
W4118 Operating Systems
OS Overview

Junfeng Yang

Outline

� OS definitions

� OS abstractions/concepts

� OS structure

� OS evolution

What is OS?

� �A program that acts as an intermediary
between a user of a computer and the
computer hardware.�

OS

HW

App

User

�stuff between�

Two popular definitions

� Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use

� Bottom-up perspective: resource
manager/coordinator, manage your computer�s
resources

OS = hardware abstraction layer

� �standard library� �OS as virtual machine�
� E.g. printf(�hello world�), shows up on screen
� App can make system calls to use OS services

� Why good?
� Ease of use: higher level of abstraction, easier to

program
� Reusability: provide common functionality for reuse

� E.g. each app doesn�t have to write a graphics driver
� Portability / Uniformity: stable, consistent

interface, different OS/version/hardware look
same

� E.g. scsi/ide/flash disks

Why abstraction hard?

� What are the right abstractions ???
� Too low level ?

� Lose advantages of abstraction

� Too high level?
� All apps pay overhead, even those don�t need

� Worse, may work against some apps
� E.g. Database

� Next: example OS abstractions

Two popular definitions

� Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use

� Bottom-up perspective: resource
manager/coordinator, manage your computer�s
resources

OS = resource manager/coordinator

� Computer has resources, OS must manage.
� Resource = CPU, Memory, disk, device, bandwidth, �

Memory
management

File system
management

CPU
scheduling

Network
stack

OS

MemoryCPU NICDisk

System Call
Interface

Hardware

Shell gcc browserppt

Device
drivers

Disk system
management

OS = resource manager/coordinator
(cont.)

� Why good?
� Sharing/Multiplexing: more than 1 app/user to use

resource
� Protection: protect apps from each other, OS from

app
� Who gets what when

� Performance: efficient/fair access to resources

� Why hard? Mechanisms v.s. policies
� Mechanism: how to do things
� Policy: what will be done
� Ideal case: general mechanisms, flexible policies

� Difficult to design right

Outline

� OS definitions

� OS abstractions/concepts

� OS structure

� OS evolution

OS abstraction: process

� Running program, stream of running
instructions + process state
� A key OS abstraction: the applications you use are

built of processes
� Shell, powerpoint, gcc, browser, �

� Easy to use
� Processes are protected from each other

� process = address space
� Hide details of CPU, when&where to run

Process creation system calls

� int fork (void)
� Create a copy of the invoking process
� Return process ID of new process in �parent�
� Return 0 in �child�

� int execv (const char* prog, const char*

argv[])
� Replace current process with a new one
� prog: program to run
� argv: arguments to pass to main()

� int wait (int *status)
� wait for a child to exit

Simple Shell Example

// parse user-typed comm and line into com mand
and args

�

// execute the comm and

switch(pid = fork ()) {

 case -1: perror (� fork�); break;

 case 0: // child

 execv (com mand, args, 0); break;

 default : // parent

 wait (0); break; // wait for child to
term inate

 }

Process communication system calls

� int pipe(int fds[2])
� Creates a one way communication channel
� fds[2] is used to return two file descriptors
� Bytes written to fds[1] will be read from fds[0]

� Often used together with fork() to create a
channel between parent and child

OS abstraction: thread

� �miniprocesses,� stream of instructions +
thread state
� Convenient abstraction to express concurrency in

program execution and exploit parallel hardware

� More efficient communication than processes

for(;;) {

 int fd = accept_client ();

 create_thread(process_request , fd);

}

OS abstraction: file

� Array of bytes, often persistent across
reboot
� Nice, clean way to read and write data
� Hide the details of disk devices (hard disk, CDROM,

flash �)

 Related abstraction: directory

� Collection of file entries

File system calls

� int open(const char *path, int flags, int mode)
� Opens a file and returns an integer called a file descriptor

to use in other file system calls
� Default file descriptors

� 0 = stdin, 1 = stdout, 2 = stderr

� int write(int fd, const char* buf, size_t sz)
� Writes sz bytes of data in buf to fd at current file offset
� Advance file offset by sz

