
Automatic Verification of Determinism
for Structured Parallel Programs

Martin Vechev1, Eran Yahav1, Raghavan Raman2, and Vivek Sarkar2

1 IBM T.J. Watson Research Center.
{mtvechev,eyahav}@us.ibm.com

2 Rice University.
{raghav,vsarkar}@rice.edu

Abstract. We present a static analysis for automatically verifying determinism
of structured parallel programs. The main idea is to leverage the structure of the
program to reduce determinism verification to an independence property that can
be proved using a simple sequential analysis. Given a task-parallel program, we
identify program fragments that may execute in parallel and check that these frag-
ments perform independent memory accesses using a sequential analysis. Since
the parts that can execute in parallel are typically only a small fraction of the
program, we can employ powerful numerical abstractions to establish that tasks
executing in parallel only perform independent memory accesses. We have im-
plemented our analysis in a tool called DICE and successfully applied it to ver-
ify determinism on a suite of benchmarks derived from those used in the high-
performance computing community.

1 Introduction

One of the main difficulties in parallel programming is the need to reason about possible
interleavings of concurrent operations. The vast number of interleavings makes this task
difficult even for small programs, and impossible for any sizeable software.

To simplify reasoning about parallel programs, it is desirable to reduce the number
of interleavings that a programmer has to consider [19,4]. One way to achieve that is
to require parallel programs to be deterministic. Informally, determinism means that
for a given input state, the parallel program will always produce the same output state.
Determinism is an attractive correctness property as it abstracts away the interleavings
underlying a computation.

In this paper, we present a technique for automatic verification of determinism. A
key feature of our approach is that it uses sequential analysis to establish indepen-
dence of statements in the parallel program. The analysis works by applying simple
assume-guarantee reasoning: the code of each task is analyzed sequentially, under the
assumption that all memory locations the task accesses are independent from locations
accessed by tasks that may execute in parallel. Then, based on the sequential proofs
produced in the first phase, the analysis checks whether the independence assumption
holds: for each pair of statements that may execute in parallel, it (conservatively) checks
that their memory accesses are independent. Our analysis does not assume any a priori
bounds on the number of heap allocated objects, the number of tasks, or sizes of arrays.

Our approach can be viewed as automatic application of the Owicki/Gries method,
used to check independence assertions. The restricted structure of parallelism limits the
code for which we have to perform interference checks and enables us to use powerful
(and costly) numerical domains.

Because in our language arrays are heap allocated objects, our analysis combines
information about the heap with information about array indices. We leverage advanced
numerical domains such as Octagon [23] and Polyhedra [7] to establish independence
of array accesses. We show that tracking the relationships between index variables in
realistic parallel programs requires such rich domains.

There has been a large volume of work on establishing independence of statements
in the context of automatic parallelization (e.g.,[17,2,24]). These techniques were in-
tended to be part of a parallelizing compiler, and their emphasis is on efficiency. Hence,
they usually try to detect common patterns via simple structural conditions. In contrast,
our focus is on verification and we use precise (and often expensive) abstract domains.

Our work can be viewed as a case study in using numerical domains for establishing
determinism in realistic parallel programs. We show that proving determinism requires
abstractions that are quite precise and are able to capture linear inequalities between
array indices, as well as establish that different array cells point to different objects.

We implemented our analysis in a tool called DICE based on the Soot [36] analysis
framework. DICE uses the Apron [15] numerical library to provide advanced numerical
domains (specifically, the octagon and polyhedra domains). Our tool takes as input a
normal Java program annotated with structured parallel constructs and automatically
checks whether the program is deterministic. In the case where the analysis fails to
prove the program as deterministic, DICE provides a description of (abstract) shared
locations that potentially lead to non-determinism.

Related Work Recently, there has been growing interest in dynamically checking deter-
minism [5,33]. The main weakness of such dynamic techniques is that they may miss
executions where determinism violations occur. Other approaches have also explored
building deterministic programs by construction, both in the language [10,4] and via
dynamic mechanisms such as modifying the scheduler [8,28]. A related property that
has gained much attention over the years is race-freedom (e.g., [13,27,22,34,25,27,11]).
However, race-freedom and determinism are not comparable properties: a parallel pro-
gram can be race-free but not deterministic or deterministic but not race-free.

Main Contributions The main contributions of this paper are:

– We present a static analysis that can prove determinism of structured parallel pro-
grams. Our analysis works by analyzing each task sequentially, computing asser-
tions using a numerical domain and checking whether the computed assertions in-
deed imply determinism.

– We implemented our analysis in a tool called DICE based on Soot [36] and the
Apron [15] numerical library. The analysis handles Java programs augmented with
structured parallel constructs.

– We evaluated DICE on a set of parallel programs that are variants of the well-known
Java JGF benchmarks [9]. Our analysis managed to prove five of the eight bench-
marks as deterministic.

2 Overview

In this section, we informally describe our approach with a simple Java program aug-
mented with structured parallel constructs.

2.1 Motivating Example

Fig. 1 shows the method update which is a simplified and normalized code fragment
from the SOR benchmark program. The SOR program uses parallel computation to apply
the method of successive over-relaxation for solving a system of linear equations. For
this program, we would like to establish that it is deterministic.

1 void update(final double[][] G, final int start, final int last,
2 final double c1, final double c2, final int nm, final int ps) {
3 finish foreach (tid: [start,last]) {
4 int i = 2 * tid - ps;
5 double[] Gi = G[i]; {R:({AG}, {idx = 2*tid - ps}) }
6 double[] Gim1 = G[i - 1]; {R:({AG}, {idx = 2*tid - ps - 1}) }
7 double[] Gip1 = G[i + 1]; {R:({AG}, {idx = 2*tid - ps + 1}) }
8 for (int j=1; j<nm; j++)
9 double tmp1 = Gim1[j] {R:({AGim1}, {1 ≤ idx < nm})}

10 double tmp2 = Gip1[j] {R:({AGip1}, {1 ≤ idx < nm})}
11 double tmp3 = Gi[j-1] {R:({AGi}, {0 ≤ idx < nm - 1})}
12 double tmp4 = Gi[j+1] {R:({AGi}, {2 ≤ idx < nm + 1})}
13 double tmp5 = Gi[j]; {R:({AGi}, {1 ≤ idx < nm})}
14 Gi[j] = {W:({AGi}, {1 ≤ idx < nm})}
15 c1 * (tmp1 + tmp2 + tmp3 + tmp4) + c2 * tmp5
16 }
17 }

Fig. 1. Example (normalized) code extracted from the SOR benchmark.

