nfull == 0)

wait (has_full);
… // empty slot
-- nfull
signal (has_empty);

} 
};
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Monitor with pthread

� C/C++ don’t provide 
monitors; but we can 
implement monitors using 
pthread mutex and 
condition variable

� For producer-consumer 
problem, need 1 pthread 
mutex and 2 pthread 
condition variables 
(pthread_cond_t)

� Manually lock and unlock 
mutex for monitor procedures

� pthread_cond_wait (cv, m):
atomically waits on cv and 
releases m

class ProducerConsumer {
int nfull = 0;
pthread_mutex_t m;
pthread_cond_t has_empty, has_full;

public:
producer() {
pthread_mutex_lock(&m);
while (nfull == N)
ptherad_cond_wait (&has_empty, &m);

… // fill slot
++ nfull;
pthread_cond_signal (has_full);
pthread_mutex_unlock(&m);

}
…

};


