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Threads

� Threads: separate streams of executions that 
share an address space
� Allows one process to have multiple point of 
executions, can potentially use multiple CPUs

� Thread control block (TCB): PC, regs, stack

� Very similar to processes, but different



Single and multithreaded processes

Threads in one process share code, data, files, …



Why threads?

� Express concurrency
� Web server (multiple requests), Browser (gui + 
network I/O), …

� Efficient communication
� Using a separate process for each task can be 
heavyweight

for(;;) {
int fd = accept_client();
create_thread(process_request, fd);

}



Threads vs. Processes

� A thread has no data 
segment or heap

� A thread cannot live on its 
own, it must live within a 
process

� There can be more than one 
thread in a process, the first 
thread calls main & has the 
process’s stack

� Inexpensive creation

� Inexpensive context 
switching

� Efficient communication

� If a thread dies, its stack is 
reclaimed

• A process has code/data/heap & 
other segments

• A process has at least one 
thread

• Threads within a process share 
code/data/heap, share I/O, but 
each has its own stack & 
registers

• Expensive creation

• Expensive context switching

• Interprocess communication can 
be expressive

• If a process dies, its resources 
are reclaimed & all threads die



How to use threads?

� Use thread library
� E.g. pthread, Win32 thread

� Common operations
� create/terminate

� suspend/resume

� priorities and scheduling

� synchronization



Example pthread functions

� int pthread_create(pthread_t *thread, const pthread_attr_t 
*attr, void *(*start_routine)(void*), void *arg);

� Create a new thread to run start_routine on arg

� thread holds the new thread’s id

� int pthread_join(pthread_t thread, void **value_ptr);

� Wait for thread termination, and retrieve return value in 
value_ptr

� void pthread_exit(void *value_ptr);

� Terminates the calling thread, and returns value_ptr to 
threads waiting in pthread_join



pthread creation example

void* thread_fn(void *arg)
{        

int id = (int)arg;        
printf("thread %d runs\n", id);
return NULL;

}
int main()
{

pthread_t t1, t2;        
pthread_create(&t1, NULL, thread_fn, (void*)1);        
pthread_create(&t2, NULL, thread_fn, (void*)2);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return 0;

} One way to view threads: function 
calls, except caller doesn’t wait for 
callee; instead, both run concurrently

$ gcc –o threads threads.c –Wall –lpthread
$ threads
thread 1 runs
thread 2 runs
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Multithreading models

� Where to support threads?

� User threads: thread management done by 
user-level threads library, typically without 
knowledge of the kernel

� Kernel threads: threads directly supported by 
the kernel
� Virtually all modern OS support kernel threads



User vs. Kernel Threads

Example from Tanenbaum, Modern Operating Systems 3 e, 
(c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



User vs. Kernel Threads (cont.)

� Pros: fast, no system call for 
creation, context switch

� Cons: kernel unaware, so can’t 
schedule � one thread 
blocks, all blocks

• Cons: slow, kernel does 
creation, scheduling, etc

• Pros: kernel knows, complete 
flexibility � one thread 
blocks, schedule another

No free lunch!



Multiplexing User-Level Threads

� A thread library must map user threads to kernel threads

� Big picture:
� kernel thread: physical concurrency, how many cores?

� User thread: application concurrency, how many tasks?

� Different mappings exist, representing different tradeoffs

� Many-to-One: many user threads map to one kernel 
thread, i.e. kernel sees a single process

� One-to-One: one user thread maps to one kernel thread

� Many-to-Many: many user threads map to many kernel 
threads



Many-to-One

� Many user-level threads 
map to one kernel thread

� Pros
� Fast: no system calls 

required
� Portable: few system 

dependencies

� Cons
� No parallel execution of 

threads
• All thread block when one 

waits for I/O



One-to-One

� One user-level thread 
maps to one kernel 
thread

� Pros: more concurrency
� When one blocks, others 

can run
� Better multicore or 

multiprocessor 
performance

� Cons: expensive
� Thread operations involve 

kernel
� Thread need kernel 

resources



Many-to-Many

� Many user-level threads 
map to many kernel 
threads (U >= K)

� Pros: flexible
� OS creates kernel threads 

for physical concurrency
� Applications creates user 

threads for application 
concurrency

� Cons: complex
� Most use 1:1 mapping 

anyway



Two-level

� Similar to M:M, 
except that a user 
thread may be 
bound to kernel 
thread



Example thread design issues

� Semantics of fork() and exec() system calls

� Does fork() duplicate only the calling thread or 
all threads?

