
Replay Debugging for Distributed Applications

Dennis Geels Gautam Altekar Scott Shenker Ion Stoica
University of California, Berkeley

{geels, galtekar, shenker, istoica}@cs.berkeley.edu

Abstract
We have developed a new replay debugging tool,
liblog, for distributed C/C++ applications. It logs the
execution of deployed application processes and replays
them deterministically, faithfully reproducing race con-
ditions and non-deterministic failures, enabling careful
offline analysis.

To our knowledge, liblog is the first replay tool to
address the requirements of large distributed systems:
lightweight support for long-running programs, consis-
tent replay of arbitrary subsets of application nodes, and
operation in a mixed environment of logging and non-
logging processes. In addition, it requires no special
hardware or kernel patches, supports unmodified appli-
cation executables, and integrates GDB into the replay
mechanism for simultaneous source-level debugging of
multiple processes.

This paper presents liblog’s design, an evaluation
of its runtime overhead, and a discussion of our experi-
ence with the tool to date.

1 Introduction
Over the past few years, research has produced new al-
gorithms for routing overlays, query processing engines,
byzantine fault-tolerant replication, and distributed hash
tables. Popular software like peer-to-peer file sharing ap-
plications suggests that interest in distributed applica-
tions is not restricted to academic circles.

But debugging is hard. Debugging distributed appli-
cations is harder still, and debugging distributed appli-
cations deployed across the Internet is downright daunt-
ing. We believe that the development of new services has
been held back by this difficulty and that more powerful
debugging tools are needed.

A distributed application is a collection of processes
running on machines spread across a network (for our
purposes, the Internet). The individual processes may
be analyzed independently, and debugging existing tools
can catch common “local” errors such as unsafe mem-
ory accesses and thread synchronization errors. Unfortu-
nately, these tools do not address the new problems that
arise when the processes are composed across an unpre-

dictable and lossy network. Races between network mes-
sages produce non-deterministic behaviour. Message de-
lay and failure ensure that the aggregate application state
is only rarely globally consistent.

Simulation and small-scale test deployments help de-
velopers evaluate aggregate system behaviour in a rel-
atively easy environment. With a simulator, the devel-
oper has full power to repeat the same execution across
multiple experiments, and the state of each application
process is available locally for examination. Test deploy-
ments complement simulation by adding more realistic
network and host machine behaviour. Using local clus-
ters and small, or even emulated, networks, developers
may carefully control the degree of realism exposed to
their applications.

However, once deployed, distributed applications will
reach states that were not tested, and the underlying net-
work will fail in ways that the developer did not antici-
pate. Long-running services are particularly prone to the
slow-developing and non-deterministic, low-probability
faults that resist detection during the testing phase.

And once the application is deployed, race conditions
and internal state are difficult to observe. Developers rely
on application-level logging and printf statements,
but these techniques only help if the developer chooses
to expose the affected internal state before the fault man-
ifests. These types of bugs are generally impossible to
reproduce locally, where analysis would be simpler. This
limited visibility is the core problem for debugging dis-
tributed applications. We have developed a new debug-
ging tool, liblog, to address it.

1.1 Requirements
We designed this tool to help fix non-deterministic fail-
ures in deployed, distributed applications. This goal im-
posed several requirements on our design.

Deterministic Replay: First and foremost, deployed
applications need logging and replay. Normal debug-
gers monitor an application’s execution synchronously,
so that the process can be paused immediately when a
failure, signal, or breakpoint occurs. This approach is
infeasible for real, deployed systems for three reasons.
First, the latency of a synchronous connection to a re-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 289



mote debugger would significantly slow down the ap-
plication. Second, pausing the process (or processes, if
the developer wished to look at global state) at break-
points would be unacceptable for real, deployed ser-
vices, which interact continuously with peer services and
clients. Third, real networks are not stable enough to
maintain a persistent connection to each process.

Thus debugging must be asynchronous. Each process
records its execution to a local log, with sufficient de-
tail such that the same execution can be replayed later.
We should follow the same code paths during replay, see
the file and network I/O, and even reproduce signals and
other IPC. The replay could run in parallel with the orig-
inal execution, after the original process dies, or even on
a completely different machine.