� int close(int fd)

� int dup2 (int oldfd, int newfd)
� makes newfd an exact copy of oldfd
� closes newfd if it was valid
� two file descriptors will share same offset

Outline

� OS definitions and functionalities

� OS abstractions/concepts

� OS structure

� OS evolution

OS structure

� Can define OS by structure: what goes into
the kernel?
� Kernel: most interesting part of OS

� Can do everything

� Manages other parts of OS

� Different structures lead to different
� Performance, functionality, ease of use, security,

reliability, portability, extensibility, cost, �

� Tradeoffs depend on technology and workload

Example OS structure: monolithic

� Most traditional stuff in kernel

Unix System Architecture

Example OS structure: microkernel

� Try to move stuff out of kernel

Minix 3 System Architecture

Example OS structure: virtual
machines

� Exports a fake hardware interface so that
multiple OSes can run on top

Non-virtual Machine Virtual Machine

Outline

� OS definitions and functionalities

� OS abstractions/concepts

� OS structure

� OS evolution

OS evolution

� Many outside factors affect OS

� User needs + technology changes � OS must
evolve
� New/better abstractions to users
� New/better algorithms to implement abstractions
� New/better low-level implementations (hw change)

� Current OS: evolution of these things

Major trend in History

� Hardware: cheaper and cheaper
� Computers/user: increases

� Timeline
� 70s: mainframe, 1 / organization
� 80s: minicomputer, 1 / group
� 90s: PC, 1 / user

70s: mainframe

� Hardware:
� Huge, $$$, slow
� IO: punch card, line printer

� OS
� simple library of device drivers (no resource

coordination)
� Human OS: single programmer/operator programs, runs,

debugs
� One job at a time

� Problem: poor performance (utilization / throughput)
Machine $$$, but idle most of the time because

programmer slow

Batch Processing

� Batch: submit group of jobs together to machine
� Operator collects, orders, runs (resource coordinator)

� Why good? can better optimize given more jobs
� Cover setup overhead
� Operator quite skilled at using machine
� Machine busy more (programmers debugging offline)

� Why bad?
� Must wait for results for long time

� Result: utilization increases, interactivity drops

Spooling

� Problem: slow I/O ties up fast CPU
� Input � Compute � Output
� Slow punch card reader and line printer

� Idea: overlap one job�s IO with other jobs� compute

� OS functionality
� buffering, DMA, interrupts

� Good: better utilization/throughput
� Bad: still not interactive

Multiprogramming

� Spooling allows multiple jobs
� Multiprogramming

� keep multiple jobs in memory, OS
chooses which to run

� When job waits for I/O, switch

� OS functionality
� job scheduling, mechanism/policies
� Memory management/protection

� Good: better throughput
� Bad: still not interactive

80s: minicomputer

� Hardware gets cheaper. 1 / group
� Need better interactivity, short response time

� Concept: timesharing
� Fast switch between jobs to give impression of dedicated

machine

� OS functionality:
� More complex scheduling, memory management
� Concurrency control, synchronization

� Good: immediate feedback to users

90s: PC

� Even cheaper. 1 / user
� Goal: easy of use, more responsive
� Do not need a lot of stuff

� Example: DOS
� No time-sharing, multiprogramming, protection, VM
� One job at a time
� OS is subroutine again

� Users + Hardware � OS functionality

Current trends?

� Large
� Users want more features
� More devices
� Parallel hardware
� Result: large system, millions of lines of code

� Reliability, Security
� Few errors in code, can recover from failures
� At odds with previous trend

� Small: e.g. handheld device
� New user interface
� Energy: battery life
� One job at a time. OS is subroutine again

Next lecture

� PC hardware and x86 programming

