
W4118 Operating Systems

Junfeng Yang

Outline

� What is a process?

� Process dispatching

� Common process operations� Common process operations

� Inter-process Communication

What is a process

� “Program in execution” “virtual CPU”

� Process: an execution stream in the context of
a particular process state

� Execution stream: a stream of instructions� Execution stream: a stream of instructions
� Running piece of code

� sequential sequence of instructions

� Process state: determines the effect of running
code
� Stuff the running code can affect or be affected by

Process state

� Registers
� General purpose, floating point, instruction pointer

(program counter) …

� Memory: everything a process can address
Code, data, stack, heap, …� Code, data, stack, heap, …

� I/O status:
� File descriptor table, …

� …

Program v.s. process

� Program != process
� Program: static code + static data

� Process: dynamic instantiation of code + data + more

� Program � process: no 1:1 mapping� Program � process: no 1:1 mapping
� Process > program: more than code and data

� Program > process: one program runs many
processes

� Process > program: many processes of same program

Address Space

� Address Space (AS): all memory a process can address
� Really large memory to use
� Linear array of bytes: [0, N), N roughly 2^32, 2^64

� Process � address space: 1 : 1 mapping

� Key: an AS is a protection domain� Key: an AS is a protection domain
� OS isolates address spaces
� One process can’t access another process’s address

space
� Same pointer address in different processes point

to different memory

Address space examples

Process A Process B

Process v.s. Thread

� Thread: separate streams of execution that
share the same address space

� Process != Thread
� One process can have multiple threads

Threads communicate more efficiently� Threads communicate more efficiently

� More on thread later

Why use processes?

� General principle of divide and conquer
� Decompose a large problem into smaller ones �

easier to think well contained smaller problems

� Systems have many concurrent jobs going on
E.g. Multiple users running multiple shells, I/O, …� E.g. Multiple users running multiple shells, I/O, …

� OS must manage

� Easier to reason about processes than threads
� Sequential activities with well defined interactions

Outline

� What is a process?

� Process dispatching

� Common process operations� Common process operations

� Inter-process Communication

System categorization

� Uniprogramming: one process at a time
� Eg., early main frame systems, MSDOS

� Good: simple

� Bad: poor resource utilization, inconvenient for users

� Multiprogramming: multiple processes, when one � Multiprogramming: multiple processes, when one
waits, switch to another
� E.g, modern OS

� Good: increase resource utilization and user convenience

� Bad: complex

� Note: multiprogramming != multiprocessing

Multiprogramming

� OS requirements for multiprogramming
� Scheduling: what process to run? (later)
� Dispatching: how to switch process? (today)
� Memory protection: how to protect process from

one another? (later)

Separation of policy and mechanism� Separation of policy and mechanism
� Recurring theme in OS
� Policy: decision making with some performance

metric and workload (scheduling)
� Mechanism: low-level code to implement decisions

(dispatching)

Process dispatching mechanism

OS dispatching loop:

while(1) {

run process for a while;

save process state;
Q1: how to gain control?

save process state;

next process = schedule (ready processes);

load next process state;

}

Q2: what state must be saved?

Q3: where to find processes?

Q1: How does Dispatcher gain control?

� Must switch from user mode to kernel mode

� Cooperative multitasking: processes voluntarily
yield control back to OS
� When: system calls that relinquish CPU
� Why bad: OS trusts user processes!� Why bad: OS trusts user processes!

� True multitasking: OS preempts processes by
periodic alarms
� Processes are assigned time slices
� Dispatcher counts timer interrupts before context

switch
� Why good: OS trusts no one!

Q2: What state must be saved?

� Dispatcher stores process state in Process Control
Block (PCB)

� What goes into PCB?
� Process state (running, ready …)
� Program counter
CPU registers� CPU registers

� CPU scheduling information
� Memory-management information
� Accounting information
� I/O status information

CPU Switch From Process to Process

Context switch

� Implementation: machine dependent
� Tricky: OS must save state w/o changing state !

