
W4118 Operating Systems

Junfeng Yang

Outline

� PC organization

� x86 instruction set

� gcc inline assembly and calling conventions

PC organization

� One or more CPUs, memory, and device
controllers connected through system bus

CPU: “brain”

� Use 16-bit 8086 (1978) as example

� CPU runs instructions

� Needs work space: registers
� Four 16-bit data registers: AX, BX, CX, DX
� Each has two 8-bit halves: e.g., AH, AL
� Very fast, very few

� More work space: memory
� Array of data cells
� CPU sends out address on address lines
� Data comes back on data lines or is written to data lines

while (fetch next instruction)
run instruction;

Address registers

� Needs pointers to memory: address registers
� SP: stack pointer

� BP: frame base pointer

� SI: source index

� DI: destination index

� Instructions are in memory too!
� IP: instruction pointer

� Increment after running each instruction

� Can be modified by CALL, RET, JMP, conditional jumps

Segment registers

� More than 2^16 bytes of physical memory?
� 8086 has 20-bit addresses � 1 MB RAM

� Segment registers
� CS: code segment, for fetches via IP

� SS: stack segment, for load/store via SP and BP

� DS: data segment, for load/store via other
registers

� ES: another data segment, destination for string
operations

� 20 bit address = seg * 16 + 16 bit address

FLAGS

� Want conditional jumps
� FLAGS – various condition codes of last instruction

• ZF: zero flag

• SF: signed flag

• OF: overflow flag

• CF: carry flag

• PF: parity flag

• IF: interrupt flag, whether interrupts are enabled

� J[N]Z J[N]S J[N]O …

Intel 80386 and AMD K8

� 16-bit addresses and data were painfully small

� 80386 added support for 32 bit (1985)
� Registers are 32 bits wide

• E.g., EAX instead of AX

� AMD K8 added support for 64 bit (2003)
� Codename Althon 64

� Registers are 64 bits wide

� RAX instead of EAX

� x86-64, x64, amd64, intel64: all same thing

Outline

� PC organization

� x86 instruction set

� gcc inline assembly and calling conventions

Syntax

� Intel manual: op dst, src

� AT&T (gcc/gas): op src, dst
� op uses suffix b, w, l for 8, 16, 32-bit operands

� Operands are registers, constants, memory via
register, memory via constant

� Examples
� movl %ebx, %edx ; edx = ebx register

� movl $0x123, %edx ; edx = 0x123 immediate

� movl 0x123, %edx ; edx = *(int32_t*)0x123 direct

� movl (%ebx), %edx ; edx = *(int32_t*)ebx indirect

� movl 4(%ebx), %edx ; edx = *(int32_t*)(ebx+4) displaced

Instruction classes

� Data movement: MOV, PUSH, POP, …

� Arithmetic: TEST, SHL, ADD, AND, …

� I/O: IN, OUT, …

� Control: JMP, JZ, JNZ, CALL, RET

� String: MOVSB, REP, …

� System: INT, IRET

Outline

� PC organization

� x86 instruction set

� gcc inline assembly and calling conventions

Build process: C code to x86 instructions

C code
(ASCII
text)

proprocessor

C code with
#include etc
expanded
(ASCII text)

compiler
Assembly
code (ASCII
text)

assembler

linker
Program
image
(binary)

.o (binary,
machine
readable)

loader

gcc inline assembly

� Embed assembly code in C code

� Syntax: asm (“assembly code”)

e.g., asm ("movl %eax %ebx")

� Advanced syntax
asm (assembler template

: output operands /* optional */
: input operands /* optional */
: list of clobbered registers /* optional */);

gcc inline assembly example

int a=10, b;

asm ("movl %1, %%eax;

movl %%eax, %0;"

:"=r"(b) /* output operands */

:"r"(a) /* input operands */

:"%eax" /* clobbered registers */);

� Equivalent to b = a
� Operand number: %0, %1, … %n-1, n = the total

number of operand
� b is output, referred to by %0
� a is input, referred to by %1

� “r” store in registers
� “=” write only

Stack

� Stack: work space (memory) for function calls
� Store arguments, return address, temp variables

� Function calls: last in, first out (LIFO)

� Typical usage
• Caller pushes arguments

• Caller pushes return address

• Invokes callee

• Callee does work

• Callee pop return address and return

• …

x86 instructions to access stack

� X86 dictates that stack grows down

� pushl %eax = subl $4, %esp

movl %eax, (%esp)

� popl %eax = movl (%esp), %eax

addl $4, %esp

� call 0x12345 = pushl %eip

movl $0x12345, %eip

� ret = popl %eip

gcc caller-callee contract on x86

� At entry of callee (i.e., just after call)
� %eip points at first instruction of callee
� %esp+4 points at first argument
� %esp points at return address

� After ret instruction
� %eip contains return address
� %esp points at argument pushed by caller
� %eax holds return value

• %eax + %edx for 64 bit, %eax trash for void return

� Called function may have trashed arguments
� Caller save: %eax, %edx, and %ecx may be trashed
� Callee save: %ebp, %ebx, %esi, %edi must contain
contents from time of call

gcc calling convention

� Each function has a stack frame marked by
%ebp, %esp
� %esp can move to make stack frame bigger, smaller
� %ebp points at saved %ebp from caller, chain

� Function prologue
pushl %ebp

movl %esp, %ebp

� Function epilog
movl %ebp, %esp

popl %ebp

gcc calling convention (cont.)

� Prologue can be replaced by

enter $0, $0

� Not usually used: 4 bytes v.s. 3 for pusl+movl, not
on hardware fast-patch anymore

� Epilog can be replaced by

leave

� Usually used: 1 byte v.s. 3 for movl+popl

gcc calling convention example

� C code

int main(void) { return f(8) + 1; }

int f(int x) { return g(x); }

int g(int x) { return x+3; }

Assembly

_main:
; prologue

pushl %ebp
movl %esp, %ebp

; body
pushl $8
call _f
addl $1, %eax

; epilogue
movl %ebp, %esp
popl %ebp
ret

_f:
; prologue

pushl %ebp
movl %esp, %ebp

; body
pushl 8(%esp)
call _g

; epilogue
movl %ebp, %esp
popl %ebp
ret

_g:
; prologue

pushl %ebp
movl %esp, %ebp
save %ebx
pushl %ebx

; body
movl 8(%ebp), %ebx
addl $3, %ebx
movl %ebx, %eax

; restore %ebx
popl %ebx

; epilogue
movl %ebp, %esp
popl %ebp
ret

Next lecture

� System call and interrupt

