
W4118 Operating Systems

Instructor: Junfeng Yang

Outline

� Critical section requirements

� Implementing locks

� Readers-writer lock

2

Critical section requirements

� Safety (aka mutual exclusion): no more than one
thread in critical section at a time.

� Liveness (aka progress):
� If multiple threads simultaneously request to enter
critical section, must allow one to proceed

� Must not depend on threads outside critical section

� Bounded waiting (aka starvation-free)
� Must eventually allow waiting thread to proceed

� Makes no assumptions about the speed and number
of CPU
� However, assumes each thread makes progress

3

Critical section desirable properties

� Efficient: don’t consume too much resource while
waiting
� Don’t busy wait (spin wait). Better to relinquish CPU
and let other thread run

� Fair: don’t make some thread wait longer than
others. Hard to do efficiently

� Simple: should be easy to use

4

Implementing critical section using Locks

� lock(l): acquire lock exclusively; wait if not
available

� unlock(l): release exclusive access to lock

void* deposit(void *arg)
{

int i;
for(i=0; i<1e7; ++i) {

pthread_mutex_lock(&l);
++ balance;
pthread_mutex_unlock(&l);

}
}

void* withdraw(void *arg)
{

int i;
for(i=0; i<1e7; ++i) {

pthread_mutex_lock(&l);
-- balance;
pthread_mutex_unlock(&l);

}
}

pthread_mutex_t l = PTHREAD_MUTEX_INITIALIZER

5

Outline

� Critical section requirements

� Implementing locks

� Readers-writer lock

6

Implementing locks: version 1

� Can cheat on uniprocessor: implement locks by disabling
and enabling interrupts

� Good: simple!

� Bad:
� Both operations are privileged, can’t let user program use

� Doesn’t work on multiprocessors

lock()
{

disable_interrupt();
}

unlock()
{

enable_interrupt();
}

7

Implementing locks: version 2

� Peterson’s algorithm: software-based lock
implementation

� Good: doesn’t require much from hardware

� Only assumptions:
� Loads and stores are atomic

� They execute in order

� Does not require special hardware instructions

8

Software-based lock: 1st attempt

� Idea: use one flag, test then set; if unavailable, spin-wait
(or busy-wait)

� Problem?
� Not safe: both threads can be in critical section
� Not efficient: busy wait, particularly bad on uniprocessor (will
solve this later)

lock()
{

while (flag == 1)
; // spin wait

flag = 1;
}

unlock()
{

flag = 0;
}

// 0: lock is available, 1: lock is held by a thread
int flag = 0;

9

Software-based lock

� 2nd attempt: use per thread flags, set then test, to
achieve mutual exclusion
� Not live: can deadlock

� 3rd attempt: strict alternation to achieve mutual
exclusion
� Not live: depends on threads outside critical section

� Final attempt: combine above ideas

� Problem
� N>2 threads? (Lamport’s Bakery algorithm)

� Modern out of order processors?

10

Implementing locks: version 3

� Problem with the test-then-set approach: test and set
are not atomic

� Fix: special atomic operation

� int test_and_set (int *lock)

� Atomic: returns *lock and sets *lock to 1

lock()
{

while(test_and_set(&flag))
;

}

unlock()
{

flag = 0;
}

// 0: lock is available, 1: lock is held by a thread
int flag = 0;

11

Implementing test_and_set on x86

� xchg reg, addr: atomically swaps *addr and reg

� Some version of Linux spin_lock is implemented
using this instruction (include/asm-i386/spin_lock.h)

long test_and_set(volatile long* lock)
{

int old;
asm("xchgl %0, %1"
: "=r"(old), "+m"(*lock) // output
: "0"(1) // input
: "memory“ // can clobber anything in memory
);

return old;
}

12

Spin-wait or block

� Problem: waste CPU cycles
� Worst case: prev thread holding a busy-wait lock gets
preempted, other threads try to acquire the same lock

� On uniprocessor: should not use spin-lock
� Yield CPU when lock not available (need OS support)

� On multi-processor
� Thread holding lock gets preempted � ???

� Correct action depends on how long before lock release
• Lock released “quickly” � ?

• Lock released “slowly” � ?