This program is written in Java with structured parallel constructs. The foreach (var
: [l,h]) statement spawns child tasks in a loop, iterating on the value range between l
and h. Each loop iteration spawns a separate task and passes a unique value in the range
[l, h] to that task via the task local variable var. A similar construct, called invokeAll,
is available in the latest Java Fork-Join framework [18].

In addition to foreach, our language also supports constructs such as fork, join,
async and finish. These are basic constructs with similar counterparts in languages
such as X10 [6], Cilk [3] and the Java Fork-Join framework [18]. The semantics of
finish { s } statement is that the task executing the finish must block and wait at the
end of this statement until all descendant tasks created by this task in s (including their
recursively created children tasks), have terminated.

In Fig. 1, tasks are created by foreach in the range of [start, last]. Each task
spawned by the foreach loop is given a unique value for tid. This value is then used
to compute an index for accessing a two-dimensional array G[][]. Because foreach
is preceded by the finish construct, the main task which invoked the foreach statement
cannot proceed until all concurrently executing tasks created by foreach have termi-
nated.

Limitations Our analysis currently does not handle usage of synchronization constructs
such as monitors, locks or atomic sections.

2.2 Establishing Determinism by Independence

Our analysis is able to automatically verify determinism of this example by showing that
statements that may execute in parallel either access disjoint locations or read from the
same location. Our approach operates in two steps: (i) analyzing each task sequentially
and computing an over-approximation of its memory accesses; (ii) checking indepen-
dence of memory accesses that may execute in parallel.

Computing an Over-approximation of Memory Accesses The first step in our approach
is to compute an over-approximation of the memory locations read/written by every
task at a given program point. To simplify presentation, we focus on the treatment of
array accesses. The treatment of object fields is similar and simpler and while we do
not present the details here, our analysis also handles that case.

In our programming language, arrays are heap-allocated objects: to capture infor-
mation about what array locations are accessed, our abstract representation combines
information about the heap with information about array indices.

Gi1Gim11 Gip11

Gi2Gim12 Gip12

Gi3Gim13 Gip13

Fig. 2. Example of the array
G[][] in SOR with three tasks
with tids 1,2,3 accessing it.

Fig. 2 shows the array G[][] of our running exam-
ple where three tasks with task identifiers (tid) 1,2,
and 3 access the array. In the figure, we subscript local
variables with the task identifier of the task to which
they belong. Note that the only columns being written
to are Gi1, Gi2, Gi3. Columns which are accessed by
two tasks are always only read, not written. The 2D
array is represented using one-dimensional arrays.

A key aspect of our approach is that we use simple
assume/guarantee reasoning to analyze each task sepa-
rately, via sequential analysis. That is, we compute an
over-approximation of accessed memory locations for
a task assuming that all other tasks that may execute in
parallel only perform independent accesses.

Fig. 1 shows the results of our sequential analysis
computing symbolic ranges for array accesses. For ev-
ery program label in which an array is being accessed,
we compute a pair of heap information, and array in-
dex range. The heap information records what abstract locations may be pointed to by
the array base reference. The array index range records what indices of the array may be
accessed by the statement via constraints on the idx variable. In this example, we used
the polyhedra abstract domain to abstract numerical values, and the array index range
is generally represented as a set of linear inequalities on local variables of the task.

For example, in line 5 of the example, the array base G may point to a single abstract
location AG, and the statement only reads a single cell in the array at index 2∗ tid−ps.
Note that the index expression uses the task identifier tid. It is often the case in our
programs that accessed array indices depend on the task identifier. Furthermore, the

coefficient for tid in this constraint is 2 and thus, this information could not have
been represented directly in the Octagon numerical domain. In Section 6, we will see a
variety of programs, where some can be handled by Polyhedra and some by Octagon.

Checking Independence Next, we need to establish that array accesses of parallel tasks
are independent. The only write access in this code is the write to Gi[j] in line 14. Our
analysis therefore has to establish that for different values of tid (i.e., different tasks),
the write in line 14 does not conflict with any of the read/write accesses made by other
parallel tasks.

For example, we need to prove that when two different tasks identifiers tid1 6= tid2
execute the write access in line 14, they will access disjoint locations. Our analysis can
only do that if the pointer-analysis is precise enough to establish the fact that G[2 ∗
tid1 − ps] 6= G[2 ∗ tid2 − ps] when tid1 6= tid2. In this example program, we can
indeed establish this fact automatically based on an analysis that tracks how the array G
has been initialized. Generally, of course, the fact that cells of an array point to disjoint
objects is hard to establish and may require expensive analyses such as shape analysis.

1 void update(final double[][] B, final double[][] C) {
2 finish {
3 asynch {
4 for (int i=1;i <=n; i++) {
5 double tmp1 = C[2*i]; {R:({AC}, {2 ≤ idx ≤ 2*n})}
6 B[i] = tmp1; {W:({AB}, {1 ≤ idx ≤ n})}
7 }
8 }
9 asynch {

10 for (int j=n;j <=2*n; j++) {
11 double tmp2 = C[2*j+1]; {R:({AC}, {2*n+1 ≤ idx ≤ 4*n+1})}
12 B[j] = tmp2; {W:({AB}, {n ≤ idx ≤ 2*n})}
13 }
14 }
15 }
16 }

Fig. 3. A simple example for parallel accesses to shared arrays.

