
Bypassing Races in Live Applications with Execution Filters

Jingyue Wu, Heming Cui, Junfeng Yang

{jingyue, heming, junfeng}@cs.columbia.edu

Computer Science Department

Columbia University

New York, NY 10027

Abstract

Deployed multithreaded applications contain many races

because these applications are difficult to write, test, and

debug. Worse, the number of races in deployed applica-

tions may drastically increase due to the rise of multicore

hardware and the immaturity of current race detectors.

LOOM is a “live-workaround” system designed to

quickly and safely bypass application races at runtime.

LOOM provides a flexible and safe language for develop-

ers to write execution filters that explicitly synchronize

code. It then uses an evacuation algorithm to safely in-

stall the filters to live applications to avoid races. It re-

duces its performance overhead using hybrid instrumen-

tation that combines static and dynamic instrumentation.

We evaluated LOOM on nine real races from a diverse

set of six applications, including MySQL and Apache.

Our results show that (1) LOOM can safely fix all evalu-

ated races in a timely manner, thereby increasing appli-

cation availability; (2) LOOM incurs little performance

overhead; (3) LOOM scales well with the number of ap-

plication threads; and (4) LOOM is easy to use.

1 Introduction

Deployed multithreaded applications contain many races

because these applications are difficult to write, test, and

debug. These races include data races, atomicity viola-

tions, and order violations [33]. They can cause applica-

tion crashes and data corruptions. Worse, the number of

“deployed races” may drastically increase due to the rise

of multicore and the immaturity of race detectors.

Many previous systems can aid race detection (e.g.,

[31, 32, 37, 47, 54]), replay [9, 18, 28, 36, 43], and diag-

nosis [42, 49]. However, they do not directly address de-

ployed races. A conventional solution to fixing deployed

races is software update, but this method requires appli-

cation restarts, and is at odds with high availability de-

mand. Live update systems [10, 12, 15, 35, 38, 39, 51]

can avoid restarts by adapting conventional patches into

hot patches and applying them to live systems, but the

reliance on conventional patches has two problems.

First, due to the complexity of multithreaded applica-

tions, race-fix patches can be unsafe and introduce new

errors [33]. Safety is crucial to encourage user adoption,

yet automatically ensuring safety is difficult because con-

ventional patches are created from general, difficult-to-

analyze languages. Thus, previous work [38, 39] had to

resort to extensive programmer annotations.

Second, creating a releasable patch from a correct di-

agnosis can still take time. This delay leaves buggy ap-

plications unprotected, compromising reliability and po-

tentially security. This delay can be quite large: we an-

alyzed the Bugzilla records of nine real races and found

that this delay can be days, months, or even years. Ta-

ble 1 shows the detailed results.

Many factors contribute to this delay. At a minimum

level, a conventional patch has to go through code re-

view, testing, and other mandatory software develop-

ment steps before being released, and these steps are all

time-consuming. Moreover, though a race may be fixed

in many ways (e.g., lock-free flags, fine-grained locks,

and coarse-grained locks), developers are often forced to

strive for an efficient option. For instance, two of the

bugs we analyzed caused long discussions of more than

30 messages, yet both can be fixed by adding a single

critical section. Performance pressure is perhaps why

many races were not fixed by adding locks [33].

This paper presents LOOM, a “live-workaround” sys-

tem designed to quickly protect applications against

races until correct conventional patches are available and

the applications can be restarted. It reflects our belief

that the true power of live update is its ability to pro-

vide immediate workarounds. To use LOOM, developers

first compile their application with LOOM. At runtime,

to workaround a race, an application developer writes an

execution filter that synchronizes the application source

to filter out racy thread interleavings. This filter is kept

separate from the source. Application users can then

download the filter and, for immediate protection, install

Race ID Report Diagnosis Fix Release

Apache-25520 12/15/03 12/18/03 01/17/04 03/19/04

Apache-21287 07/02/03 N/A 12/18/03 03/19/04

Apache-46215 11/14/08 N/A N/A N/A

MySQL-169 03/19/03 N/A 03/24/03 06/20/03

MySQL-644 06/12/03 N/A N/A 05/30/04

MySQL-791 07/04/03 07/04/03 07/14/03 07/22/03

Mozilla-73761 03/28/01 03/28/01 04/09/01 05/07/01

Mozilla-201134 04/07/03 04/07/03 04/16/03 01/08/04

Mozilla-133773 03/27/02 03/27/02 12/01/09 01/21/10

Table 1: Long delays in race fixing. We studied the delays

in the fix process of nine real races; some of the races were

extensively studied [9, 31, 33, 42, 43]. We identify each race

by “Application−〈Bugzilla #〉.” Column Report indicates

when the race was reported, Diagnosis when a developer con-

firmed the root cause of the race, Fix when the final fix was

posted, and Release when the version of application contain-

ing the fix was publicly released. We collected all dates by

examining the Bugzilla record of each race. An N/A means

that we could not derive the date. The days between diagnosis

and fix range from a few days to nearly 100 days to a few years!

For all but two races, the bug reports from the application users

contained correct and precise diagnoses. Mozilla-201134 and

Mozilla-133773 caused long discussions of more than 30 mes-

sages, though both can be fixed by adding a critical region.

it to their application without a restart.

LOOM decouples execution filters from application

source to achieve safety and flexibility. Execution fil-

ters are safe because LOOM’s execution filter language

allows only well formed synchronization constraints. For

instance, “code region r1 and r2 are mutually exclu-

sive.” This declarative language is simpler to analyze

than a general programing language such as C because

LOOM need not reverse-engineer developer intents (e.g.,

what goes into a critical region) from scattered opera-

tions (e.g., lock() and unlock()).

As temporary workarounds, execution filters are more

flexible than conventional patches. One main benefit is

that developers can make better performance and relia-

bility tradeoffs during race fixing. For instance, to make

two code regions r1 and r2 mutually exclusive when they

access the same memory object, developers can use crit-

ical regions larger than necessary; they can make r1 and

r2 always mutually exclusive even when accessing dif-

ferent objects; or in extreme cases, they can run r1 and r2

in single-threaded mode. This flexibility enables quick

workarounds; it can benefit even the applications that do

not need live update.

We believe the execution filter idea and the LOOM

system as described are worthwhile contributions. To

the best of our knowledge, LOOM is the first live-

workaround system designed for races. Our additional

technical contributions include the techniques we created

to address the following two challenges.

A key safety challenge LOOM faces is that even if

an execution filter is safe by construction, installing it

to a live application can still introduce errors because

the application state may be inconsistent with the filter.

For instance, if a thread is running inside a code region

that an execution filter is trying to protect, a “double-

unlock” error could occur. Thus, LOOM must (1) check

for inconsistent states and (2) install the filter only in

consistent ones. Moreover, LOOM must make the two

steps atomic, despite the concurrently running applica-

tion threads and multiple points of updates. This problem

cannot be solved by a common safety heuristic called

function quiescence [2, 13, 21, 39]. We thus create a

new algorithm termed evacuation to solve this problem

by proactively quiescing an arbitrary set of code regions

given at runtime. We believe this algorithm can also ben-

efit other live update systems.

A key performance challenge LOOM faces is to main-

tain negligible performance overhead during an appli-

cation’s normal operations to encourage adoption. The

main runtime overhead comes from the engine used to

live-update an application binary. Although LOOM can

use general-purpose binary instrumentation tools such as

Pin, the overhead of these tools (up to 199% [34] and

1065.39% in our experiments) makes them less suitable

as options for LOOM. We thus create a hybrid instrumen-

tation engine to reduce overhead. It statically transforms

an application to include a “hot backup”, which can then

be updated arbitrarily by execution filters at runtime.

We implemented LOOM on Linux. It runs in user

space and requires no modifications to the applications

or the OS, simplifying deployment. It does not rely on

non-portable OS features (e.g., SIGSTOP to pause appli-

cations, which is not supported properly on Windows).

LOOM’s static transformation is a plugin to the LLVM

compiler [3], requiring no changes to the compiler either.

We evaluated LOOM on nine real races from a diverse

set of six applications: two server applications, MySQL

and Apache; one desktop application PBZip2 (a parallel

compression tool); and implementations of three scien-

tific algorithms in SPLASH2 [7]. Our results show that

1. LOOM is effective. It can flexibly and safely fix all

races we have studied. It does not degrade applica-

tion availability when installing execution filters. Its

evacuation algorithm can install a fix within a second

even under heavy workload, whereas a live update

approach using function quiescence cannot install the

fix in an hour, the time limit of our experiment.