Continuous Logging: In order to record the manifes-
tation of slow-developing and non-deterministic, low-
probability faults, the logging infrastructure must remain
active at all times. We must operate under the assump-
tion that more bugs are always waiting. Also, any slight
perturbations in application behaviour imposed by the
debugger becomes the “normal” behaviour. Removing it
then would be a perturbation that might activate so-called
“heisenbugs”.

If the debugging system required significant resources,
the cost in performance (or faster hardware) might be
prohibitive. Fortunately, many types of distributed ap-
plications consume relatively few local resources them-
selves. Whereas network bandwidth and latency might
be precious, we often have extra CPU cycles and disk
space to accommodate our logging tools. In particular, if
we confine ourselves to a small processing budget, the
network will remain the performance bottleneck, and the
application will exhibit little slowdown.

Consistent Group Replay: We are particularly inter-
ested in finding distributed bugs, such as race conditions
and incorrect state propagation. This kind of error may be
difficult or impossible to detect from the state of any one
process. For example, transient routing loops are only
visible when the aggregate state of multiple routers is
considered.

So we must be able to see snapshots of the state across
multiple processes and to trace message propagation
from machine to machine. Naturally, true snapshots are
impossible without synchronized clocks (cf. [Lam78]),
but we can require that each machine is replayed to a
consistent point, where no message is received before it
has been sent.

Mixed environment: Most applications will not run
our software, particularly client software and supporting
services like DNS. This fact becomes a problem if we
require coordination from communication peers during
logging or replay, as we generally must in order to sat-

isfy the previous requirement (consistent replay). Since
we do not operate in a closed system, our tools must
understand the difference between cooperating and non-
cooperating peers and treat each appropriately.

1.2 Contributions

The primary contribution of our work is the design and
evaluation of a debugging tool, liblog, that satisfies
each of these requirements. Previous projects have de-
veloped logging and replay tools that focus on either low
overhead or providing consistent replay, but we have ad-
dressed both. Furthermore, to the best of our knowledge,
liblog is the first tool that (1) provides consistent re-
play in a mixed environment, or (2) allows consistent re-
play for arbitrary subsets of application processes.

In addition, liblog requires neither special hard-
ware support nor patches to privileged system software.
Also, it operates on unmodified C/C++ application bina-
ries at runtime, without source code annotations or spe-
cial compilation tools. Multithreading, shared memory,
signals, and file and network I/O all work transparently.

Finally, we designed liblog to be simple to use.
Logging only requires running our start-up script on each
machine. Our replay tools make debugging as easy as us-
ing GDB for local applications: they automate log collec-
tion, export the traditional GDB interface to the program-
mer, and even extend that interface to support consis-
tent replay of multiple processes and tracking messages
across machines.

We built liblog by combining existing technology
in new ways and extending the state of the art as nec-
essary. In the following sections, we will present an
overview of the resulting design (Section 2) and then
explain in more detail the new technical challenges that
arose, along with our solutions (Section 3).

1.3 Is liblog Right For You?

We designed liblogwith lightweight distributed appli-
cations like routing overlays in mind. We assume that the
host machines have spare resources–specifically CPU,
memory, network, and disk–that we can apply to our de-
bugging efforts.

Although it can correctly log and replay general
C/C++ applications, the runtime overhead imposed could
outweigh the benefits for resource-intensive systems
like streaming video servers or heavily multithreaded
databases. We quantify this overhead in Section 4.

2 Design
In this section we present an overview of liblog’s de-
sign, highlighting the decisions that we made in order to
satisfy the requirements listed above.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association290



application

libc

other libs

application

libc

other libs

libc

GNU/Linux

x86 Hardware

liblog libloglogger

Figure 1: Logging: liblog intercepts calls to libc and
sends results to logger process. The latter asynchronously
compresses and writes the logs to local storage.

2.1 Shared Library Implementation

The core of our debugging tool is a shared library (the
eponym liblog), which intercepts calls to libc (e.g.,
select, gettimeofday) and logs their results. Our
start-up scripts use the LD PRELOAD linker variable to
interpose liblog between libc and the application
and its other libraries (see Figure 1). liblog runs on
Linux/x86 computers and supports POSIX C/C++ appli-
cations.

We chose to build a library-based tool because op-
erating in the application’s address space is efficient.
Neither extra context switches nor virtualization layers
are required. Alternative methods like special logging
hardware [NM92, XBH03, NPC05] or kernel modifica-
tions [TH00, SKAZ04] can be even faster, but we found
these solutions too restrictive for a tool that we hope to
be widely adopted and deployed.