2.3 Reporting Potential Sources of Non-Determinism

When independence of memory accesses cannot be established, our approach reports
the shared memory locations that could not be established as independent.

Consider the simple example of Fig. 3. This example captures a common pattern
in parallel applications where different parts of a shared array are updated in parallel.
Applying our approach to this example, yields the ranges shown in the figure. Here, we
used polyhedra analysis and a simple points-to analysis. Our simple points-to analysis
is precise enough to establish two separate abstract locations for B and C. Checking the
array ranges, however, shows that the write of line 6 overlaps with the write of line 12

on the array cell with index n. For this case, our analysis reports that the program is po-
tentially non-deterministic due to conflicting access on the abstract locations described
by ({AB}, {idx == n}).

In some cases, such failures may be due to imprecision of the analysis. In Section 6,
we discuss the abstractions required to prove determinism of several realistic programs.

3 Concrete Semantics

We assume a standard concrete semantics which defines a program state and evaluation
of an expression in a program state. The semantic domains are defined in a standard
way in Table 1, where TaskIds is a set of unique task identifiers, VarIds is a set of local
variable identifiers, and FieldId is a set of (instance) field identifiers.

L\ ⊆ objs\ an unbounded set of dynamically allocated objects
v\ ∈ Val = objs\ ∪ {null} ∪N values
pc\ ∈ PC = TaskIds ⇀ Labs program counters
ρ\ ∈ Env\ = TaskIds× VarIds ⇀ Val environment
h\ ∈ Heap\ = objs\ × FieldId ⇀ Val heap
A\ ⊆ L\ array objects

Table 1. Semantic Domains

A program state is a tuple: σ = 〈pc\σ, L\σ, ρ\σ, h\σ, A\σ〉 ∈ ST \, where ST \ = PC×
2objs\

× Env\ ×Heap\ × 2objs\

.
A state σ keeps track of the program counter for each task (pc\σ), the set of allocated

objects (L\σ), an environment mapping local variables to values (ρ\σ), a mapping from
fields of allocated objects to values (h\σ), and a set of allocated array objects (A\σ).

We assume that program statements are labeled with unique labels. For an assign-
ment statement at label l ∈ Labs, we denote by lhs(l) the left hand side of the assign-
ment, and by rhs(l) the right hand side of the assignment.

We denote Tasks(σ) = dom(pc\σ) to be the set of task identifiers in state σ, such
that for each task identifier, pc\σ assigns a value. We use enabled(σ) ⊆ dom(pc\σ) to
denote the set of tasks that can make a transition from σ.

3.1 Determinism

Determinism is generally defined as producing observationally equivalent outputs on
all executions starting from observationally equivalent inputs.

In this paper, we establish determinism of parallel programs by proving that shared
memory accesses made by statements in different tasks are independent. This is a
stronger condition which sidesteps the need to define “observational equivalence”, a
notion that is often very challenging to define for real programs.

In the rest of the paper, we focus on the treatment of array accesses. The treatment
of shared field accesses is similar (and simpler).

Definition 1 (Accessed array locations in a state). Given a state σ ∈ ST \, we define
W \
σ : TaskIds → 2(A

\×N) which maps a task identifier to the memory location to be
written by the statement at label pcσ(t). Similarly, we define R\σ : TaskIds → 2(A

\×N)

mapping a task identifier to the memory location to be read by the statement at pcσ(t):

R\σ(t) = {(ρ\σ(t, a), ρ\σ(t, i)) | pc\σ(t) = l ∧ rhs(l) = a[i]}
W \
σ(t) = {(ρ\σ(t, a), ρ\σ(t, i)) | pc\σ(t) = l ∧ lhs(l) = a[i]}

RW \
σ(t) = R\σ(t) ∪W \

σ(t)

Note that R\σ(t), W
\
σ(t) and RW \

σ(t) are always singleton or empty sets.

Definition 2 (Conflicting Accesses). Given two shared memory accesses in states σ1, σ2 ∈
ST \, performed respectively by task identifiers t1 and t2, we say that the two shared
accesses are conflicting, denoted by (σ1, t1) / (σ2, t2) when: t1 6= t2 and W \

σ1
(t1) ∩

RW \
σ2
(t2) 6= ∅ or W \

σ2
(t2) ∩RW \

σ1
(t1) 6= ∅.

Next, we define the notion of a conflicting program. A program that is not conflict-
ing is said to be conflict-free.

Definition 3 (Conflicting Program). Given the set of all reachable program states
RS ⊆ ST \, we say that the program is conflicting iff there exists a state σ ∈ RS
such that t1, t2 ∈ Tasks(σ),mhp(RS, σ, t1, pc\σ(t1), t2, pc\σ(t2)) = true and (σ, t1) /
(σ, t2).

Informally, the above definition says that a program is conflicting if and only if there
exists a state from which two tasks can perform memory accesses that conflict. Similar
definition is provided by Shacham et. al [35]. However, our definition is more strict
as we do not allow even atomic operations to conflict (recall that we currently do not
handle atomic operations).

In the above definition we used the predicatemhp : 2ST
\×ST \×TaskIds×Labs×

TaskIds × Labs ⇀ Bool. The predicate mhp(S, σ, t1, l1, t2, l2) evaluates to true if t1
and t2 may run in parallel from state σ.

Computing mhp The computation of the mhp is parametric to our analysis. That is,
we can consume an mhp of arbitrary precision. For instance, we can define mhp(S,
σ, t1, l1, t2, l2) to be true iff t1, t2 ∈ enabled(σ) and t1 6= t2.

We can also define less precise (more abstract) variants of mhp. For example,mhp(S,
σ, t1, l1, t2, l2) = true iff ∃σ′ ∈ S, t1, t2 ∈ enabled(σ′), t1 6= t2 such that pc\σ′(t1) =

l1 and pc\σ′(t2) = l2. As the mhp depends on S and not on σ, we can write the mhp
as mhp(S, t1, l1, t2, l2). This less precise definition only talks at the level of labels and
may be preferable for efficiency purposes. When the set S is assumed to be all reachable
programs states, we write mhp(t1, l1, t2, l2).