2. LOOM is fast. LOOM has negligible performance

overhead and in some cases even speeds up the ap-

plications. The one exception is MySQL. Running

MySQL with LOOM alone increases response time

by 4.11% and degrades throughput by 3.76%.

3. LOOM is scalable. Experiments on a 48-core ma-

������ ����	���
������������
�������������		��
������
������ ���������� 	���
������������������������

	��� �� ������������������!����� 	��� �� �������!��������������� 	��� �� ������������ ���������������� ������ ������� ��
������ ���������� 	�" �� ��

Figure 1: LOOM overview. Its components are shaded.

chine show that LOOM scales well as the number of

application threads increases.

4. LOOM is easy to use. Execution filters are concise,

safe, and flexible (able to fix all races studied, often

in more than one way).

This paper is organized as follows. We first give an

overview of LOOM (§2). We then describe LOOM’s exe-

cution filter language (§3), the evacuation algorithm (§4),
and the hybrid instrumentation engine (§5). We then

present our experimental results (§6). We finally discuss

related work (§7) and conclude (§8).

2 Overview

Figure 1 presents an overview of LOOM. To use LOOM

for live update, developers first statically transform their

applications with LOOM’s compiler plugin. This plugin

injects a copy of LOOM’s update engine into the applica-

tion binary; it also collects the application’s control flow

graphs (CFG) and symbol information on behalf of the

live update engine.

LOOM’s compiler plugin runs within the LLVM com-

piler [3]. We choose LLVM for its compatibility with

GCC and its easy-to-analyze intermediate representation

(IR). However, LOOM’s algorithms are general and can

be ported to other compilers such as GCC. Indeed, for

clarity we will present all our algorithms at the source

level (instead of the LLVM IR level).

To fix a race, application developers write an execution

filter in LOOM’s filter language and distribute the filter

to application users. A user can then install the filter to

immediately protect their application by running

% loomctl add <pid> <filter-file>

Here loomctl is a user-space program called the

LOOM controller that interacts with users and initiates

live update sessions, pid denotes the process ID of a

buggy application instance, and filter-file is a file

containing the execution filter. Under the hood, this con-

troller compiles the execution filter down to a safe update

plan using the CFGs and symbol information collected

by the compiler plugin. This update plan includes three

parts: (1) synchronization operations to enforce the con-

straints described in the filter and where, in the applica-

tion, to add the operations; (2) safety preconditions that

must hold for installing the filter; and (3) sanity checking

code to detect potential errors in the filter itself. The con-

troller sends the update plan to the update engine running

as a thread inside the application’s address space, which

then monitors the runtime states of the application and

carries out the update plan only when all the safety pre-

conditions are satisfied.

If LOOM detects a problem with a filter through one of

its sanity checks, it can automatically remove the prob-

lematic filter. It again waits for all the safety precondi-

tions to hold before removing the filter.
Users can also remove a filter manually, if for exam-

ple, the race that the filter intends to fix turns out to be
benign. They do so by running

% loomctl ls <pid>

% loomctl remove <pid> <filter-id>

The first command “loomctl ls” returns a list of

installed filter IDs within process pid. The sec-

ond command “loomctl remove” removes filter

filter-id from process pid.
Users can replace an installed filter with a new filter,

if for example the new filter fixes the same race but has
less performance overhead. Users do so by running

% loomctl replace <pid> <old-id> <new-file>

where old-id is the ID of the installed filter, and

new-file is a file containing the new filter. LOOM

ensures that the removal of the old filter and the installa-

tion of the new filter are atomic, so that the application is

always protected from the given race.

2.1 Usage Scenarios

LOOM enables users to explicitly describe their synchro-

nization intents and orchestrate thread interleavings of

live applications accordingly. Using this mechanism, we

envision a variety of strategies users can use to fix races.

Live update At the most basic level, users can translate

some conventional patches into execution filters, and use

LOOM to install them to live applications.

Temporary workaround Before a permanent fix (i.e., a

correct source patch) is out, users can create an execu-

tion filter as a crude, temporary fix to a race, to provide

immediate protection to highly critical applications.

Preventive fix When a potential race is reported (e.g.,

by automated race detection tools or users of the appli-

cation), users can immediately install a filter to prevent

the race suspect. Later, when developers deem this report

false or benign, users can simply remove the filter.

Cooperative fix Users can share filters with each other.

This strategy enjoys the same benefits as other coopera-

tive protection schemes [17, 26, 44, 50]. One advantage

of LOOM over some of these systems is that it automat-

ically verifies filter safety, thus potentially reducing the

need to trust other users.

Site-specific fix Different sites have different workloads.

An execution filter too expensive for one site may be fine

for another. The flexibility of execution filters allows

each site to choose what specific filters to install.

Fix without live update For applications that do not

need live update, users can still use LOOM to create quick

workarounds, improving reliability.

Besides fixing races, LOOM can be used for the op-

posite: demonstrating a race by forcing a racy thread in-

terleaving. Compared to previous race diagnosis tools

that handle a fixed set of race patterns [25, 41, 42, 49],

LOOM’s advantage is to allow developers to construct

potentially complex “concurrency” testcases.

Although LOOM can also avoid deadlocks by avoid-

ing deadlock-inducing thread interleavings, it is less suit-

able for this purpose than existing tools (e.g., Dimmu-

nix [26]). To avoid races, LOOM’s update engine can add

synchronizations to arbitrary program locations. This en-

gine is overkill for avoiding deadlocks: intercepting lock

operations (e.g., via LD PRELOAD) is often enough.

2.2 Limitations

LOOM is explicitly designed to work around (broadly de-

fined) races because they are some of the most difficult

bugs to fix and this focus simplifies LOOM’s execution

filter language and safety analysis. LOOM is not intended

for other classes of errors. Nonetheless, we believe the

idea of high-level and easy-to-verify fixes can be gener-

alized to many other classes of errors.

LOOM does not attempt to fix occurred races. That

is, if a race has caused bad effects (e.g., corrupted data),

LOOM does not attempt to reverse the effects (e.g., re-

cover the data). It is conceivable to allow developers to

provide a general function that LOOM runs to recover

occurred races before installing a filter. Although this

feature is simple to implement, it makes safety analysis

infeasible. We thus rejected this feature.

Safety in LOOM terms means that an execution filter

and its installation/removal processes introduce no new

correctness errors to the application. However, similar

to other safe error recovery [46] or avoidance [26, 52]

tools, LOOM runs with the application and perturbs tim-

ing, thus it may expose some existing application races

because it makes some thread interleavings more likely

to occur. Moreover, execution filters synchronize code,

and may introduce deadlocks and performance prob-

lems. LOOM can recover from filter-introduced dead-

locks (§3.3) using timeouts, but currently does not deal

with performance problems.

At an implementation level, LOOM currently supports

a fixed set of synchronization constraint types. Although

adding new types of constraints is easy, we have found

the existing constraint types sufficient to fix all races

evaluated. Another issue is that LOOM uses debugging

symbol information in its analysis, which can be inaccu-

rate due to compiler optimization. This inaccuracy has

not been a problem for the races in our evaluation be-

cause LOOM keeps an unoptimized version of each basic

block for live update (§5).

3 Execution Filter Language

LOOM’s execution filter language allows developers to

explicitly declare their synchronization intents on code.

This declarative approach has several benefits. First,

it frees developers from the low-level details of syn-

chronization, increasing race fixing productivity. Sec-

ond, it also simplifies LOOM’s safety analysis because

LOOM does not have to reverse-engineer developer in-

tents (e.g., what goes into a critical section) from low-

level synchronization operations (e.g., scattered lock()

and unlock()), which can be difficult and error-prone.

Lastly, LOOM can easily insert error-checking code for

safety when it compiles a filter down to low-level syn-

chronization operations.

3.1 Example Races and Execution Filters

In this section, we present two real races and the execu-

tion filters to fix them to demonstrate LOOM’s execution

filter language and its flexibility.

The first race is in MySQL (Bugzilla # 791), which

causes the MySQL on-disk transaction log to miss

records. Figure 2 shows the race. The code on the

left (function new file()) rotates MySQL’s transac-

tion log file by closing the current log file and opening

a new one; it is called when the transaction log has to

be flushed. The code on the right is used by MySQL to

append a record to the transaction log. It uses double-

checked locking and writes to the log only when the log

is open. The race occurs if the racy is open() (T2,

line 3) catches a closed log when thread T1 is between

the close() (T1, line 5) and the open() (T1, line 6).

Although a straightforward fix to the race exists, per-

formance demands likely forced developers to give up

the fix and choose a more complex one instead. The

straightforward fix should just remove the racy check

(T2, line 3). Unfortunately, this fix creates unneces-

sary overhead if MySQL is configured to skip logging

for speed; this overhead can increase MySQL’s response

time by more than 10% as observed in our experiments.