Another promising alternative is to run applications on
a virtual machine and then to log the entire VM [KDC05,
SH, HH05]. We rejected it because we believe that VM
technology is still too difficult to deploy and too slow for
most deployed services.

On the other hand, there are serious drawbacks of a
library implementation. First, several aspects of observ-
ing and controlling applications are more difficult from
within the address space, most notably supporting mul-
tiple threads and shared memory. We will discuss these
challenges in Section 3.

Fundamentally, however, operating in the applica-
tion’s address space is neither complete (we cannot re-
play all non-determinism) nor sound (internal state may
become corrupted, causing mistakes). We will discuss
such limitations in Section 4.

Nevertheless we believe that the combined efficiency
and ease of use of a library-based logging tool makes this
solution the most useful.

2.2 Message Tagging and Capture

The second defining aspect of our logging tool is our ap-
proach to replaying network communication. We log the
contents of all incoming messages so that the receiving
process can be replayed independently of the sender.

This flexibility comes at the cost of significant log
space (cf. Section 5) but is well justified. Previous
projects have tried the alternative, replaying all processes
and regenerating message contents on the sender. We
cannot do so because we operate in a mixed environment
with non-logging processes. Even cooperating applica-
tion logs may be unavailable for replay due to interven-
ing disk or network failure.

So far we satisfy one requirement, but we must be able
to coordinate these individual replays in order to pro-
vide another, Consistent Group Replay. For this purpose,
we embed 8-byte Lamport clocks [Lam78] in all outgo-
ing messages during execution and then use these virtual
clocks to schedule replay. The clock update algorithm
ensures that the timestamps in each log entry respect the
“happens-before” relationship. They also provide a con-
venient way to correlate message transmission and re-
ception events, so we can trace communication from ma-
chine to machine.

To make the virtual clocks more intuitive, we advance
them at the rate of the local machine clock. If the ma-
chine clocks happen to be synchronized to within one
network RTT, the virtual clocks will match exactly.

2.3 Central Replay

Our third major design decision was to enable off-site
replay. Rather than restart each process in situ, a central
console automatically downloads the necessary logs and
checkpoints and instantiates each replay process locally.
Local replay removes the network delay from the control
loop, making it feasible to operate on distributed state
and to step across processes to follow messages.

The costs are several: first, the network bandwidth
consumed by transferring logs may exceed that required
to control a remote debugger. Second, the hardware and
system software on the replay machine must match the
original host; currently we support only GNU/Linux/x86
hosts. Third, we must log data read from the local file
system (as with network messages) because the files may
not be available on the replay machine. This technique
also obviates maintaining a versioned file system or un-
doing file modifications. Finally, building a migratable
checkpoint system is challenging. We consider the first
two costs to be acceptable and will discuss our solution
to the last challenge in Section 3.6.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 291



3 Challenges
In this section we will discuss the technical challenges
we faced when building our logging and replay system.
Most are new problems caused by our user-level imple-
mentation and/or message annotations; previous projects
did not address them because their focus allowed for dif-
ferent design choices.

3.1 Signals and Thread Replay in Userland

As we noted earlier, logging and replaying applications
at the libc level assumes that they only interact with
their environment through that interface and that, outside
of libc calls, the application execution is determinis-
tic. This assumption fails when multiple threads execute
concurrently on the same address space. The value read
from a shared variable depends on the order in which
competing threads modify it; every write could be a race
condition. The same problem arises when multiple pro-
cesses share memory segments or when signal handlers
(effectively another thread) access global variables.

To make replay deterministic in these cases, we must
either intercept and replay the value of each read from
shared memory, or we must replay each read and write
in the same order, so races resolve identically. The for-
mer option is too invasive and requires log bandwidth
proportional to the memory access stream. The latter is
still expensive, but the cost can be reduced significantly
by logging only the order and timing of thread context
switches. If we assume a single processor, or artificially
serialize thread operation, then identical thread schedules
produce identical memory access patterns.

The challenge in our case was to record and replay
thread schedules using only our user-level shared library.
The task is relatively simple for kernel- or VM-based
tools, but user-level libraries generally have no ability
even to observe context switches among kernel threads,
much less control them. We believe that liblog is the
first to address the problem.

