
W4118 Operating Systems

Junfeng Yang

Outline

� Interrupt

� Protection

� System call

Interrupt overview of how OS works

� First, needs to boot OS
� CPU jumps to bootstrapping code at fixed mem location

� Bootstrapping code loads OS from fixed disk location

� OS initializes services

� OS creates first user process � more user processes

� Then, OS waits for events: “event driven”
� No event � OS not involved

� Event shows up � OS handles

• Interrupts from hardware

• System calls or exceptions caused by applications (cause
interrupt)

Dual mode of operation

� Interrupt handling involves privileged
operations

� Hardware protection mechanism
� Kernel mode: can do all operations, including
privileged

� User mode: can do only non-privileged operations

� Dual mode of operation
� Interrupt causes CPU to transit from user mode to
kernel mode

� Return from interrupt handling causes CPU to
transit from kernel mode to user mode

Interrupt dispatch overview

� CPU checks for interrupts
while (fetch next instruction) {

run instruction;
if (interrupt) {

save EIP // user mode
find and jump to OS-provided interrupt handler // kernel mode
restore EIP // user mode

}
}

� Questions
� How does h/w find interrupt handler?

� What does interrupt handler do?

How dos h/w find interrupt handler?

� Each type of interrupt is assigned an interrupt
number

� OS sets up Interrupt Descriptor Table (IDT) at
boot time
� Lives in memory, h/w knows its base
� Each entry is an interrupt handler, also called interrupt
routine or Interrupt Service Routine (ISR)

� Defines all kernel entry points

� H/w finds interrupt handler using interrupt
number as index into IDT
� handler = IDT[intr_number]

What does interrupt handler do?

� Device-specific stuff

� Save/restore process state (registers)
� May disable interrupts to avoid further
interruption
� cli() – disable interrupts
� sti() – enable interrupts
� can mask specific interrupts as well

� Want to limit interrupt processing overhead:
schedule for later

� Before return from interrupt, may need to do OS
book keeping
� reschedule, signals, etc.

X86 interrupt hardware (legacy)

� I/O devices raise Interrupt Request lines (IRQ)

� Programmable Interrupt controller (PIC) maps
IRQ to Interrupt Numbers

� PIC raises INTR line to interrupt CPU

� Nest PIC for more devices

x86
CPU

Master
PIC

(8259)

Slave
PIC

(8259)
INTR

Programmable Interval-TimerKeyboard Controller

Real-Time Clock

SCSI Disk

Ethernet

IRQs
intr #

X86 interrupt dispatch

PIC CPU

Memory Bus

INTR

IRQs

IDT
0

255

ISR

idtr

intr #

Mask points

in
t
r
 #

Interrupt v.s. Polling

� Instead for device to interrupt CPU, CPU can
poll the status of device
� Intr: “I want to see a movie.”

� Poll: for(each week) {“Do you want to see a movie?”}

� Good or bad?
� For mostly-idle device?

� For busy device?

Outline

� Interrupt

� Protection

� System call

Need for protection

� Kernel is privileged

� User applications are untrusted
� Security: malicious programs read/write data

� Reliability: buggy programs crash machine

� Must protect kernel from user applications

Hardware mechanisms for protection

� Dual model of operation
� All operations in kernel mode

� Non-privileged operations in user mode

� Well defined interface to transit between modes

� Memory protection
� E.g, base and limit registers

� Kernel sets base and limit before creating process

� Timer interrupt
� Kernel periodically gets back control

Example privileged operations

� I/O

� Write protected memory region
� E.g., interrupt descriptor table

� Set base/limit registers

� Load timer interrupt handler

Outline

� Interrupt

� Protection

� System call

System call

� Applications cannot perform privileged
operations themselves

� Must request OS to do so on their behalf by
issuing system calls

� OS must validate system call parameters

Typical system call implementation

� Implemented as a software interrupt

� Puts arguments in certain places, e.g., regisers
� Key argument: system call number

� Executes interrupt instruction, e.g., int 0x80

� Interrupt generated, switching to kernel mode

� Invokes interrupt handler for 0x80

� Looks up system call table to find right routine

� Jumps to appropriate system call routine

� Returns to user mode

Next lecture

� Interrupts, system calls, and protection in
Linux