The concern to this overhead likely forced MySQL de-

velopers to use a more involved fix, which adds a new

flag field to MySQL’s transaction log and modifies the

1: // log.cc. thread T1

2: void MYSQL LOG::new file(){
3: lock(&LOCK log);

4: . . .

5: close(); // log is closed

6: open(. . .);

7: . . .

8: unlock(&LOCK log);

9: }

1: // sql insert.cc. thread T2

2: // [race] may return false

3: if (mysql bin log.is open()){
4: lock(&LOCK log);

5: if (mysql bin log.is open()){
6: . . . // write to log

7: }
8: unlock(&LOCK log);

9: }

Figure 2: A real MySQL race, slightly modified for clarity.

// Execution filter 1: unilateral exclusion

{log.cc:5, log.cc:6} <> *

// Execution filter 2: mutual exclusion of code

{log.cc:5, log.cc:6} <> MYSQL LOG::is open

// Execution filter 3: mutual exclusion of code and data

{log.cc:5 (this), log.cc:6 (this)} <> MYSQL LOG::is open(this)

Figure 3: Execution filters for the MySQL race in Figure 2.

close() function to distinguish a regular close()

call and one for reopening the log.

In contrast, LOOM allows developers to create tem-

porary workarounds with flexible performance and reli-

ability tradeoffs. These temporary fixes can protect the

application until developers create a correct and efficient

fix at the source level. Figure 3 shows several execu-

tion filters that can fix this race. Execution filter 1 in the

figure is the most conservative fix: it makes the code re-

gion between T1, line 5 and T1, line 6 atomic against

all code regions, so that when a thread executes this re-

gion, all other threads must pause. We call such a syn-

chronization constraint unilateral exclusion in contrast to

mutual exclusion that requires participating threads agree

on the same lock.1 Here operator “<>” expresses mutual

exclusion constraints, its first operand “{log.cc:5,
log.cc:6}” specifies a code region to protect, and its

second operand “*” represents all code regions. This

“expensive” fix incurs only 0.48% overhead (§6.1) be-
cause the log rotation code rarely executes.

Execution filter 2 reduces overhead by refining

the “*” operand to a specific code region, function

MYSQL LOG::is open(). This filter makes the two

code regions mutually exclusive, regardless of what

memory locations they access. Execution filter 3 further

improves performance by specifying the memory loca-

tion accessed by each code region.

The second race causes PBZip2 to crash due to a use-

after-free error. Figure 4 shows the race. The crash oc-

curs when fifo is dereferenced (line 10) after it is freed

(line 5). The reason is that the main() thread does not

wait for the decompress() threads to finish. To fix

this race, developers can use the filter in Figure 5, which

constrains line 10 to run for numCPU times before line 5.

1Note that unilateral exclusion differs (subtly) from single-threaded

execution: unilateral exclusion allows no context switches.

// pbzip2.cpp. thread T1

1: main() {
2: for(i=0;i<numCPU;i++)

3: pthread create(. . .,

4: decompress, fifo);

5: queueDelete(fifo);

6: }

// pbzip2.cpp. thread T2

7 : void *decompress(void *q){
8 : queue *fifo = (queue *)q;

9 : . . .

10: pthread mutex lock(fifo−>mut);

11: . . .

12: }

Figure 4: A real PBZip2 race, simplified for clarity.

pbzip2.cpp:10 {numCPU} > pbzip2.cpp:5

Figure 5: Execution filter for the PBZip2 race in Figure 4.

3.2 Syntax and Semantics

Table 2 summarizes the main syntax and semantics of

LOOM’s execution filter language. This language al-

lows developers to express synchronization constraints

on events and regions. An event in the simplest form is

“file : line,” which represents a dynamic instance of

a static program statement, identified by file name and

line number. An event can have an additional “(expr)”
component and an “{n}” component, where expr and

n refer to valid expressions with no function calls or

dereferences. The expr expression distinguishes differ-

ent dynamic instances of program statements and LOOM

synchronizes the events only with matching expr values.

The n expression specifies the number of occurrences of

an event and is used in execution order constraints. A

region represents a dynamic instance of a static code re-

gion, identified by a set of entry and exist events or an

application function. A region representing a function

call can have an additional “(args)” component to dis-

tinguish different calls to the same function.

LOOM currently supports three types of synchroniza-

tion constraints (the bottom three rows in Table 2). Al-

though adding new constraint types is easy, we have

found existing ones sufficient to fix all races used in our

evaluation. An execution order constraint as shown in the

table makes event e1 happen before e2, e2 before e3, and

so forth. A mutual exclusion constraint as shown makes

every pair of code regions ri and rj mutually exclusive

with each other. A unilateral exclusion constraint makes

the execution of a code region single-threaded.

3.3 Language Implementation

LOOM implements the execution filter language using

locks and semaphores. Given an execution order con-

straint ei > ei+1, LOOM inserts a semaphore up() op-

eration at ei and a down() operation at ei+1. LOOM

implements a mutual exclusion constraint by inserting

lock() at region entries and unlock() at region ex-

its. LOOM implements a unilateral exclusion constraint

reusing the evacuation mechanism (§4), which can pause
threads at safe locations and resume them later.

Constructs Syntax

Event (short as e)
file : line

file : line (expr)

e{n}, n is # of occurrence

Region (short as r)
{e1, ..., ei; ei+1, ..., en}

func (args)
Execution Order e1 > e2 > ... > en

Mutual Exclusion r1 <> r2 <> ... <> rn

Unilateral Exclusion r <> ∗

Table 2: Execution filter language summary.

LOOM creates the needed locks and semaphores on

demand. The first time a lock or semaphore is refer-

enced by one of the inserted synchronization operations,

LOOM creates this synchronization object based on the

ID of the filter, the ID of the constraint, and the value of

expr if present. It initializes a lock to an unlocked state

and a semaphore to 0. It then inserts this object into a

hash table for future references. To limit the size of this

table, LOOM garbage-collects these synchronization ob-

jects. Freeing a synchronization object is safe as long

as it is unlocked (for locks) or has a counter of 0 (for

semaphores). If this object is referenced later, LOOM

simply re-creates it. The default size of this table is 256

and LOOM never needed to garbage-collect synchroniza-

tion objects in our experiments.

The up() and down() operations LOOM inserts be-

have slightly differently than standard semaphore oper-

ations when n, the number of occurrences, is specified.

Given e1{n1} > e2{n2}, up() conceptually increases

the semaphore counter by 1
n1

and down() decreases

it by 1
n2

. Our implementation uses integers instead of

floats. LOOM stores the value of n the first time the cor-

responding event runs and ignores future changes of n.

LOOM computes the values of expr and n using de-

bugging symbol information. We currently allow expr

and n to be the following expressions: a (constant or

primitive variable), a+b, &a, &a[i], &a->f, or any

recursive combinations of these expressions. For safety,

we do not allow function calls or dereferences. These

expressions are sufficient for writing the execution filters

in our evaluation.

We implemented this feature using the DWARF li-

brary and the parse exp 1() function in GDB.

Specifically, we use parse exp 1() to parse the expr

or n component into an expression tree, then compile this

tree into low level instructions by querying the DWARF

library. Note this compilation step is done inside the

LOOM controller, so that the live update engine does not

have to pay this overhead.

LOOM implements three mechanisms for safety. First,

by keying synchronization objects based on filter and

constraint IDs, it uses a disjoint set of synchronization

objects for different execution filters and constraints,

avoiding interference among them. Second, LOOM in-

serts additional checking code when it generates the up-

#$%&'()* '+)&,- ./ 0-1//*23456789456 7: ;4<8
=>-*'/ ?@&+A BC@*>27: ;4<8#$#$ #$ #$

Figure 6: Unsafe program states for installing filters.

date plan. For example, given a code region c in a mu-

tual exclusion constraint, LOOM checks for errors such

as c’s unlock() releasing a lock not acquired by c’s

lock(). Lastly, LOOM checks for filter-induced dead-

locks to guard against buggy filters. If a buggy filter

introduces a deadlock, one of its synchronization oper-

ations must be involved in the wait cycle. LOOM de-

tects such deadlocks using timeouts, and automatically

removes the offending filter.