13

Problem with simple yield

� Problem:
� Still a lot of context switches: thundering herd

� Starvation possible

� Why? No control over who gets the lock next

� Need explicit control over who gets the lock

lock()
{

while(test_and_set(&flag))
yield();

}

14

Implementing locks: version 4

� The idea: add thread to queue when lock
unavailable; in unlock(), wake up one thread in
queue

� Problem I: loses wake up
� Fix: use a spin_lock or lock w/ simple yield!
� Doesn’t avoid spin-wait, but make wait time short

� Problem II: wrong thread gets lock
� Fix: unlock() directly transfers lock to waiting thread

lock() {
while (test_and_set(&flag)))
add myself to wait queue
yield

…
}

unlock() {
flag = 0
if(any thread in wait queue)
wake up one wait thread

…
}

Prob II: Lock from
a third thread?

15

Implementing locks: version 4, the code
typedef struct __mutex_t {
int flag; // 0: mutex is available, 1: mutex is not available
int guard; // guard lock to avoid losing wakeups
queue_t *q; // queue of waiting threads

} mutex_t;

void lock(mutex_t *m) {
while (test_and_set(m->guard))
; //acquire guard lock by spinning

if (m->flag == 0) {
m->flag = 1; // acquire mutex
m->guard = 0;

} else {
enqueue(m->q, self);
m->guard = 0;
yield();

}
}

void unlock(mutex_t *m) {
while (test_and_set(m->guard))

;
if (queue_empty(m->q))
// release mutex; no one wants mutex
m->flag = 0;

else
// direct transfer mutex to next thread
wakeup(dequeue(m->q));

m->guard = 0;
}

16

Outline

� Critical section requirements

� Implementing locks

� Readers-writer lock

17

Readers-Writers problem

� A reader is a thread that needs to look at
the shared data but won’t change it

� A writer is a thread that modifies the
shared data

� Example: making an airline reservation

� Courtois et al 1971

18

Solving Readers-Writers w/ regular lock

� Problem: unnecessary synchronization
� Only one writer can be active at a time
� However, any number of readers can be active
simultaneously!

� Solution: acquire lock for read mode and write mode

lock_t lock;

Writer

lock (&lock);
. . .
// write shared data
. . .
unlock (&lock);

Reader

lock (&lock);
. . .
// read shared data
. . .
unlock (&lock);

19

Readers-writer lock

� read_lock: acquires lock in read (shared) mode
� If lock is not acquired or in read mode � success
� Otherwise, lock is in write mode � wait

� write_lock: acquires lock in write (exclusive) mode
� If lock is not acquire � success
� Otherwise � wait

rwlock_t lock;

Writer

write_lock (&lock);
. . .
// write shared data
. . .
write_unlock (&lock);

Reader

read_lock (&lock);
. . .
// read shared data
. . .
read_unlock (&lock);

20

Implementing readers-writer lock

struct rwlock_t {
int nreader; // init to 0
lock_t guard; // init to unlocked
lock_t lock; // init to unlocked

};

write_lock(rwlock_t *l)
{
lock(&l->lock);

}

write_unlock(rwlock_t *l)
{
unlock(&l->lock);

}

read_lock(rwlock_t *l)
{
lock(&l->guard);
++ nreader;
if(nreader == 1) // first reader
lock(&l->lock);

unlock(&l->guard);
}

read_unlock(rwlock_t *l)
{
lock(&l->guard);
-- nreader;
if(nreader == 0) // last reader
unlock(&l->lock);

unlock(&l->guard);
}

Problem: may starve writer!

21

Backup slides

22

Software-based locks: 2nd attempt

� Idea: use per thread flags, set then test, to achieve
mutual exclusion

� Why doesn’t work?
� Not live: can deadlock

lock()
{

flag[self] = 1; // I need lock
while (flag[1- self] == 1)
; // spin wait

}

unlock()
{

// not any more
flag[self] = 0;

}

// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

23

Software-based locks: 3rd attempt

� Idea: strict alternation to achieve mutual exclusion

� Why doesn’t work?
� Not live: depends on threads outside critical section

lock()
{

// wait for my turn
while (turn == 1 – self)
; // spin wait

}

unlock()
{

// I’m done. your turn
turn = 1 – self;

}

// whose turn is it?
int turn = 0;

24

Software-based locks: final attempt
(Peterson’s algorithm)

� Why works?
� Safe?

� Live?

� Bounded wait?

// whose turn is it?
int turn = 0;
// 1: a thread wants to enter critical section, 0: it doesn’t
int flag[2] = {0, 0};

lock()
{

flag[self] = 1; // I need lock
turn = 1 – self;
// wait for my turn
while (flag[1-self] == 1
&& turn == 1 – self)
; // spin wait while the
// other thread has intent
// AND it is the other
// thread’s turn

}

unlock()
{

// not any more
flag[self] = 0;

}

25