In this paper, we use the structure of the parallel program to compute the mhp pre-
cisely, but in cases where we consider general Java programs with arbitrary concur-
rency, we can also use more expensive techniques [26].

3.2 Pairwise Semantics

Next, we abstract away the relationship between the different tasks and define semantics
that only tracks each task separately, rather than all tasks simultaneously.

We define the projection σ|t of a state σ on a task identifier t as σ|t = 〈pc|t, L, ρ|t, h, A〉,
where:

– pc|t is the restriction of pc to t
– ρ|t is the restriction of ρ to t

Given a state σ ∈ ST \, we can now define the program state for a single task t via
σ|t = 〈pc, L, ρ, h,A〉 ∈ Σ, where ST \pw = (PC × 2objs\

×Env\×Heap\× 2objs\

).
For S ⊆ ST \:

αpw(S) =
⋃
σ∈S
{σ|t | t ∈ Tasks(σ)}

Next, we adjust our definition of a conflicting program.

Definition 4 (Pairwise-Conflicting Program). Given the set of all reachable program
states RSpw ⊆ ST \pw, we say that the program is pairwise conflicting when there
exists σpw1 , σpw2 ∈ RSpw such that for some t1 ∈ Tasks(σpw1), t2 ∈ Tasks(σpw2),
mhp(RSpw, t1, pc

\
σpw
1

(t1), t2, pc
\
σpw
2

(t2)) = true and (σpw1 , t1) / (σpw2 , t2).

Note that in this definition of a conflicting program, we use Definition 2 with two
states σpw1 and σpw2 , while in Definition 3, we used it only with a single state.

Assuming the mhp predicate computes identical results in Definition 3 and Defini-
tion 4, we now have the following simple theorem:

Theorem 1. Any conflicting program is pairwise-conflicting.

Of course, due to losing precision with the pairwise semantics, it could be the case
that a program is pairwise-conflicting but not conflicting.

4 Abstract Semantics

The pairwise semantics tracks a potentially unbounded set of memory locations ac-
cessed by each task. In this section, we use standard abstract domains to represent sets
of locations in a bounded way. We represent sets of objects using standard points-to
abstractions, and ranges of array cells using numerical abstractions on array indices.
Next, we abstract the semantics of Section 3.2.

4.1 Abstract State

Our abstraction is parametric on both the heap abstraction αh and the numerical abstrac-
tion αn. In the following, we assume an abstract numerical domainND = 〈NC,vND〉
equipped with operations uND and tND, where NC is a set of numerical constraints
over the primitive variables in VarIds, and do not go into further details about the par-
ticular abstract domain.

Definition 5. An abstract program state σ is a tuple 〈pc, La, ρa, ha, Aa, nc〉 ∈ STa,
where STa = PC × 2objs × Env× Heap× 2objs × (TaskIds→ 2NC) such that:

– La ⊆ objs is a bounded set of abstract objects, and Aa ⊆ La is a set of abstract
array objects.

– ρa : TaskIds × V arIds → 2AV al maps a task identifier and a variable to its
abstract values.

– ha : objs×FieldId→ 2AV al map an abstract location and a field identifier to their
abstract values.

– nc : TaskIds → 2NC maps a task to a set of numerical constraints, capturing
relationship between local numerical variables of that task.

An abstract program state is a sound representation of a concrete pairwise program
state σpw = 〈pc\, L\, ρ\, h\, A\〉 when:

– pc = pc\.
– for all o ∈ L\, αh(o) ∈ La.
– for all o1, o2 ∈ L\, f ∈ FieldId, if h\(o1, f) = o2 then αh(o2) ∈ ha(αh(o1), f).
– dom(ρ) = dom(ρ\)

– for all task references (t, r) ∈ dom(ρ\), if v = ρ\(t, r) then αh(v) ∈ ρa(t, r).
– Let TLt = {(pr0, v0)...(prn, vn)} be the set of primitive variable-value pairs, such

that for all pairs (pri, vi) ∈ TLt, (t, pri) ∈ dom(ρ\). Then αn(TLt) vND nc(t).
Next, we define the accessed array locations in an abstract state:

Definition 6 (Accessed array locations in an abstract state). Given an abstract state
σ ∈ STa, we define Wσ : TaskIds → 2(AV al×VarIds) which maps a task identifier to
the memory location to be written by the statement at label pcσ(t). Similarly, we define
Rσ : TaskIds → 2(AV al×VarIds) mapping a task identifier to the memory location to be
read by its statement at pcσ(t).

Rσ(t) = {(ρσ(t, a), i) | pcσ(t) = l ∧ rhs(l) = a[i]}
Wσ(t) = {(ρσ(t, a), i) | pcσ(t) = l ∧ lhs(l) = a[i]}
RWσ(t) = Rσ(t) ∪Wσ(t)

Note that Rσ , Wσ and RWσ are always singleton or empty sets. We use Dσ(t).B
and Dσ(t).I to denote the first and second components of the entry in the singleton set
D, where D can be one of R, W or RW . If Dσ(t) is empty, then Dσ(t).B and Dσ(t).I
also return the empty set. Next, we define the notion of conflicting accesses:

Definition 7 (Abstract Conflicting Accesses). Given two shared memory accesses in
states σ1, σ2 ∈ STa, performed respectively by task identifiers t1 and t2, we say that
the two shared accesses are conflicting, denoted by (σ1, t1) /abs (σ2, t2) when:

– Wσ1
(t1).B ∩RWσ2

(t2).B 6= ∅ and (Wσ1
(t1).I = RWσ2

(t2).I)uND AS 6= ⊥ or
– Wσ2(t2).B ∩RWσ1(t1).B 6= ∅ and (Wσ2(t2).I = RWσ1(t1).I) uND AS 6= ⊥

where AS = ncσ1
(t1) uND ncσ2

(t2) uND (t1 − t2 ≥ 1)

The definition uses the meet operation uND of the underlying numerical domain to
check whether the combined constraints are satisfiable. If the result is not empty (e.g.
not ⊥), then this indicates a potential overlap between the array indices. The constraint
of the kind (W.I = RW.I) corresponds to the property we are trying to refute, namely
that the indices are equal. In addition, we add the global constraint that requires that
task identifiers are distinct. The reason why we write that constraint as (t1− t2 ≥ 1) as
opposed to (t1 − t2 > 0) is that the first form is precisely expressible in both Octagon
and Polyhedra, while the second form is only expressible in Polyhedra. We assume that
primitive variables from two different tasks have distinct names.