4 Avoiding Unsafe Application States

Figure 6 shows three unsafe scenarios LOOM must han-

dle. For a mutual exclusion constraint that turns code

regions into critical sections, LOOM must ensure that

no thread is executing within the code regions when in-

stalling the filter to avoid “double-unlock” errors. Simi-

larly, for an execution order constraint e1 > e2, LOOM

must ensure either of the following two conditions when

installing the filter: (1) both e1 and e2 have occurred or

(2) neither has occurred; otherwise the up() LOOM in-

serts at e1 may get skipped or wake up a wrong thread.

Note that a naı̈ve approach is to simply ignore an

unlock() if the corresponding lock is already un-

locked, but this approach does not work with execution

order constraints. Moreover, it mixes unsafe program

states with buggy filters, and may reject correct filters

simply because it tries to install the filters at unsafe pro-

gram states.

A common safety heuristic called function quies-

cence [2, 13, 21, 39] cannot address this unsafe state

problem. This technique updates a function only when

no stack frame of this function is active in any call stack

of the application. Unfortunately, though this technique

can ensure safety for many live updates, it is insufficient

for execution filters because their synchronization con-

straints may affect multiple functions.

We demonstrate this point using a race example. Fig-

ure 7 shows the worker thread code of a contrived

database. Function process client() is the main

thread function. It takes a client socket as input and re-

peatedly processes requests from the socket. For each

request, function process client() opens the cor-

responding database table by calling open table(),

serves the request, and closes the table by calling

1 : // database worker thread

2 : void handle client(int fd) {
3 : for(;;) {
4 : struct client req req;

5 : int ret = recv(fd, &req, . . .);

6 : if(ret <= 0) break;

7 : open table(req.table id);

8 : . . . // do real work

9 : close table(req.table id);

10: }
11: }
12: void open table(int table id) {
13: // fix: acquire table lock

14: . . . // actual code to open table

15: }
16: void close table(int table id) {
17: . . . // actual code to close table

18: // fix: release table lock

19: }

Figure 7: A contrived race.

close table(). The race in Figure 7 occurs when

multiple clients concurrently access the same table.

To fix this race, an execution filter can add a lock ac-

quisition at line 13 in open table() and a lock re-

lease at line 18 in close table(). To safely install

this filter, however, the quiescence of open table()

and close table() is not enough, because a thread

may still be running at line 8 and cause a double-unlock

error. An alternative fix is to add the lock acquisition and

release in function handle client(), but this func-

tion hardly quiesces because of the busy loop (line 3-10)

and the blocking call recv().

LOOM solves the unsafe state program using an algo-

rithm termed evacuation that can proactively quiesce ar-

bitrary code regions. From a high level, this algorithm

takes a filter and computes a set of unsafe program lo-

cations that may interfere with the filter. It does so con-

servatively to avoid marking an unsafe location as safe.

Then, it “evacuates” threads out of the unsafe locations

and blocks them at safe program location. After that, it

installs the filter and resumes the threads.

4.1 Computing Unsafe Program Locations

LOOM uses slightly different methods to compute the un-

safe program locations for mutual exclusion and for ex-

ecution order constraints. To compute unsafe program

locations for mutual exclusion constraints, LOOM per-

forms a static reachability analysis on the interprocedu-

ral control flow graph (ICFG) of an application. An

ICFG connects each function’s control flow graphs by

following function calls and returns. Figure 8a shows

the ICFG for the code in Figure 7. We say statement s1

reaches s2 or reachable(s1, s2) if there is a path from s1

to s2 on the ICFG. For example, the statement at line 13

reaches the statement at line 8 in Figure 7.

Given an execution filter f with mutual exclusion

constraint r1 <> r2 <> ... <> rn, LOOM in-

LOOM
Update
Engine

LOOM
Update
Engine

LOOM
Update
Engine

PC

“Evacuate” Install
Filter

Unsafe to update Safe to update Updated

Figure 9: Evacuation. Curved lines represent application

threads, solid triangles (in black) represents the threads’

program counters (PC), and solid stripes (in red) repre-

sents an unsafe code region.

cludes any statement s potentially inside one of the re-

gions in unsafe(f), the set of unsafe program loca-

tions for filter f . Specifically, unsafe(f) is the set

of statements s such that {reachable(ri.entries, s) ∧
reachable(s, ri.exits)} for i ∈ [1, n], where ri.entries

are the entry statements to region ri and ri.exits are the

exit statements.

LOOM computes unsafe program locations for an ex-

ecution order constraint by first deriving code regions

from the constraint, then reusing the method for mutual

exclusion to compute unsafe program locations. Specif-

ically, given e1 > e2 > ... > en, LOOM first computes

a dominator statement sd such that sd dominates all ei

(i.e., sd is on every path from the program start to ei); it

then computes unsafe(f) as the set of statements inside

each {sd; ei} region.
Since ei may be in different threads, LOOM aug-

ments the ICFG of an application into thread interpro-

cedural control flow graph (TICFG) by adding edges

for thread creation and thread join statements. Cur-

rently our analysis constructs the TICFG by treating

each pthread create(func) statement as a func-

tion call to func(): it adds an edge from the statement

to the entry of func() and a thread join edge from the

exit of func() to the statement.

4.2 Controlling Application Threads

LOOM needs to control application threads to pause and

resume them. It does so using a read-write lock called the

update lock. To live update an application, LOOM grabs

this lock in write mode, performs the update, and releases

this lock. To control application threads, LOOM’s com-

piler plugin instruments the application so that the ap-

plication threads hold this lock in read mode in normal

operation and check for an update once in a while by re-

leasing and re-grabbing this lock.

LOOM carefully places update-checks inside an appli-

cation to reduce the overhead and ensure a timely update.

Figure 8b shows the placement of these update-checks.

LOOM needs no update-checks inside straight-line code

with no blocking calls because such code can complete

(a) ICFG of the code in Figure 7. (b) After update-checks inserted. (c) After basic blocks cloned.

Figure 8: Static transformations that LOOM does for safe and fast live update. Subfigure (a) shows the ICFG of the

code in Figure 7; (b) shows the resulting CFG of function process client() after the instrumentation to control

application threads (§4); (c) shows the final CFG of function process client() after basic block cloning (§5).

quickly. LOOM places one update-check for each cycle

in the control flow graph, including loops and recursive

function call chains, so that an application thread cycling

in one of these cycles can check for an update at least

once each iteration. Currently LOOM instruments the

backedge of a loop and an arbitrary function entry in a

recursive function cycle. LOOM does not instrument ev-

ery function entry because doing so is costly.

LOOM also instruments an application to release the

update lock before a blocking call and re-grab it af-

ter the call, so that an application thread blocking on

the call does not delay an update. For the example in

Figure 7, LOOM can perform the update despite some

threads blocking in recv(). LOOM instruments only

the “leaf-level” blocking calls. That is, if foo() calls

bar() and bar() is blocking, LOOM instruments the

calls to bar(), but not the calls to foo(). Currently

LOOM conservatively considers calls to external func-

tions (i.e., functions without source), except Math library

functions, as blocking to save user annotation effort.

4.3 Pausing at Safe Program Locations

Besides the update lock, LOOM uses additional syn-

chronization variables to ensure that application threads

pause at safe locations. LOOM assigns a wait flag for

each backedge of a loop and the chosen function entry

of a recursive call cycle. To enable/disable pausing at a

safe/unsafe location, LOOM sets/clears the correspond-

ing flag. The instrumentation code for each CFG cycle

(left of Figure 10) checks for an update only when the

corresponding wait flag is set. These wait flags allow ap-

plication threads at unsafe program locations to run until

they reach safe program locations, effectively evacuating

the unsafe program locations.

// inserted at CFG cycle

void cycle check() {
if(wait[stmt id]) {
read unlock(&update);

while(wait[stmt id]);

read lock(&update);

}
}

// inserted before blocking call

void before blocking() {
atomic inc(counter[callsite id]);

read unlock(&update);

}
// inserted after blocking call

void after blocking() {
read lock(&update);

atomic dec(counter[callsite id]);

}

Figure 10: Instrumentation to pause application threads.

Note that the statement “if(wait[stmt id])” in

Figure 10 is for performance, not correctness. With this

statement, application threads need not always release

and re-grab the update lock which can be costly, and

hardware cache and branch prediction can effectively

hide the overhead of checking these flags. This technique

speeds up LOOM significantly (§6) because wait flags are
almost always 0 with read accesses.

LOOM cannot use the wait-flag technique to skip a

blocking function call because doing so changes the ap-

plication semantics. Instead, LOOM assigns a counter to

each blocking callsite to track how many threads are at

the callsites (right of Figure 10). LOOM uses a counter

instead of a binary flag because multiple threads may be

doing the same call.