• Need to save all registers to PCB in memory

• Run code to save registers, but code changes registers

� Solution: hardware support

� Performance?
� Can take long. A lot of stuff to save and restore. The
time needed is hardware dependent

� Context switch time is pure overhead: the system does
no useful work while switching

� Must balance context switch frequency with scheduling
requirement

Q3: where to find processes?

� Data structure: process scheduling queues
� Job queue – set of all processes in the system

� Ready queue – set of all processes residing in main
memory, ready and waiting to execute

� Device queues – set of processes waiting for an
I/O deviceI/O device

� Processes migrate among the various queues
when their states change

Process state diagram

� Process state
� New: being created

� Ready: waiting to be assigned a CPU

� Running: instructions are running on CPU

� Waiting: waiting for some event (e.g. IO)

� Terminated: finished

Outline

� What is a process?

� Process dispatching

� Common process operations� Common process operations

� Inter-process Communication

Process creation

� Option 1: from scratch (e.g, Win32
CreateProcess())
� Load code and data into memory
� Create and initialize PCB (make it like saved from

context switch)
� Add new PCB to ready queue� Add new PCB to ready queue

� Option 2: cloning (e.g., Unix fork(), exec())
� Pause current process and save its state
� Copy its PCB (can select what to copy)
� Add new PCB to ready queue
� Anything else?

• Must distinguish parent and child

Process termination

� Normal: exit(int status)

� OS passes exit status to parent via wait(int *status)

� OS frees process resources

� Abnormal: kill(pid_t pid, int sig)

OS can kill process� OS can kill process

� Process can kill process

Zombie and orphan

� What if child exits before parent?
� Child becomes zombie

• Need to store exit status

• OS can’t fully free

� Parent must call wait() to reap child

� What if parent exits before child?
� Child becomes orphan

• Need some process to query exit status

� Re-parent to process 1, the init process

Outline

� What is a process?

� Process dispatching

� Common process operations� Common process operations

� Inter-process Communication

Cooperating Processes

� Independent process cannot affect or be
affected by the execution of another process.

� Cooperating process can affect or be affected
by the execution of another process

� Advantages of process cooperation� Advantages of process cooperation
� Information sharing

� Computation speed-up

� Modularity/Convenience

Interprocess Communication Models

Message Passing Shared Memory

Message Passing v.s. Shared Memory

� Message passing
� Why good? All sharing is explicit � less chance for

error

� Why bad? Overhead. Data copying, cross
protection domains

� Shared Memory
� Why good? Performance. Set up shared memory

once, then access w/o crossing protection domains

� Why bad? Things change behind your back � error
prone

IPC Example: Unix signals

� Signals
� A very short message: just a small integer
� A fixed set of available signals. Examples:

• 9: kill
• 11: segmentation fault

Installing a handler for a signal� Installing a handler for a signal
� sighandler_t signal(int signum, sighandler_t handler);

� Send a signal to a process
� kill(pid_t pid, int sig)

IPC Example: Unix pipe

� int pipe(int fds[2])
� Creates a one way communication channel
� fds[2] is used to return two file descriptors
� Bytes written to fds[1] will be read from fds[0]

int pipefd[2];
pipe(pipefd);

switch(pid=fork()) {switch(pid=fork()) {
case -1: perror("fork"); exit(1);
case 0: close(pipefd[0]);

// write to fd 1
break;

default: close(pipefd[1]);
// read from fd 0

break;
}

IPC Example: Unix Shared Memory

� int shmget(key_t key, size_t size, int shmflg);
� Create a shared memory segment
� key: unique identifier of a shared memory segment, or
IPC_PRIVATE

� int shmat(int shmid, const void *addr, int flg)
� Attach shared memory segment to address space of the � Attach shared memory segment to address space of the
calling process

� shmid: id returned by shmget()

� int shmdt(const void *shmaddr);
� Detach from shared memory

� Problem: synchronization! (later)

Next lecture

� Process in Linux