The definition of abstract conflicting accesses leads to a natural definition of ab-
stract pairwise conflicting program based on Definition 4. Due to the soundness of our
abstraction it follows that if we establish the program as abstract (pairwise) conflict
free, then it is (pairwise) conflict free under the concrete semantics.

In the next section, we describe our implementation which is based on a sequential
analysis of each task, computing the reachable abstract states of a task in the absence
of interference from other tasks. We then (conservatively) check that tasks perform
independent memory accesses. When tasks may be performing conflicting memory ac-
cesses, the sequential information computed may be invalid, and our analysis will not
be able to establish determinism of the program. When tasks are only performing non-
conflicting memory accesses, the information we compute sequentially for each task is
stable, and we can use it to establish the determinism of the program.

5 Implementation

We implemented our analysis as a tool based on the Soot framework [36]. This allows
us to potentially use many of the existing analyses already implemented in Soot, such
as points-to analyses. The input to our tool is a Java program with annotations that
denote the code of each task. In fact, as our core analysis is based purely on the Jimple
intermediate representation produced by the Soot front end, as long as it knows what
code each task executes, the analysis is applicable to standard concurrent Java programs.

The complete analysis works as follows:

Step 1: Apply Heap Abstraction First, we apply the SPARK flow-insensitive pointer
analysis on the whole program [20]. We note that flow-insensitive analysis is sound
in the presence of concurrency, but as we will see later, the pointer analysis may be
imprecise in most cases and hence we compute additional heap information (see the
UniqueRef invariant later).

Step 2: Apply Numerical Abstraction Second, for each task, we apply the appropriate
(sequential) numerical analysis. Our numerical analysis uses the Java binding of the
Apron library [15]. We initialized the environment of the analysis only with variables
of integer type. As real variables cannot be used as array indices, they are ignored by
the analysis. Currently, we do not handle casting from real to integer variables. How-
ever in our benchmarks we have not encountered such cast operations. The numerical
constraints contain only variables of integer type.

Step 3: Compute MHP Third, we compute the mhp predicate. In the annotated Java
code that we consider, this is trivially computed as the annotations denote which tasks
can execute in parallel and given that parallel tasks don’t use any synchronization con-
structs internally, it implies that all statements in two parallel tasks can also execute in
parallel. When analyzing standard Java programs which use synchronization primitives
such as monitors, one can use an off-the-shelf MHP analysis (cf. [21,26]).

Step 4: Verify Conflict-Freedom Finally, we check whether the program is conflict-free:
for each pair of abstract states from two different tasks, we check whether that pair is
conflict-free according to Definition 7. In our examples, it is often the case that the same
code is executed by multiple tasks. Therefore, in our implementation, we simply check
whether the abstract states of a single task are conflict-free with themselves. To perform
the check, we make sure that local variables are appropriately renamed (the underlying
abstract domain provides methods for this operation). Parameter variables that are com-
mon to all tasks that execute the same code maintain their name under renaming and
are distinguished by special names. Note that our analysis verifies conflict-freedom be-
tween tasks in a pairwise manner, and does not make any assumption on the number of
tasks in the system (thus also handling programs with an unbounded number of tasks).

5.1 Reference Arrays

Many parallel programs use reference arrays, usually multi-dimensional primi-
tive arrays (e.g. int A[][]) or reference arrays of standard objects such as
java.lang.String. In Jimple (and Java bytecodes), multi-dimensional arrays are
represented via a hierarchy of one-dimensional arrays. Accesses to a k-dimensional ar-
ray is comprised of k accesses to one-dimensional arrays. In many of our benchmarks,
parallel tasks operate on disjoint portions of a reference array. However, often, given an
array int A[][], each parallel task accesses a different outer dimension, but accesses
the internal array int A[] in the same way. For example, task 1 can write to A[1][5],
while task 2 can write to A[2][5]): the outer dimension (e.g. 2) is different, but the
inner dimension (e.g. 5) is the same. The standard pointer analysis fails to establish that
A[1][5] and A[2][5] are disjoint, and hence our analysis fails to prove determinism.

UniqueRef Global Invariant However, in all of our benchmarks, the references in-
side reference arrays never alias. This is common among scientific computing bench-
marks as they have a pre-initialization phase where they fill up the array, and there-
after, only the primitive values in the array are modified. To capture this, on startup,
we perform a simple global analysis to establish that all writes of reference variables
to cells in the reference array are only assigned to once with a fresh object, either a
newly allocated object or a reference obtained as a result of a library call such as
java.lang.String.substring that returns a fresh reference. While this simple
treatment suffices for all of our benchmarks, general treatment of handling references
inside objects may require more elaborate heap analysis.

Once we establish this invariant, we can either refine the pointer analysis infor-
mation (to know that the inner dimensions of an array are distinct), or we can use the
invariant directly in the analysis. In almost all of our benchmarks, we used this invariant
directly.

6 Evaluation

To evaluate our analysis, we selected the JGF benchmarks used by the HJ suite [1].
These benchmarks are modified versions of the Java JGF benchmarks [9]. As currently
our numerical analysis is intra-procedural, we have slightly modified these benchmarks
by inlining some of the function calls. The code for all benchmarks is available in [1].