Now that LOOM’s instrumentation is in place, Fig-

ure 11 shows LOOM’s evacuation method which runs

within LOOM’s live update engine. This method first sets

the wait flags for safe backedges. It then grabs the update

lock in write mode, which pauses all application threads.

It then examines the counters of unsafe callsites and if

any counter is positive, it releases the update lock and

retries, so that the thread blocked at unsafe callsites can

volatile int wait[NBACKEDGE] = {0};

volatile int counter[NCALLSITE] = {0};

rwlock t update;

void evacuate() {
for each B in safe backedges

wait[B] = 1; // turn on wait flags

retry:

write lock(&update); // pause app threads

for each C in unsafe callsites

if(counter[C]) { // threads paused at unsafe callsites

write unlock(&update);

goto retry;

}
. . . // update

for each B in safe backedges

wait[B] = 0; // turn off wait flags

write unlock(&update); // resume app threads

}

Figure 11: Pseudo code of the evacuation algorithm.

wake up and advance to safe locations. Next, it updates

the application (§5), clears the wait flags, and releases

the update lock.

4.4 Correctness Discussion

We briefly discuss the correctness of our evacuation al-

gorithm in this subsection; for a complete proof, please

refer to our technical report [53].

In program analysis terms, our reachability analysis

(§4.1) is interprocedural and flow-sensitive. We use

a crude pointer analysis to discover thread functions,

thread join sites, and function pointer targets. We could

have refined our analysis to improve precision, but we

find it sufficient to compute unsafe locations for all eval-

uated races because (1) our analysis is sound and never

marks an unsafe location safe and (2) execution filters

are quite small and slight imprecision does not matter. In

the worst case, if our analysis turns out too imprecise for

some filters, the flexibility of LOOM allows developers

to easily adjust their filters to pass the safety analysis.

Server programs frequently use thread pools, creat-

ing problems for our reachability analysis. Specifically,

these servers tend to create a fixed set of threads dur-

ing initialization, then reuse them for independent re-

quests. If we compute dominators using the creation sites

of these threads, we would find that dominators only run

during server initialization. Fortunately, we can anno-

tate the reuse of a thread as a special thread creation site,

so that our algorithm computes correct dominators. In

our experiments, we did not (and need not) annotate any

thread reuse.

Our reachability analysis gives correct results de-

spite compiler reordering. In order to pause application

threads at safe locations, our reachability analysis returns

only the set of unsafe backedges and external callsites.

These locations are instrumented by LOOM; this instru-

mentation acts as barriers and prevents compilers from

void slot(int stmt id) {
op list = operations[stmt id];

foreach op in op list

do op;

}

Figure 12: Slot function.

reordering instructions across them.

The synchronization between the instrumentation in

Figure 10 and the evacuation algorithm in Figure 11 is

correct under two conditions: (1) read and write to wait

flags are atomic and (2) the operations to the update lock

contain correct memory barriers that prevent hardware

reordering. Currently we implement wait flags using

aligned integers; our update lock operations use atomic

operations similar to the Linux kernel’s rw spinlock.

Thus, our evacuation algorithm works correctly on X86

and AMD64 which do not reorder instructions across

atomic instructions. We expect our algorithm to work on

other commodity hardware that also provides this guar-

antee. To cope with more relaxed hardware (e.g., , Al-

pha), we can augment these operations with full barriers.

5 Hybrid Instrumentation

Most previous live update systems update binaries by

compiling updated functions and redirecting old func-

tions to the new function binaries using a table or jump

instructions. This approach requires source patches to

generate the updates, thus it has the limitations described

in §1. Moreover, this approach pays the overhead of po-

sition independent code (PIC) because application func-

tions must be compiled as PIC for live update. It also suf-

fers the aforementioned function quiescence problem.2

Another alternative is to use general-purpose binary

instrumentation tools such as vx32 [20], Pin [34] and Dy-

namoRIO [14], but they tend to incur significant runtime

overhead just to run their frameworks alone. For exam-

ple, Pin has been reported to incur 199% overhead [34],

and we observed 10 times slowdown on Apache with a

CPU-bound workload (§6).
LOOM’s hybrid instrumentation engine reduces run-

time overhead by combining static and dynamic instru-

mentation. This engine statically transforms an applica-

tion’s binary to anticipate dynamic updates. The static

transformation pre-pads, before each program location,

a slot function which interprets the updates to this pro-

gram location at runtime. Figure 12 shows the pseudo

code of this function. It iterates though a list of synchro-

nization operations assigned to the current statement and

performs each. To update a program location at runtime,

LOOM simply modifies the corresponding operation list.

Inserting the slot function at every statement incurs

2The function quiescence problem can be addressed by transform-

ing loop bodies into functions [38, 39] but only if the CFGs are re-

ducible [23].

Race ID Description

MySQL-791 Calls to close() and open() to flush log file

are not atomic. Figure 2 shows the code.

MySQL-169 Table update and log write in mysql delete()

are not atomic.

MySQL-644 Calls to prepare() and optimize() in

mysql select() are not atomic.

Apache-21287 Reference count decrement and checking are not

atomic.

Apache-25520 Threads write to same log buffer concurrently, re-

sulting in corrupted logs or crashes.

PBZip2 Variable fifo is used in one thread after being

freed by another. Figure 4 shows the code.

SPLASH2-fft Variable finishtime and initdonetime

are read before assigned the correct values.

SPLASH2-lu Variable rf is read before assigned the correct

value.

SPLASH2-barnes Variable tracktime is read before assigned the

correct value.

Table 3: All races used in evaluation. We identify

races in MySQL and Apache as “〈application name〉 −
〈Bugzilla #〉”, the only race in PBZip2 “PBZip2”, and races

in SPLASH2 “SPLASH2 − 〈benchmark name〉”.

high runtime overhead and hinders compiler optimiza-

tion. LOOM solves this problem using a basic block

cloning idea [29]. LOOM keeps two versions of each

basic block in the application binary, an originally com-

piled version that is optimized, and a hot backup that is

unoptimized and padded for live update. To update a ba-

sic block at runtime, LOOM simply updates the backup

and switches the execution to the backup by flipping a

switch flag.

LOOM instruments only function entries and loop

backedges to check the switch flags because doing so for

each basic block is expensive. Similar to the wait flags in

(§4), the switch flags are almost always 0, so that hard-

ware cache and branch predication can effectively hide

the overhead of checking them. This technique makes

live-update-ready applications run as fast as the origi-

nal application during normal operations (§6). Figure 8c
shows the final results after all LOOM transformations.

Note that the accesses to switch flags are correctly pro-

tected by the update lock. An application checks the

switch flag when holding the update lock in read mode,

and the update engine sets the switch flag when holding

the update lock in write mode.

6 Evaluation

We implemented LOOM in Linux. It consists of 4,852

lines of C++ code, with 1,888 lines for the LLVM com-

piler plugin, 2,349 lines for the live-update engine, and

615 lines for the controller.

We evaluated LOOM on nine real races from a diverse

set of applications, ranging from two server applications

MySQL [5] and Apache [11], to one desktop application

PBZip2 [6], to three scientific applications fft, lu, and

barnes in SPLASH2 [7].3 Table 3 lists all nine races.

Our race selection criteria is simple: (1) they are exten-

sively used in previous studies [31, 42, 43] and (2) the

application can be compiled by LLVM and the race can

be reproduced on our main evaluation machine, a 2.66

GHz Intel quad-core machine with 4 GB memory run-

ning 32-bit Linux 2.6.24.

We used the following workloads in our experi-

ments. For MySQL, we used SysBench [8] (advanced

transaction workload), which randomly selects, updates,

deletes, and inserts database records. For Apache, we

used ApacheBench [1], which repeatedly downloads a

webpage. Both benchmarks are multithreaded and used

by the server developers. We made both SysBench and

ApacheBench CPU bound by fitting the database or web

contents within memory; we also ran both the client

and the server on the same machine, to avoid mask-

ing LOOM’s overhead with the network overhead. Un-

less otherwise specified, we ran 16 worker threads for

MySQL and Apache because they performed best with

8-16 threads. We ran four worker threads for PBZip2 and

SPLASH2 applications because they are CPU-intensive

and our evaluation machine has four cores.

We measured throughput (TPUT) and response time

(RESP) for server applications and overall execution

time for other applications. We report LOOM’s relative

overhead, the smaller the better. We compiled the appli-

cations down to x86 instructions using llvm-gcc -O2

and LLVM’s bitcode compiler llc. For all the perfor-

mance numbers reported, we repeated the experiment 50

times and take the average.

We focus our evaluation on five dimensions:

1. Overhead. Does LOOM incur low overhead?

2. Scalability. Does LOOM scale well as the number of

application threads increases?