Our solution effectively imposes a user-level cooper-
ative scheduler on top of the OS scheduler. We use a
pthread mutex to block all but one thread at a time, ignor-
ing conflicting context switches by the kernel. The active
thread only surrenders the lock at libc call points, as
part of our logging wrapper, and the next active thread
logs the context switch before continuing. Processes that
share memory are handled identically. Similarly, signals
are queued and delivered at the next libc call.

Restricting context switches to our wrapper functions
provides a convenient point to repeat the switches during
replay, but the change to thread semantics is not fully
transparent. In particular, we cannot support applications
that intentionally use tight infinite loops, perhaps as part
of a home-grown spin lock, because other threads will

not have any opportunity to acquire our scheduling lock.
Delaying signals may affect applications more, although
we note that the kernel already tries to perform context
switches and to deliver signals at syscall boundaries, so
the impact of our solution may not be pronounced. We
have not yet quantified the degree to which the schedule
we impose differs from a normal one.

3.2 Unsafe Memory Access
Another potential source of non-determinism arises
when an application reads from uninitialized (but allo-
cated) heap memory or beyond the end of the stack. The
contents of these memory regions are not well defined for
C applications, and in practice they change between ex-
ecution and replay. One could argue that accessing these
regions could be considered incorrect behaviour, but it is
legal, reasonably safe, and present even in robust soft-
ware like OpenSSL [SSL].

Much of the change in memory between logging and
replay is due to the logging tool itself, which calls dif-
ferent functions during replay, leaving different stack
frames and allocating different memory on the heap. One
can significantly minimize the tool’s memory footprint,
as stressed in Jockey [Sai05], but it can never be com-
pletely eliminated by a library-based debugging tool. In-
ternal memory use by libc will always differ because
its calls are elided during replay, so malloc may return
different memory to the application.

Our solution is simpler: we merely zero-fill all mem-
ory returned by malloc (effectively replacing it with
calloc) as well as stack frames used by our libc
wrappers. Thus, uninitialized reads replay deterministi-
cally, even if malloc returns a different region. This
solution still fails if the application depends on the actual
address, for example, as a key for a hash table.

Also, it is very difficult to protect a library-based tool
from corruption by stray memory writes into the tool’s
heap. A virtual machine-based alternative would avoid
this problem. Also, one could imagine disabling write ac-
cess to the liblog’s memory each time control returns
to the application. Instead, we rely on dedicated memory-
profiling tools like Purify [Pur] and Valgind [Val] to
catch these various memory errors, so that we can focus
on efficient logging.

3.3 Consistent Replay for TCP
As described in Section 2.2, we annotate all network
messages between application processes with Lamport
clocks so that we can replay communicating peers con-
sistently. For datagram protocols like UDP, we use sim-
ple encapsulation: we prepend a few bytes to each
packet, and remove them on reception. We pass a scat-
ter/gather array to sendmsg to avoid extra copies.

Annotating byte streams like TCP is more compli-

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association292



start

reading

reading data

annotation
annotation complete

looking for annotation need more annotation

annotation received

complete
data chunk

more data

Figure 2: Receiving Annotated TCP: Detecting and extracting
Lamport clocks from incoming byte streams requires additional
bookkeeping.

cated, because timestamps must be added throughout the
stream, at the boundary of each sent data chunk. But the
receiver need not consume bytes in the same batches; it
often will read all available data, be it more or less than
the contents of a single send payload.

Our solution is a small (3-state) state machine for
each incoming TCP connections (see Figure 2). Once the
stream has been verified as containing annotations, the
state machine alternates reading annotations and read-
ing application data until the calling function has enough
data or the socket is drained. Each state transition re-
quires a separate call to read the underlying stream; we
cannot simply read extra bytes and extract the annota-
tions, because we cannot anticipate how far to read. We
do not know the frequency of future annotations, and at-
tempting to read more data than necessary may cause the
application to block needlessly. It is always possible that
more bytes will not arrive.

If multiple annotations are consumed by a single
read call, we log the most recent timestamp, as it su-
persedes the others. Naturally, we remember the stream
state between calls so that we may continue even if the
last read attempt ended in the middle of an annotation.