Our analysis works on the Jimple intermediate representation, which is a three-
address code representation for Java. Working at the Jimple level enables us to use stan-
dard analyses implemented in Soot, such as the Spark points-to analysis [20]. However,
Jimple creates a large number of temporary variables, resulting in many more variables
than the original Java source. This may lead to a larger number of numerical constraints
compared to the ones arising when analyzing the program at the source level as in the
case of the Interproc analyzer [16].

Analysis of some of our benchmarks required the use of widening. We used the
LoopFinder API provided by Soot to identify loops and applied a basic widening
strategy which only widens at the head of the loop and does so every k’th iteration,
where k is a parameter to the analysis.

All of our experiments were conducted using a Java 1.6 runtime running on a 4-core
Intel(R) Xeon(TM) CPU 3.80GHz processor with 5GB.

6.1 Results

Benchmark Description LOC Vars Domain Iter Time (s) Widen PA Result
CRYPT IDEA encryption 110 180 Polyhedra 439 54.8 No No X
SOR Successive over-

relaxation
35 21 Polyhedra 72 0.41 Yes No X

LUFACT LU Factorization 32 22 Octagon 57 1.94 Yes No X
SERIES Fourier coeffi-

cient analysis
67 14 Octagon 22047 55.8 No No X

MOLDYN1 Molecular 85 18 Octagon 85 24.6 No No X
MOLDYN2 dynamics 137 42 Polyhedra 340 2.5 Yes Yes X
MOLDYN3 simulation 31 8 Octagon 78 0.32 Yes No X
MOLDYN4 50 10 Polyhedra 50 1.01 No No X
MOLDYN5 37 18 Polyhedra 37 0.34 No No X
SPARSE Sparse matrix

multiplication
29 17 Polyhedra 45 0.2 Yes Yes 7

RAYTRACER 3D Ray Tracer - - - - - - - 7

MONTECARLO Monte Carlo sim-
ulation

- - - - - - - 7

Table 2. Experimental Results

Table 2 summarizes the results of our analysis. The columns indicate the bench-
mark name and description, lines of code for the analyzed program, the number of

integer-valued variables used in the analysis, the numerical domain used, the number
of iterations it took for the analysis to reach a fixed point, the combined time of the
numerical analysis and verification checking (pointer analysis time is not included even
if used), whether the analysis needed widening to terminate, whether we used Spark
pointer analysis (note that we almost always use the UniqueRef invariant as the pro-
grams make heavy use of multi-dimensional arrays), and the result of the analysis where
X denotes that it successfully proved determinism, and 7 denotes that it failed to do so.
As mentioned earlier, in our benchmarks, it is easy to pre-compute the mhp predicate
and determine which tasks can run in parallel. That is, there is no need to perform nu-
merical analysis on tasks that can never run in parallel with other tasks. Therefore, the
lines of code in the table refer only to the relevant code that may run in parallel and is
analyzed by the numerical analysis. The actual applications contain many more lines
of code (in the range of thousands), as they need to pre-initialize the computation, but
such initialization code never runs in parallel with other tasks.

Applying the analysis For every benchmark, we first attempted to verify determinism
with the simplest available configuration: e.g. Octagon domain without widening or
pointer analysis. If the analysis did not terminate within 10 minutes, or failed to prove
the program deterministic, then we tried adding widening and/or changing the domain
to Polyhedra and/or performing pointer analysis. Usually, we did not find the need for
using Spark. Instead, we almost always rely on the UniqueRef invariant.

For five of the benchmarks, the analysis managed to prove determinism, while it
failed to do so for three benchmarks. Next, we elaborate on the details.

CRYPT involves reading and updating multiple shared one-dimensional arrays. This
is a computationally intensive benchmark and its intermediate representation contains
many variables. When we used the Octagon domain without widening, the analysis
did not terminate and the size of the constraints kept growing. Even after applying our
widening strategy (widening at the head of the loop) with various frequencies (e.g. the
parameter k mentioned earlier), we still could not get the analysis to terminate. Only af-
ter applying very aggressive widening: in addition to every loop head, to widen at some
points in the loop body, did we get the analysis to terminate. But even when it termi-
nated, the analysis was unable to prove determinism. The key reason is that the program
computes array indices for each task based on the task identifier via statements such as
ixi = 8∗tidi, where ixi is the index variable and tidi is the task identifier variable. Such
constraints cannot be directly expressed in the Octagon domain. However, by using the
Polyhedra domain, the analysis managed to terminate without widening. It managed
successfully to capture the simple loop exit constraint ixi ≥ k (even with the loop body
performing complicated updates). It also managed to successfully preserve constraints
such as ix1 = 8 ∗ tid1. As a result, the computed constraints were precise enough to
prove the program deterministic, which is the result that we report in the table.

In SOR, without widening, both Octagon and Polyhedra failed to terminate. With
widening, Octagon failed to prove determinism due to the use of array index expressions
such as ixi = 2 ∗ tidi− v, where tidi is the task identifier variable and v is a parameter
variable. Constraints, such as ii = k ∗ tidi, where k > 1 cannot be expressed in the
Octagon domain and hence the analysis fails. Using Polyhedra with widening quickly
succeed in proving determinism.

Without widening and with Octagon, the analysis did not terminate in LUFACT.
However, with widening and Octagon, the analysis quickly reached a fixed point. The
SERIES benchmark succeeds only with Octagon and required no widening but it took
the longest to terminate.