3. Reliability. Can LOOM be used to fix the races listed

in Table 3? What are the performance and reliability

tradeoffs of execution filters?

4. Availability. Does LOOM severely degrade applica-

tion availability when execution filters are installed?

5. Timeliness. Can LOOM install fixes in a timely way?

6.1 Overhead

Figure 13 shows the performance overhead of LOOM

during the normal operations of the applications. We

also show the overhead of bare Pin for reference. LOOM

incurs little overhead for Apache and SPLASH2 bench-

marks. It increases MySQL’s response time by 4.11%

and degrades its throughput by 3.76%. In contrast, Pin

incurs higher overhead for all applications evaluated, es-

3We include applications that do not need live update for two rea-

sons. First, as discussed in §1, LOOM can provide quick workarounds

for these applications as well. Second, we use them to measure LOOM’s

overhead and scalability.

-20

 0

 20

 40

 60

 80

 100

 120

TPUT RESPO
v
e

rh
e

a
d

 a
ft

e
r

e
a

c
h

 o
p

t
(%

)

Optimization Effects on Apache

unopt
cloning

wait-flag
inlining

 0

 500

 1000

 1500

 2000

fft barnes

O
v
e

rh
e

a
d

 a
ft

e
r

e
a

c
h

 o
p

t
(%

)

Optimization Effects on SPLASH2

unopt
cloning

wait-flag
inlining

<
=

0
.6

5

<
=

1
.9

1

Figure 14: Effects of LOOM’s optimizations. Label unopt represents the versions with no optimizations; cloning represents the

version with basic block cloning (§5); wait-flag represents the version with statement “if(wait[stmt id])” added (§4.2); and
inlining indicates the version with all LOOM instrumentation inlined into the applications.

Apa
ch

e-
TPU

T

Apa
ch

e-
R
ESP

M
yS

Q
L-

TPU
T

M
yS

Q
L-

R
ESP

SPLA
SH

2-
fft

SPLA
SH

2-
ba

rn
es

Overhead (%)

LOOM
Pin

-1.84 -1.83
3.76 4.11

-0.17 0.55

88.86

1065.39

74.73

296.19

16.86 14.94

Figure 13: LOOM’s relative overhead during normal opera-

tion. Smaller numbers are better. We show Pin’s overhead for

reference. Some Pin bars are broken.

pecially for Apache and MySQL.

We also evaluated how the optimizations we do reduce

LOOM’s overhead. Figure 14 shows the effects of these

optimizations. Both cloning and wait-flag are very ef-

fective at reducing overhead. Cloning reduces LOOM’s

response-time overhead on Apache from 100% to 17%.

It also reduces LOOM’s overhead on fft from 15 times to

8 times. Wait-flag actually makes Apache run faster than

the original version. Inlining does not help the servers

much, but it does help for SPLASH2 applications.

6.2 Scalability

LOOM synchronizes with application threads via a read-

write lock. Thus, one concern is, can LOOM scale well

as the number of application threads increases? To evalu-

ate LOOM’s scalability, we ran Apache and MySQL with

LOOM on a 48-core machine with four 1.9 GHz 12-core

AMD CPUs and 64 GB memory running 64-bit Linux

2.6.24. In each experiment, we pinned the benchmark to

one CPU and the server to the other three to avoid unnec-

essary CPU contention between them.

Figure 15 shows LOOM’s relative overhead vs. the

number of application threads for Apache and MySQL.

Race ID
Mutual Unilateral

Events TPUT RESP Events TPUT RESP

MySQL-169 2 0.14% 0.15% 1 3.28% 3.37%

MySQL-644 4 0.22% 0.20% 4 32.58% 48.34%

MySQL-791 4 0.23% 0.32% 2 0.33% 0.48%

Apache-21287 16 -0.02% -0.03% 2 54.03% 118.16%

Apache-25520 1 0.52% 0.55% 1 86.04% 637.03%

Table 4: Execution filter stats for atomicity errors. Col-

umn Events counts the number of events in each filter.

Race ID Events Overhead

PBZip2 6 1.26%

SPLASH2-fft 6 0.08%

SPLASH2-lu 2 1.68%

SPLASH2-barnes 2 1.99%

Table 5: Execution filter stats for order errors.

LOOM scales well with the number of threads. Its rela-

tive overhead varies only slightly. Even with 32 server

threads, the overhead for Apache is less than 3%, and the

overhead for MySQL is less than 12%.

Our initial MySQL overhead was around 16%.

We analyzed the execution counts of the LOOM-

inserted functions and immediately identified two

update-check sites (cycle check() calls) that exe-

cuted exceedingly many times. These update-check

sites are in MySQL functions ptr compare 1 and

Field varstring::val str. The first function

compares two strings, and the second copies one string to

another. Each function has a loop with a few statements

and no function calls. Such tight loops cause higher over-

head for LOOM, but rarely need to be updated. We thus

disabled the update-check sites in these two functions,

which reduced the overhead of MySQL down to 12%.

This optimization can be easily automated using static or

dynamic analysis, which we leave for future work.

6.3 Reliability

LOOM can be used to fix all races evaluated. (We verified

this result by manually inspecting the application binary.)

-10

-8

-6

-4

-2

 0

 2

 4

1 2 4 8 16 32

O
v
e

rh
e

a
d

 (
%

)

Number of threads

Apache’s Scalability

TPUT
RESP

-5

 0

 5

 10

 15

1 2 4 8 16 32

O
v
e

rh
e

a
d

 (
%

)

Number of threads

MySQL’s Scalability

TPUT
RESP

Figure 15: LOOM’s relative overhead vs. the number of application threads.

Table 4 shows the statistics for the execution filters that

fix atomicity errors. Table 5 shows the statistics for the

execution filters that fix order errors.

In all cases, we can fix the race using multiple execu-

tion filters, demonstrating the flexibility of LOOM. (The

filters for MySQL-791 are shown in Figure 3.) We only

show the statistics of one execution filter of each con-

straint type; other filters of the same type are similar. Our

results show that the filters are fairly small, 3.79 events

on average and no more than 16 events, demonstrating

the ease of use of LOOM. Most filters incur only a small

overhead on top of LOOM. Unilateral filters tend to be

slightly smaller than mutual exclusion filters, but they

can be expensive sometimes. They incur little overhead

for two of the MySQL bugs because the code regions

protected by the filters rarely run.

These different reliability and performance overheads

present an interesting tradeoff to developers. For ex-

ample, users can choose to install a unilateral filter for

immediate protection, then atomically replace it with

a faster mutual exclusion filter. Moreover, a user can

choose an “expensive” filter as long as their workload

is compatible with the filter.

6.4 Availability

We show that LOOM can improve server availability

by comparing LOOM to the restart-based software up-

date approach. We restarted a server by running its

startup script under /etc/init.d. We chose two

races, MySQL-791 and Apache-25520, and measured

how software updates (conventional or with LOOM)

might degrade performance. Note this comparison fa-

vors conventional updates because we only compare the

installation of the fix, but LOOM also makes it quick to

develop fixes. Figure 16 shows the comparison result.

Using the restart approach, Apache is unavailable for 4

seconds, andMySQL is unavailable for 2 seconds. More-

over, the restarts also cause Apache and MySQL to lose

their internal cache, leading to a ramp-up period after the

restart. In contrast, installing an filter using LOOM (at

second 5) does not degrade throughput for MySQL and

only degrades throughput slightly for Apache.

6.5 Timeliness

The more timely LOOM installs a filter, the quicker the

application is protected from the corresponding race.

This timeliness is critical for server applications because

malicious clients may exploit a known race and launch

attacks. In this subsection, we compare how timely

LOOM’s evacuation algorithm installs an aggressive filter

vs. an approach that passively waits for function quies-

cence. We chose Apache-25520 as the benchmark race.

We wrote a simple mutual exclusion filter that fixes the

race by making function ap buffered log writer

a critical region. We then measured the latency from

the moment LOOM receives a filter to the moment

the filter is installed. We simulated a function quies-

cence approach by running LOOM without making any

wait flag false, so that a thread can pause wher-

ever we insert update-checks. We used the same Sys-

Bench and ApacheBench workload. Our results show

that LOOM can install the filter within 368 ms. It spends

majority of the time waiting for threads to evacuate. In

contrast, an approach based on function quiescence fails

to install the filter in an hour, our experiment’s time limit.

7 Related Work

Live update LOOM differs from previous live update

systems [10, 12, 15, 35, 38, 39, 51] in that it is explic-

itly designed for developers to quickly develop tempo-

rary workarounds to races. Moreover, it can automati-

cally ensure the safety of the workarounds. In contrast,

previous work focuses only on live update after a source

patch is available, thus it does not address the automatic-

safety and flexibility problems LOOM addresses.

