
W4118 Operating Systems

Junfeng Yang

Outline

� Linux overview

� Interrupt in Linux

� System call in Linux

What is Linux

� A modern, open-source OS, based on UNIX
standards
� 1991, 0.1 MLOC, single developer

• Linus Torvalds wrote from scratch
• Main design goal: UNIX compatibility

� Now, 10 MLOC, developers worldwide
• Unique source code management model

� Linux distributions: ubuntu, redhat, fedora,
Gentoo, CentOS, …
� Kernel is Linux
� Different set of user applications and package
management systems

Linux Licensing

� The GNU General Public License (GPL)

� Anyone creating their own derivative of Linux
may not make the derived product proprietary;
software released under GPL may not be
redistributed as a binary-only product

Linux kernel structure

Applications

System Libraries (libc)

System Call Interface

Hardware

Architecture-Dependent Code

I/O Related Process Related
Scheduler

Memory Management

IPC

File Systems

Networking

Device Drivers

M
od

ul
es

Linux kernel structure (cont.)

� Core + dynamically loaded modules
� E.g., device drivers, file systems, network protocols

� Modules were originally developed to support
the conditional inclusion of device drivers
� Early OS has to include code for all possible device
or be recompiled to add support for a new device

� Modules are now used extensively
� Standard way to add new functionalities to kernel

� Reasonably well designed kernel-module interface

Linux kernel source

� Download: kernel.org
� Browse: lxr.linux.no (with cross reference)
� Directory structure

� include: public headers
� kernel: core kernel components (e.g., scheduler)
� arch: hardware-dependent code
� fs: file systems
� mm: memory management
� ipc: inter-process communication
� drivers: device drivers
� usr: user-space code
� lib: common libraries

Outline

� Linux overview

� Interrupt in Linux

� System call in Linux

Privilege level

� Supports four rings (privilege levels); most
modern kernels use only two level
� ring 3: user mode
� ring 0: kernel mode

� CPU keeps track of the current privilege level
(CPL) using the cs segment register

� In Linux
� __USER_CS: selector for user code segment
� __KERNEL_CS: selector for kernel code segment

� include/asm-i386/segment.h

Memory protection

� Segmentation: physical memory is organized as
variable-size segments

� Paging: physical memory is organized as equal-
size pages

� The (simplified) idea: memory is associated
with descriptor privilege level (DPL)
� if CPL <= DPL, access okay

Interrupt classification

� Interrupts, asynchronous from device
� Maskable interrupts

� Non-Maskable interrupts (NMI): hardware error

� Exceptions, synchronous from CPU
� Intel manual used a bunch of different terms …

� Faults: instruction illegal to execute
• Often correctable and instruction retried

� Traps: instruction intends to switch control to
kernel
• Resume from the next instruction

Interrupt number assignment

� Total 255 possible interrupts

� 0-31: reserved for non-maskable interrupt
� 0: division by 0

� 3: breakpoint

� 14: page fault

� Remaining 224: programmable by OS
� 0x80: Linux interrupt

Interrupt descriptor table

� Gate descriptor

� Preventing user code from triggering random
interrupts
� On Trap, if CPL <= Gate DPL, access ok

Seting up IDT in Linux

� Initialization
� Start by setting all descriptors to ignore_int()

� Then, set up the gate descriptors
� arch/i386/kernel/traps.c

Linux Lingo

� Linux interrupt gate: Intel interrupt, from device
� DPL = 0
� Disable interrupt

� set_intr_gate(2, &nmi)

� System gate: Intel trap, instruction intends to
trigger interrupt
� DPL = 3
� Often disable interrupt

� set_system_gate(SYSCALL_VECTOR, &system_call)

� Trap gate: Intel fault, instruction illegal
� DPL = 0

� set_trap_gate(0, ÷_error)

Outline

� Linux overview

� Interrupt in Linux

� System call in Linux

Linux system call overview

{

printf(“hello world!\n”);

}

libc
User mode

kernel mode

%eax = sys_write;
int 0x80

IDT0x80

system_call() {
fn = syscalls[%eax]