3.4 Finding Peers in a Mixed Environment
Embedding annotations in messages also complicates in-
teraction with non-logging processes such as third-party
clients, DNS and database servers, or, if liblog is only
partially deployed, even fellow application processes.
These non-loggers do not expect the annotations and
would reject or (worse yet) misinterpret the message. We
believe that this problem is the reason that no previous
logging tool has supported consistent replay in a mixed
environment.

We must either send annotations that will be safely ig-
nored by non-logging processes or discover whether a
remote peer expects annotations and omit them when ap-
propriate. The former option could be implemented using
either IP options1 or the out-of-band (OOB) channel for
TCP connections, but either method would conflict with

1See RFC 791

networks that already used these paths. Also, we have
seen evidence that adding IP options has a negative im-
pact on application traffic, and OOB does not help UDP
traffic (nor incompatible TCP implementations).

We opted for a safer, but slower, solution. The
logger on each machine tracks the local ports opened
by logging processes and listens on a globally well-
known port (currently 5485). This approach fails to fully
support applications hidden behind NAT-enabled fire-
walls, but it could easily replaced by a more sophisti-
cated discovery mechanism. Each liblog-enabled pro-
cess then queries the remote logger (via TCP) before
sending the first datagram or opening a TCP connection.
The query contains the destination port and protocol of
interest and asks whether that port is currently assigned
to a logging process.

If the application receives a negative reply, or none at
all, that packet flow will not be annotated. Replies are
cached for the duration of a stream, or 30 seconds for
datagram sockets, to amortize the query latency over-
head. Currently, we wait a maximum of 2 seconds for
a query, but that maximum is only reached if the remote
machine has no logger and does not reset our TCP re-
quest. But this case does happen frequently for firewall-
protected machines, so we cache information on dropped
queries for up to 5 minutes.

3.5 Replaying Multiple Processes
The real power of replay debugging depends on the abil-
ity to set breakpoints, to pause execution, and to ob-
serve internal application state, just as one can in nor-
mal debuggers. Rather than develop new technology with
its own interface, we decided to adapt the GNU debug-
ger [GDB]. GDB provides a powerful and familiar inter-
face for controlling application execution and accessing
internal state by symbolic names.

Unfortunately, GDB, like many debuggers, can only
control a single process. Replaying multiple processes,
or even children created with fork, requires multiple
instances of the debugger. Our challenge was to coor-
dinate them, multiplexing their input and output to the
programmer and scheduling the application execution so
that replay is consistent.

We use a two-tiered approach to controlling the re-
play processes. Threads within a process group are multi-
plexed by the same scheduling locks used during logging
(cf. Section 3.1), always choosing the next thread based
on the schedule stored in the log. These locks also block
a newly fork-ed process until we attach a new GDB
instance to it.

Across process groups, consistent replay is enforced
by our replay console, a small Python [Py] application.
For each application process, the console uses GDB to
set breakpoints in key libreplay functions. These

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 293



pause execution at each libc call, allowing us to sched-
ule the next process or to download the next set of logs.

The replay console provides a single interface to the
programmer, passing commands through to GDB and
adding syntax for broadcasting commands to multiple
processes. It also allows advanced programmability by
interacting directly with the underlying Python inter-
preter.

3.6 Migratable Checkpoints

Replaying application processes centrally, offline, makes
the debugger more responsive and makes it feasible to
operate on distributed application state. But restarting
processes on a new machine is tricky. The two main chal-
lenges are first, to copy the state of the original applica-
tion into a live process on the new machine, and second,
to reconcile this new process with the debugger (GDB).

Our checkpoint mechanism is based on the
ckpt [Ckp] library from the University of Wis-
consin. This library reads the /proc/ filesystem to
build a list of allocated memory regions for the appli-
cation and then writes all such memory to a checkpoint
file. For replay, a small bootstrap application reads that
file and overwrites its own memory contents, adjusting
memory allocations as necessary.

First we extended ckpt to handle the kernel-level
thread state for multi-threaded applications, which was
simplified by our user-level scheduler. A thread saves its
state before relinquishing the CPU, so at any time we
have the state of all inactive threads stored in our tables.

Next we added support for shared memory regions:
each process in a group checkpoints its private memory,
and one “master” process writes and restores the shared
memory for everyone.

Integrating checkpoint support to GDB required ad-
ditional work. Starting the process within GDB is prob-
lematic because the symbol tables of the bootstrap pro-
gram and the restored application do not generally agree,
or even necessarily overlap, and GDB does not support
symbol tables moving during runtime. Even if we use
the original application to bootstrap the process, GDB
becomes confused when shared libraries are restored at
new locations.