� Signal handling

� Which thread to deliver it to?



Thread pool

� Problem: 
� Thread creation: costly

• And, the created thread exits after serving a request 

� More user request � More threads, server overload

� Solution: thread pool
� Pre-create a number of threads waiting for work
� Wake up thread to serve user request --- faster than 

thread creation
� When request done, don’t exit --- go back to pool
� Limits the max number of threads
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Banking example
int balance = 1000;
int main()
{

pthread_t t1, t2;        
pthread_create(&t1, NULL, deposit, (void*)1);        
pthread_create(&t2, NULL, withdraw, (void*)2);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
printf(“all done: balance = %d\n”, balance);
return 0;

}

void* deposit(void *arg)
{        

int i;
for(i=0; i<1e7; ++i)

++ balance;
}

void* withdraw(void *arg)
{        

int i;
for(i=0; i<1e7; ++i)

-- balance;
}



Results of the banking example

$ gcc –Wall –lpthread –o bank bank.c
$ bank
all done: balance = 1000
$ bank
all done: balance = 140020
$ bank
all done: balance = -94304
$ bank
all done: balance = -191009

Why?



A closer look at the banking example

$ objdump –d bank
…
08048464 <deposit>:
… // ++ balance
8048473:  a1 80 97 04 08          mov    0x8049780,%eax
8048478:  83 c0 01                   add    $0x1,%eax
804847b:  a3 80 97 04 08          mov    %eax,0x8049780
…

0804849b <withdraw>:
… // -- balance
80484aa:  a1 80 97 04 08          mov    0x8049780,%eax
80484af:  83 e8 01                    sub    $0x1,%eax
80484b2: a3 80 97 04 08           mov    %eax,0x8049780
…



One possible schedule

mov    0x8049780,%eax

add    $0x1,%eax

mov    %eax,0x8049780

mov    0x8049780,%eax

sub    $0x1,%eax

mov    %eax,0x8049780

time

CPU 0 CPU 1

One deposit and one withdraw, 
balance unchanged.  Correct

eax0: 1000

eax0: 1001

balance: 1000

balance: 1001

eax1: 1001

eax1: 1000

balance: 1000



Another possible schedule

mov    0x8049780,%eax

add    $0x1,%eax

mov    %eax,0x8049780

mov    0x8049780,%eax

sub    $0x1,%eax

mov    %eax,0x8049780

time

CPU 0 CPU 1

eax0: 1000

eax0: 1001

balance: 1000

balance: 999

eax1: 1000

eax1: 999

balance: 1001

One deposit and one withdraw, 
balance becomes less.  Wrong!



Race condition

� Definition: a timing dependent error involving 
shared state

� Can be very bad
� “non-deterministic:” don’t know what the output will be, 

and it is likely to be different across runs

� Hard to detect: too many possible schedules

� Hard to debug: “heisenbug,” debugging changes timing so 
hides bugs  (vs “bohr bug”)

� Critical section: a segment of code that accesses 
shared variable (or resource) and must not be 
concurrently executed by more than one thread



How to implement critical sections?

� Atomic operations: no other 
instructions can be interleaved, 
executed “as a unit” “all or 
none”,  guaranteed by hardware

� A possible solution: create a 
super instruction that does 
what we want atomically
� add $0x1, 0x8049780

� Problem
� Can’t anticipate every possible

way we want atomicity

� Increases hardware 
complexity, slows down other 
instructions

// ++ balance
mov    0x8049780,%eax
add    $0x1,%eax
mov    %eax,0x8049780
…

// -- balance
mov    0x8049780,%eax
sub    $0x1,%eax
mov    %eax,0x8049780
…



Layered approach to synchronization

Hardware-provided low-level 
atomic operations

High-level synchronization 
primitives

Properly synchronized application

� Hardware provides simple low-level atomic 
operations, upon which we can build high-level,  
synchronization primitives, upon which we can 
implement critical sections and build correct 
multi-threaded/multi-process programs



Example synchronization primitives

� Low-level atomic operations
� On uniprocessor, disable/enable interrupt

� x86 load and store of words

� Special instructions:
• test-and-set, compare-and-swap

� High-level synchronization primitives
� Lock

� Semaphore

� Monitor