MOLDYN contains a sequence of five blocks where only the tasks inside each block
can run in parallel and tasks from different blocks cannot run in parallel. Interestingly,
each block of tasks can be proved deterministic by using different configurations of do-
main, widening and pointer analysis. In Table 2, we show the result for each block as a
separate row in the table. In the first block, tasks execute straight line code and deter-
minism can be proved only with Octagon and no widening. In the second block, tasks
contain loops and require Polyhedra, widening and pointer analysis. Without widening,
both Octagon and Polyhedra do not terminate. With widening, Octagon terminates, but
fails. The problem is that the array index variable ixi is computed with the statement
ixi = k ∗ tidi, where k is a constant and k > 1. The Octagon domain cannot accurately
represent abstract elements with such constraints. We used the pointer analysis to es-
tablish that references loaded from two different arrays are distinct, but we could have
also computed that with the UniqueRef invariant. Tasks in the third block succeed with
Octagon but also required widening. Tasks in the fourth and fifth blocks do not need
widening (there are no loops), but require Polyhedra as they are using constraints such
as ixi = k ∗ tidi, where k > 1.

In SPARSE, the Polyhedra fails as the tasks use array indices obtained from other
arrays, e.g. A[B[i]], where the values of B[i] are initialized on startup. The analysis
required widening to terminate, but is unable to establish anything aboutB[i] and hence
cannot prove independence of two different array accesses A[j] and A[k], where j and
k come from some B[i].

In RAYTRACER, analysis fails as the program involves non-linear constraints and
also uses atomic sections, which our analysis currently does not handle.

As mentioned, our analysis is intra-procedural. However, unlike the other bench-
marks, MONTECARLO makes many nested calls and it would have been very error-prone
to try and inline all of these nested calls. To handle such cases, in the future, we plan to
extend our analysis to handle procedures.

6.2 Summary

In summary, in all cases where the analysis was successful in proving determinacy, it
finished in under a minute. Different benchmarks could be proved with different com-
bination of domain (Octagon or Polyhedra) and widening (to widen or not). In fact,
the suite exercised all four combinations. In general, we did not find that we needed
expensive pointer analysis, and it was sufficient to have the simple invariant that all ar-
rays contain unique references, which was easily verifiable for our benchmarks (but in
general may be a very hard problem). In cases where we failed, the program was using
features that we do not currently handle such as: non-linear constraints, atomic sections,
procedure calls or required maintaining scalar invariants over arrays (e.g. that integers
inside an array are distinct). In the future, we plan to address these issues. This would
also allow us to handle the full Java JGF benchmarks [9], where many benchmarks
make use of such features.

7 Related Work

Recent papers by Burnim and Sen [5] and Sadowski et. al [33] focus on checking deter-
minism dynamically. The first work focuses on user-defined notion of observationally
equivalent states while the second paper checks for absence of conflicts. While both
of these works are only able to dynamically test for determinism, our work focus on
statically proving determinism.

There is a vast literature on dependence analysis for automatic parallelization (see
e.g., [24, Sec. 9.8]). The focus of these analyses is on efficiently identifying indepen-
dent loop iterations that can be performed in parallel. In contrast, our work focuses on
verifying determinism of parallel programs. This usually involves dependence checking
between tasks that may execute in parallel (and not necessarily in a loop). As we focus
on verification, we can employ precise (and often expensive) numerical domains.

There is a large volume of work on dependence analysis for heap-manipulating pro-
grams (e.g., [14]), which at the end boils down to having a sufficiently precise heap ab-
straction (e.g., [29]). The current task-parallel applications we are dealing with mostly
involve numerical computations over arrays. For such programs, simple heap abstrac-
tions were sufficient for establishing determinism. In the future, we plan to integrate
more advanced heap abstractions into our analysis framework.

In [31,32], Rugina and Rinard present an analysis framework for computing sym-
bolic bounds on pointer, array indices, and accesses memory regions. In order to support
challenging features such as pointer arithmetic, their analysis framework requires an ex-
pensive flow-sensitive and context-sensitive pointer analysis [30] as a preceding phase.
In our (simpler) setting, this is not required.

In [12], Ferrera presents a static analysis for establishing determinism of concurrent
programs. The idea is to record for each variable what thread wrote it. This instrumented
concrete semantics is then abstracted to an abstract semantics that records separately
the value written to a variable by each thread. Determinism is established by comparing
(abstract) states and showing that for each variable, its value is only determined by
a single thread. The paper does not handle arrays, dynamic memory allocation, and
assumes a bounded number of threads. Further, Ferrera’s analysis is based on concurrent
executions and therefore has to consider all possible interleavings. In contrast, using
basic assume-guarantee reasoning, our analysis reduces the problem to a sequential
analysis.

8 Conclusion

We present a static analysis for automatically verifying determinism of structured par-
allel programs. Our approach uses sequential analysis to establish that tasks that may
execute in parallel only perform non-conflicting memory accesses. Our sequential anal-
ysis combines information about the heap with information about array indices to show
that memory accesses are non-conflicting. We show that in realistic programs, estab-
lishing that accesses are non-conflicting requires powerful numerical domains such as
Octagon and Polyhedra. We implemented our approach in a tool called DICE and ap-
plied it to verify determinism of several non-trivial benchmark programs. In the future,
we plan to extend our analysis to handle general Java programs.

Acknowledgements We thank the anonymous reviewers for their helpful comments that
improved the paper, and Antoine Mine for helping us with using Apron.

References

1. Dojo: Ensuring determinism of concurrent systems. https://researcher.ibm.
com/researcher/view_project.php?id=1337.

2. BANERJEE, U. K. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Norwell, MA, USA, 1988.

3. BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RANDALL,
K. H., AND ZHOU, Y. Cilk: an efficient multithreaded runtime system. In PPoPP (Oct.
1995), pp. 207–216.

4. BOCCHINO, R., ADVE, V., ADVE, S., AND SNIR, M. Parallel programming must be de-
terministic by default. In First USENIX Workship on Hot Topics in Parallelism (HOTPAR
2009) (2009).

5. BURNIM, J., AND SEN, K. Asserting and checking determinism for multithreaded programs.
In ESEC/FSE ’09 (2009), ACM, pp. 3–12.

6. CHARLES, P., GROTHOFF, C., SARASWAT, V. A., DONAWA, C., KIELSTRA, A.,
EBCIOGLU, K., VON PRAUN, C., AND SARKAR, V. X10: an object-oriented approach
to non-uniform cluster computing. In OOPSLA (Oct. 2005), pp. 519–538.