To solve this problem, we added a new method for
finding the in-memory symbol table of a running appli-
cation (by reading the r debug.r brk field), ignoring
the conflicting information from the local executable file.
It is then sufficient to attach to the restored application
and to invoke this new symbol discovery method.

Our modifications required adding approximately 50
lines of code, including comments, to one source file in
GDB. Most of those lines comprise the new function for
locating the symbol table.

4 Limitations
There are several limitations to our debugging tool, both
fundamental and mundane.

Log storage The biggest reason for a developer to not
use liblog with an application is the large amount of
log data that must be written to local disk. Log storage
is a fundamental problem for any deterministic replay
system, but our approach to handling I/O (cf. Section 2)
renders liblog infeasible for high-throughput applica-
tions. Every Megabyte read from the network or disk
must be logged (compressed) to the local disk, consum-
ing space and disk bandwidth. This approach is accept-
able for relatively lightweight applications like routing
overlays, consuming only a few megabytes per hour, but
is probably unrealistic for streaming video or database
applications. We will quantify the problem in Section 5.

Host requirements Our basic logging strategy only
addresses POSIX applications and operating systems
that support run-time library interposition. In practice,
our OS options are restricted even further, to recent
Linux/x86 kernels (2.6.10+) and GNU system software
(only libc 2.3.5 has been tested). These limitations are
imposed by our borrowed checkpointing code and com-
patibility issues with our modified version of GDB.

Scheduling semantics As explained in Section 3.1,
liblog’s user-level scheduler only permits signal de-
livery and context switches at libc function calls. The
OS generally tries to do the same, so most applications
will not notice a significant difference.

However, we are assuming that applications make
these calls fairly regularly. If one thread enters a long
computation period, or a home-grown spin lock imple-
mented with an infinite loop, liblog will never force
that thread to surrender the lock, and signals will never
be delivered. We are exploring solutions to this problem.

Network overhead Our network annotations consume
approximately 16 bytes per message, which may be sig-
nificant for some applications. The first 4 bytes constitute
a “magic number” that helps us detect incoming annota-
tions, but this technique is not perfect. Thus another lim-
itation is that streams or datagrams that randomly begin
with the same sequence of 4 bytes may be incorrectly
classified by liblog and have several bytes removed.
This probability is low (1 in 232 for random messages),
and is further mitigated by additional validity checks and
information remembered from previous messages in a
flow, but false positives are still possible.

Limited consistency Fundamentally, consistent replay
in a mixed environment is not guaranteed to be perfectly
consistent. A message flow between two application pro-
cesses loses its timing information if the flow is relayed

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association294



by a non-logging third party. Then, if the virtual clocks
for the two processes are sufficiently skewed, it is pos-
sible to replay message transmission after its reception.
The probability of this scenario decreases rapidly as the
application’s internal traffic patterns increase in density,
which keeps the virtual clocks loosely synchronized.

Completeness Finally, as mentioned earlier, library-
based tools are neither complete nor sound, in the log-
ical sense of the words. They are incomplete because
they cannot reproduce every possible source of non-
determinism. liblog addresses non-determinism from
system calls, from thread interaction, and, to a lesser ex-
tent, from unsafe memory accesses. Jockey [Sai05] fo-
cuses on a different set of sources, reducing changes to
the heap and adding binary instrumentation for intercept-
ing non-deterministic x86 instructions like rdtsc and,
potentially, int.

Unfortunately, logging libraries will never succeed in
making the replay environment exactly identical to the
original environment because they operate inside the ap-
plication’s address space. The libraries run different code
during logging and during replay, so their stack and heap
differ. Theoretically, an unlucky or determined applica-
tion could detect the difference and alter its behaviour.

Soundness We say logging libraries are unsound be-
cause, as part of the application, they may be corrupted.
We hope that applications have been checked for mem-
ory bugs that could cause stray writes to liblog’s in-
ternal memory, but C is inherently unsafe and mistakes
may happen. We do assume the application is imperfect,
after all.

Furthermore, libraries are susceptible to mistakes or
crashes by the operating system, unlike hardware solu-
tions or virtual machines (although even virtual machines
generally rely on the correctness of a host OS).