The live update system closest to LOOM is

STUMP [38], which can live-update multithreaded appli-

cations written in C. Its prior version Ginseng [39] works

with single-threaded C applications. Both STUMP and

Ginseng have been shown to be able to apply arbitrary

source patches and update applications across major re-

leases. Unlike LOOM, both STUMP and Ginseng require

 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t
(#

 /
 s

e
c
)

Time (s)

MySQL’s Availability

Loom
Restart

 0

 5000

 10000

 15000

 20000

 0 2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t
(#

 /
 s

e
c
)

Time (s)

Apache’s Availability

Loom
Restart

Figure 16: Throughput degradation for fixing races with LOOM vs. with conventional software update.

source modifications and rely on extensive user annota-

tions for safety because the safety of arbitrary live up-

dates has been proven undecidable [22].

A number of live update systems can update kernels

without reboots [12, 15, 35]. The most recent one,

Ksplice [12], constructs live updates from object code,

and does not require developer efforts to adapt existing

source patches. Unlike LOOM, Ksplice uses function

quiescence for safety, and is thus prone to the unsafe

state problem discussed in §4. Another kernel live up-

date system, DynAMOS [35], requires users to manu-

ally construct multiple versions of a function to update

non-quiescent functions. This technique is different from

basic block cloning (§5): the former is manual and for

safety, whereas the later is automatic and for speed.

Error workaround and recovery We compare

LOOM to recent error workaround and recovery tools.

ClearView [44], ASSURE [50], and Failure-oblivious

computing can increase application availability by

letting them continue despite errors. Compared to

LOOM, these systems are unsafe, and do not directly

deal with races. Rx [46] can safely recover from runtime

faults using application checkpoints and environment

modifications, but it does not fix errors because the

same error can re-appear. Vigilante [17] enables hosts

to collaboratively contain worms using self-verifiable

alerts. By automatically ensuring filter safety, LOOM

shares similar benefits.

Two recent systems, Dimmunix [26] and Gadara [52],

can fix deadlocks in legacy multithreaded programs.

Dimmunix extracts signatures from occurred deadlocks

(or starvations) and dynamically avoids them in future

executions. Gadara uses control theory to statically

transform a program into a deadlock-free program. Both

systems have been shown to work on real, large applica-

tions. They may possibly be adapted to fix races, albeit at

a coarser granularity because these systems control only

lock operations.

Kivati [16] automatically detects and prevents atom-

icity violations for production systems. It reduces per-

formance overhead by cleverly using hardware watch

points, but the limited number of watch points on com-

modity hardware means that Kivati cannot prevent all

atomicity violations. Nor does Kivati prevent execution

order violations. LOOM can be used to workaround these

errors missed by Kivati.

Program instrumentation frameworks Previous work

[3, 19, 40] can instrument programs with low runtime

overhead, but instrumentation has to be done at compile

time. Translation-based dynamic instrumentation frame-

works [14, 20, 34] can update programs at runtime but

incur high overhead. In particular, vx32 [20] is a novel

user-level sandbox that reduces overhead using segmen-

tation hardware; it can be used as an efficient dynamic

binary translator. Jump-based instrumentation frame-

works [24, 48] have low overhead but automatically en-

suring safety for them can be difficult due to low-level is-

sues such as position-dependent code, short instructions,

and locations of basic blocks.

One advantage of these instrumentation frameworks

over LOOM is that LOOM requires CFGs and symbol in-

formation to be distributed to user machines, thus it risks

leaking proprietary code information. However, this risk

is not a concern for open-source software. Moreover,

LOOM only mildly increases this risk because CFGs

can often be reconstructed from binaries, and companies

such as Microsoft already share symbol information [4].

The advantage of LOOM is that it combines static

and dynamic instrumentation, thus allowing arbitrary dy-

namic updates issued by execution filters with negligible

runtime overhead. LOOM borrows basic block cloning

from previous work by Liblit et al. [29], but their frame-

work is static only. This idea has also been used in other

systems (e.g., LIFT [45]).

Other related workOur work was inspired by many ob-

servations made by Lu et al. [33]. Aspect-oriented pro-

gramming (AOP) allows developers to “weave” in syn-

chronizations into code [27, 30]. LOOM’s execution filter

language shares some similarity to AOP, and can be made

more expressive by incorporating more aspects. How-

ever, to the best of our knowledge, no existing AOP sys-

tems were designed to support race fixing at runtime. We

view the large body of race detection and diagnosis work

(e.g., [31, 32, 37, 42, 47, 49, 54]) as complimentary to

our work and LOOM can be used to fix errors detected

and isolated by these tools.

8 Conclusion

We have presented LOOM, a live-workaround system de-

signed to quickly and safely fix application races at run-

time. Its flexible language allows developers to write

concise execution filters to declare their synchronization

intents on code. Its evacuation algorithm automatically

ensures the safety of execution filters and their installa-

tion/removal processes. It uses hybrid instrumentation to

reduce its performance overhead during the normal oper-

ations of applications. We have evaluated LOOM on nine

real races from a diverse set of applications. Our results

show that LOOM is fast, scalable, and easy to use. It can

safely fix all evaluated races in a timely manner, thereby

increasing application availability.

LOOM demonstrates that live-workaround systems can

increase application availability with little performance

overhead. In our future work, we plan to extend this idea

to other classes of errors (e.g., security vulnerabilities).

Acknowledgement

We thank Cristian Cadar, Jason Nieh, Jinyang Li,

Michael Kester, Xiaowei Yang, Vijayan Prabhakaran

(our shepherd), and the anonymous reviewers for their

tremendous feedback and comments, which have sub-

stantially improved the content and presentation of this

paper. We thank Shan Lu for providing many of the races

used in our evaluation.

This work was supported by the National Science

Foundation (NSF) through Contract CNS-1012633 and

CNS-0905246 and the United States Air Force Research

Laboratory (AFRL) through FA8650-10-C-7024. Opin-

ions, findings, conclusions, and recommendations ex-

pressed in this material are those of the authors and do

not necessarily reflect the views of the US Government.

References

[1] ab - Apache HTTP server benchmarking tool. http://

httpd.apache.org/docs/2.2/programs/ab.html.

[2] The K42 Project. http://www.research.ibm.com/

K42/.

[3] The LLVM Compiler Framework. http://llvm.org.

[4] Download windows symbol packages. http://www.

microsoft.com/whdc/devtools/debugging/

debugstart.mspx.

[5] MySQL Database. http://www.mysql.com/.

[6] Parallel BZIP2 (PBZIP2). http://compression.ca/

pbzip2/.

[7] Stanford Parallel Applications for Shared Memory (SPLASH).

http://www-flash.stanford.edu/apps/SPLASH/.

[8] SysBench: a system performance benchmark. http://

sysbench.sourceforge.net.

[9] G. Altekar and I. Stoica. ODR: output-deterministic replay for

multicore debugging. In Proceedings of the 22nd ACM Sympo-

sium on Operating Systems Principles (SOSP ’09), pages 193–

206, 2009.

[10] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz. OPUS: on-

line patches and updates for security. In Proceedings of the 14th

USENIX Security Symposium, 2005.

[11] Apache Web Server. http://www.apache.org.

[12] J. Arnold and F. M. Kaashoek. Ksplice: Automatic rebootless

kernel updates. In Proceedings of the 4th ACM European Con-

ference on Computer Systems (EUROSYS ’09), pages 187–198,

Apr. 2009.

[13] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva, O. Krieger,

R. W. Wisniewski, and J. Kerr. Providing dynamic update in an

operating system. In Proceedings of the USENIX Annual Techni-

cal Conference (USENIX ’05), pages 32–32, 2005.

[14] D. L. Bruening. Efficient, transparent, and comprehensive

runtime code manipulation. PhD thesis, 2004. Supervisor-

Amarasinghe, Saman.

[15] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Live updat-

ing operating systems using virtualization. In Proceedings of the

2nd International Conference on Virtual Execution Environments

(VEE ’06), pages 35–44, 2006.

[16] L. Chew and D. Lie. Kivati: fast detection and prevention of

atomicity violations. In EuroSys ’10: Proceedings of the 5th Eu-

ropean conference on Computer systems, pages 307–320, 2010.

[17] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,

L. Zhang, and P. Barham. Vigilante: end-to-end containment of

internet worms. In Proceedings of the 20th ACM Symposium on

Operating Systems Principles (SOSP ’05), pages 133–147, 2005.