7. COUSOT, P., AND HALBWACHS, N. Automatic discovery of linear restraints among vari-
ables of a program. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Tucson, Arizona, 1978), ACM Press,
New York, NY, pp. 84–97.

8. DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. Dmp: deterministic shared memory
multiprocessing. In ASPLOS ’09: Proceeding of the 14th international conference on Archi-
tectural support for programming languages and operating systems (2009), ACM, pp. 85–96.

9. EDINBURGH PARALLEL COMPUTING CENTRE. Java grande forum benchmark
suite. http://www2.epcc.ed.ac.uk/computing/research_activities/
java_grande/index_1.html.

10. EDWARDS, S. A., AND TARDIEU, O. Shim: a deterministic model for heterogeneous em-
bedded systems. In EMSOFT ’05: Proceedings of the 5th ACM international conference on
Embedded software (2005), ACM, pp. 264–272.

11. FENG, M., AND LEISERSON, C. E. Efficient detection of determinacy races in cilk pro-
grams. In SPAA ’97: Proceedings of the ninth annual ACM symposium on Parallel algo-
rithms and architectures (1997), ACM, pp. 1–11.

12. FERRARA, P. Static analysis of the determinism of multithreaded programs. In Proceedings
of the Sixth IEEE International Conference on Software Engineering and Formal Methods
(SEFM 2008) (November 2008), I. C. Society, Ed.

13. FLANAGAN, C., AND FREUND, S. N. Fasttrack: efficient and precise dynamic race detec-
tion. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation (2009), ACM, pp. 121–133.

14. HORWITZ, S., PFEIFFER, P., AND REPS, T. Dependence analysis for pointer variables. In
PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language
design and implementation (1989), ACM, pp. 28–40.

15. JEANNET, B., AND MINE, A. Apron: A library of numerical abstract domains for static
analysis. In Computer Aided Verification (2009), vol. 5643 of LNCS, Springer Berlin / Hei-
delberg, pp. 661–667.

https://researcher.ibm.com/researcher/view_project.php?id=1337
https://researcher.ibm.com/researcher/view_project.php?id=1337
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html

16. LALIRE, G., ARGOUD, M., AND JEANNET, B. The interproc analyzer. http://pop-
art.inrialpes.fr/interproc/interprocweb.cgi.

17. LAMPORT, L. The parallel execution of do loops. Commun. ACM 17, 2 (1974), 83–93.
18. LEA, D. A java fork/join framework. In JAVA ’00: Proceedings of the ACM 2000 conference

on Java Grande (2000), ACM, pp. 36–43.
19. LEE, E. A. The problem with threads. Computer 39, 5 (2006), 33–42.
20. LHOTK, O., AND HENDREN, L. Scaling java points-to analysis using spark. In Compiler

Construction (2003), vol. 2622 of LNCS, Springer, pp. 153–169.
21. LI, L., AND VERBRUGGE, C. A practical MHP information analysis for concurrent java

programs. In Languages and Compilers for High Performance Computing (2005), vol. 3602
of LNCS, Springer, pp. 194–208.

22. MARINO, D., MUSUVATHI, M., AND NARAYANASAMY, S. Literace: effective sampling
for lightweight data-race detection. In PLDI ’09 (2009), ACM, pp. 134–143.

23. MINÉ, A. The octagon abstract domain. Higher Order Symbol. Comput. 19, 1 (2006),
31–100.

24. MUCHNICK, S. S. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

25. NAIK, M., AIKEN, A., AND WHALEY, J. Effective static race detection for java. In PLDI
’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language design
and implementation (2006), ACM, pp. 308–319.

26. NAUMOVICH, G., AVRUNIN, G. S., AND CLARKE, L. A. An efficient algorithm for com-
puting MHP information for concurrent Java programs. In Proceedings of the joint 7th Eu-
ropean Software Engineering Conference and 7th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (Sept. 1999), pp. 338–354.

27. O’CALLAHAN, R., AND CHOI, J.-D. Hybrid dynamic data race detection. In PPoPP ’03:
Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice of parallel
programming (2003), ACM, pp. 167–178.

28. OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S. Kendo: efficient deterministic mul-
tithreading in software. In ASPLOS ’09 (2009), ACM, pp. 97–108.

29. RAZA, M., CALCAGNO, C., AND GARDNER, P. Automatic parallelization with separa-
tion logic. In ESOP ’09: Proceedings of the 18th European Symposium on Programming
Languages and Systems (Berlin, Heidelberg, 2009), Springer-Verlag, pp. 348–362.

30. RUGINA, R., AND RINARD, M. Automatic parallelization of divide and conquer algorithms.
In PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on Principles and
practice of parallel programming (1999), ACM, pp. 72–83.

31. RUGINA, R., AND RINARD, M. Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation (2000), ACM, pp. 182–195.

32. RUGINA, R., AND RINARD, M. C. Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. ACM Trans. Program. Lang. Syst. 27, 2 (2005), 185–235.

33. SADOWSKI, C., FREUND, S. N., AND FLANAGAN, C. SingleTrack: A dynamic determin-
ism checker for multithreaded programs. In Programming Languages and Systems (2009),
vol. 5502 of LNCS, Springer Berlin / Heidelberg, pp. 394–409.

34. SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. Eraser:
a dynamic data race detector for multithreaded programs. ACM Trans. Comput. Syst. 15, 4
(1997), 391–411.

35. SHACHAM, O., SAGIV, M., AND SCHUSTER, A. Scaling model checking of dataraces using
dynamic information. In PPoPP ’05 (2005), ACM, pp. 107–118.

36. VALLEE-RAI, R., HENDREN, L., SUNDARESAN, V., LAM, P., GAGNON, E., AND CO, P.
Soot - a java optimization framework. In Proceedings of CASCON 1999 (1999), pp. 125–
135.

	Automatic Verification of Determinism for Structured Parallel Programs