}
syscalls

table

sys_write(…) {
// do real work
}

Syscall wrapper macros

� Macros with name _syscallN(), where N is the number of
system call parameters
� _syscallN(return_type, name, arg1type, arg1name, …)
� in linux-2.6.11/include/asm-i386/unistd.h
� Macro will expands to a wrapper function

� Example:
� long open(const char *filename, int flags, int mode);
� _syscall3(long, open, const char *, filename, int, flags,

int, mode)

� Note: _syscallN obsolete after 2.6.18; now syscall
(…), can take different # of args

Lib call/syscall return codes

� Library calls return -1 on error and place a
specific error code in the global variable errno

� System calls return specific negative values to
indicate an error
� Most system calls return –errno

� The library wrapper code is responsible for
conforming the return values to the errno
convention

System call dispatch
(arch/i386/kernel/entry.S)

.section .text

system_call:

// copy parameters from registers onto stack…

call sys_call_table(, %eax, 4)

jmp ret_from_sys_call

ret_from_sys_call:

// perform rescheduling and signal-handling…

iret // return to caller (in user-mode)

// File arch/i386/kernel/entry.S

Why jump table? Can’t we use if-then-else?

The system-call jump-table

� There are approximately 300 system-calls

� Any specific system-call is selected by its ID-
number (it’s placed into register %eax)

� It would be inefficient to use if-else tests to
transfer to the service-routine’s entry-point

� Instead an array of function-pointers is
directly accessed (using the ID-number)

� This array is named ‘sys_call_table[]’
� Defined in file arch/i386/kernel/entry.S

System call table definition

.section .data
sys_call_table:

.long sys_restart_syscall

.long sys_exit

.long sys_fork

.long sys_read

.long sys_write
…

NOTE: should avoid reusing syscall numbers
(why?); deprecated syscalls are implemented
by a special “not implemented” syscall
(sys_ni_syscall)

Syscall naming convention

� Usually a library function “foo()” will do some
work and then call a system call (“sys_foo()”)

� In Linux, all system calls begin with “sys_”
� Reverse is not true

� Often “sys_foo()” just does some simple error
checking and then calls a worker function
named “do_foo()”

Tracing System Calls

� Use the “strace” command (man strace for info)

� Linux has a powerful mechanism for tracing
system call execution for a compiled application

� Output is printed for each system call as it is
executed, including parameters and return codes

� The ptrace() system call is used to implement
strace
� Also used by debuggers (breakpoint, singlestep, etc)

� You can trace library calls using the “ltrace”
command

Passing system call parameters

� The first parameter is always the syscall #

� eax on Intel

� Linux allows up to six additional parameters

� ebx, ecx, edx, esi, edi, ebp on Intel

� System calls that require more parameters package the
remaining parameters in a struct and pass a pointer to
that struct as the sixth parameter

� Problem: must validate pointers
� Could be invalid, e.g. NULL � crash OS

� Or worse, could point to OS, device memory � security hole

How to validate user pointers?

� Too expensive to do a thorough check

� Must check that the pointer is within all valid
memory regions of the calling process

� Solution: no comprehensive check, but users have
to use paranoid routines to access user pointers

Paranoid functions to access user pointers

Function Action

get_user(), __get_user() reads integer (1,2,4 bytes)

put_user(), __put_user() writes integer (1,2,4 bytes)

copy_from_user(), __copy_from_user copy a block from user space

copy_to_user(), __copy_to_user() copy a block to user space

strncpy_from_user(),
__strncpy_from_user()

copies null-terminated string from
user space

strnlen_user(), __strnlen_user() returns length of null-terminated
string in user space

clear_user(), __clear_user() fills memory area with zeros

Intel Fast System Calls

� int 0x80 not used any more (I lied …)

� Intel has a hardware optimization (sysenter)
that provides an optimized system call
invocation

� Read the gory details in ULK Chapter 10

Next lecture

� Process

� Homework 2 will be out tonight