[18] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.

Execution replay of multiprocessor virtual machines. In Proceed-

ings of the 4th International Conference on Virtual Execution En-

vironments (VEE ’08), pages 121–130, 2008.

[19] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system

rules using system-specific, programmer-written compiler exten-

sions. In Proceedings of the Fourth Symposium on Operating

Systems Design and Implementation (OSDI ’00), Sept. 2000.

[20] B. Ford and R. Cox. Vx32: lightweight user-level sandboxing

on the x86. In Proceedings of the USENIX Annual Technical

Conference (USENIX ’08), pages 293–306, 2008.

[21] S. Gilmore and C. Walton. Dynamic ML without dynamic types.

Technical report, Lab. for the Foundations of Computer Science,

University of Edinburgh, 1997.

[22] D. Gupta, P. Jalote, and G. Barua. A formal framework for on-

line software version change. IEEE Transactions on Software

Engineering, 22(2):120–131, 1996.

[23] M. S. Hecht and J. D. Ullman. Characterizations of reducible

flow graphs. Journal of the ACM, 21(3):367–375, 1974.

[24] G. Hunt and D. Brubacher. Detours: Binary interception of win32

functions. In In Proceedings of the 3rd USENIX Windows NT

Symposium, pages 135–143, 1998.

[25] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic

program analysis technique for detecting real deadlocks. In Pro-

ceedings of the ACM SIGPLAN 2009 Conference on Program-

ming Language Design and Implementation (PLDI ’09), pages

110–120, June 2009.

[26] H. Jula, D. Tralamazza, Z. Cristian, and C. George. Deadlock im-

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://www.research.ibm.com/K42/
http://www.research.ibm.com/K42/
http://llvm.org
http://www.microsoft.com/whdc/devtools/debugging/debugstart.mspx
http://www.microsoft.com/whdc/devtools/debugging/debugstart.mspx
http://www.microsoft.com/whdc/devtools/debugging/debugstart.mspx
http://www.mysql.com/
http://compression.ca/pbzip2/
http://compression.ca/pbzip2/
http://www-flash.stanford.edu/apps/SPLASH/
http://sysbench.sourceforge.net
http://sysbench.sourceforge.net
http://www.apache.org

munity: Enabling systems to defend against deadlocks. In Pro-

ceedings of the Eighth Symposium on Operating Systems Design

and Implementation (OSDI ’08), pages 295–308, Dec. 2008.

[27] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

J. marc Loingtier, and J. Irwin. Aspect-oriented programming. In

ECOOP, 1997.

[28] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight

application execution replay on commodity multiprocessor op-

erating systems. In Proceedings of the 2010 ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems,

2010.

[29] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isola-

tion via remote program sampling. In PLDI ’03: Proceedings of

the ACM SIGPLAN 2003 conference on Programming language

design and implementation, pages 141–154, 2003.

[30] D. Lohmann, W. Hofer, W. Schrder-Preikschat, J. Streicher, and

O. Spinczyk. CiAO: An aspect-oriented operating-system family

for resource-constrained embedded systems. In Proceedings of

the USENIX Annual Technical Conference (USENIX ’09), 2009.

[31] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting atomic-

ity violations via access interleaving invariants. In Twelfth Inter-

national Conference on Architecture Support for Programming

Languages and Operating Systems (ASPLOS ’06), pages 37–48,

Oct. 2006.

[32] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and

Y. Zhou. Muvi: automatically inferring multi-variable access cor-

relations and detecting related semantic and concurrency bugs.

SIGOPS Oper. Syst. Rev., 41(6):103–116, 2007.

[33] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug character-

istics. In ASPLOS XIII: Proceedings of the 13th international

conference on Architectural support for programming languages

and operating systems, pages 329–339, 2008.

[34] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. Reddi, and K. Hazelwood. Pin: building cus-

tomized program analysis tools with dynamic instrumentation.

In Proceedings of the ACM SIGPLAN 2005 Conference on Pro-

gramming Language Design and Implementation (PLDI ’05),

pages 190–200, 2005.

[35] K. Makris and K. Ryu. Dynamic and adaptive updates of non-

quiescent subsystems in commodity operating system kernels. In

Proceedings of the 2nd ACM SIGOPS/EuroSys European Confer-

ence on Computer Systems 2007, page 340, 2007.

[36] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo:

a software-hardware interface for practical deterministic multi-

processor replay. In Fourteenth International Conference on Ar-

chitecture Support for Programming Languages and Operating

Systems (ASPLOS ’09), pages 73–84, 2009.

[37] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and

I. Neamtiu. Finding and reproducing heisenbugs in concurrent

programs. In Proceedings of the Eighth Symposium on Operating

Systems Design and Implementation (OSDI ’08), pages 267–280,

Dec. 2008.

[38] I. Neamtiu and M. Hicks. Safe and timely dynamic updates for

multi-threaded programs. In Proceedings of the ACM SIGPLAN

2009 Conference on Programming Language Design and Imple-

mentation (PLDI ’09), pages 13–24, June 2009.

[39] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic

software updating for C. pages 72–83, June 2006.

[40] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Inter-

mediate Language and Tools for Analysis and Transformation of

C Programs. In Proceedings of Conference on Compilier Con-

struction, March 2002.

[41] C.-S. Park and K. Sen. Randomized active atomicity violation de-

tection in concurrent programs. In Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software

Engineering (SIGSOFT ’08/FSE-16), pages 135–145, Nov. 2008.

[42] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity vio-

lation bugs from their hiding places. In Fourteenth International

Conference on Architecture Support for Programming Languages

and Operating Systems (ASPLOS ’09), pages 25–36, Mar. 2009.

[43] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and

S. Lu. PRES: probabilistic replay with execution sketching on

multiprocessors. In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles (SOSP ’09), pages 177–192, 2009.

[44] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,

M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan,

W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically

patching errors in deployed software. In Proceedings of the 22nd

ACM Symposium on Operating Systems Principles (SOSP ’09),

pages 87–102, 2009.

[45] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift: A

low-overhead practical information flow tracking system for de-

tecting security attacks. In MICRO 39: Proceedings of the 39th

Annual IEEE/ACM International Symposium on Microarchitec-

ture, pages 135–148, 2006.

[46] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating bugs

as allergies—a safe method to survive software failures. ACM

Trans. Comput. Syst., 25(3):7, 2007.

[47] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. An-

derson. Eraser: A dynamic data race detector for multithreaded

programming. ACM Transactions on Computer Systems, pages

391–411, Nov. 1997.

[48] M. Schulz, D. Ahn, A. Bernat, B. R. de Supinski, S. Y. Ko,

G. Lee, and B. Rountree. Scalable dynamic binary instrumen-

tation for blue gene/l. SIGARCH Comput. Archit. News, 33(5):

9–14, 2005.

[49] K. Sen. Race directed random testing of concurrent programs.

In Proceedings of the ACM SIGPLAN 2008 Conference on Pro-

gramming Language Design and Implementation (PLDI ’08),

pages 11–21, June 2008.

[50] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.

Keromytis. ASSURE: automatic software self-healing using res-

cue points. In Fourteenth International Conference on Architec-

ture Support for Programming Languages and Operating Systems

(ASPLOS ’09), pages 37–48, 2009.

[51] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic soft-

ware updates: a vm-centric approach. In Proceedings of the ACM

SIGPLAN 2009 Conference on Programming Language Design

and Implementation (PLDI ’09), pages 1–12, 2009.

[52] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke.

Gadara: Dynamic deadlock avoidance for multithreaded pro-

grams. In Proceedings of the Eighth Symposium on Operating

Systems Design and Implementation (OSDI ’08), pages 281–294,

Dec. 2008.

[53] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications

with execution filters. Technical report, Columbia University.

[54] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detec-

tion of data race conditions via adaptive tracking. In SOSP ’05:

Proceedings of the twentieth ACM symposium on Operating sys-

tems principles, pages 221–234, 2005.

	1 Introduction
	2 Overview
	2.1 Usage Scenarios
	2.2 Limitations

	3 Execution Filter Language
	3.1 Example Races and Execution Filters
	3.2 Syntax and Semantics
	3.3 Language Implementation

	4 Avoiding Unsafe Application States
	4.1 Computing Unsafe Program Locations
	4.2 Controlling Application Threads
	4.3 Pausing at Safe Program Locations
	4.4 Correctness Discussion

	5 Hybrid Instrumentation
	6 Evaluation
	6.1 Overhead
	6.2 Scalability
	6.3 Reliability
	6.4 Availability
	6.5 Timeliness

	7 Related Work
	8 Conclusion