Fortunately, these theoretical limitations have little
practical impact. Most applications are simple enough
for liblog to capture all sources of non-determinism,
and simple precautions to segregate internal state from
the application’s heap are usually sufficiently safe. In-
deed, most debuggers (including GDB) are neither sound
nor complete, but they are still considered useful.

5 Evaluation
We designed liblog to be sufficiently lightweight so
that developers would leave it permanently enabled on
their applications. In this section, we attempt to quantify
the overhead imposed by liblog, both to see whether
we reached this goal and to help potential users estimate
the impact they might see on their own applications.

We start by measuring the runtime latency added by
our libc wrappers and its effect on network perfor-
mance. TCP throughput and RTT are not noticeably af-

0

2

4

6

8

10

12

random sendto recvfrom

Ti
m
e
(u
se
cs
)

Copy Libc Other

Figure 3: Wrapper Overhead: time required to intercept and
log libc functions. The copy region measures the time taken
to write the bytes to a shared memory region monitored by the
logger, and other includes the overhead of intercepting the calls
an our internal bookkeeping. The libc region measures the time
taken for the underlying library call to complete.

fected. A second set of experiments measures the storage
overhead consumed by checkpoints and logs.

All experiments were performed on a Dual 3.06GHz
Pentium 4 Xeon (533Mhz FSB) with 512K L2 cache,
2GB of RAM, 80GB 7500 rpm ATA/100 disk, and
Broadcom 1000TX gigabit Ethernet.

5.1 Wrapper Latency
To measure the processing overhead of liblog, we first
analyzed the latency added to each libc call. Figure 3
shows the latency for a few representative wrappers.

The wrappers add approximately 1 microsecond to the
function random, which shows the minimum amount
of work each wrapper must do to intercept the call and
to write a log entry. The sendto wrapper is slightly
slower as it includes the amortized cost of querying the
destination to determine whether to send annotations (cf.
Section 3.4). The “copy” phase is also longer, because
we store the outgoing message address and port to facili-
tate message tracing. The recvfrom overhead is higher
still because it must extract the Lamport clock annotation
from the payload and copy the message data to the logs.

5.2 Network Performance
Next we measured the impact of liblog on network
performance. First we wrote a small test application that
sends UDP datagrams as fast as possible. Figures 4 and 5
show the maximum packet rate and throughput for in-
creasing datagram sizes. With liblog enabled, each
rate was reduced by approximately 18%.

For TCP throughput, we measured the time required
for wget to download a 484 MB binary executable from
various web servers. Figure 6 shows that liblog hin-
ders wget when downloading the file over a gigabit

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 295



0

10000

20000

30000

40000

50000

60000

70000

32 64 128 256 512 1024
Packet Size (bytes)

Se
nd
in
g
R
at
e
(P
ac
ke
ts
/s
ec
on
d)

No liblog Liblog

Figure 4: Packet rate reduction: Maximum UDP send rate for
various datagram sizes. The maximum standard deviation over
all points is 1.3 percent of the mean.

0

10

20

30

40

50

60

1 2 3 4 5 6
Packet Size (bytes)

Se
nd
in
g
R
at
e
(M
B/
s)

No liblog Liblog

Figure 5: UDP bandwidth: Maximum UDP send throughput
for various datagram sizes. The maximum standard deviation
over all points is 1.3 percent of the mean.

ethernet link, but the reduction in throughput is negligi-
ble when the maximum available throughput is lowered.
Even the relatively fast 100 MBps link to our departmen-
tal web server can be filled using liblog.

Finally, Figure 7 shows the round-trip time (RTT)
measured by lmbench to the local host and to a ma-
chine on a nearby network. The gigabit ethernet test
shows that liblog adds a few wrappers worth of la-
tency to each RTT, as expected. On a LAN, the RTT
overhead is so small that the difference is hard to discern
from the graph.

5.3 Log Bandwidth
The amount of log space required depends greatly on the
frequency of libc calls made by an application, as well
as on the throughput and content of its network traffic,
because incoming message contents are saved.

To give an idea of the storage rates one might expect,

0

20

40

60

80

100

120

Gigabit LAN US Australia

R
ec
ei
ve
R
at
e
(M
B/
s)

No liblog Liblog

Figure 6: TCP throughput for wget downloading a 484MB
file. Each pair of bars represents a different web server location.

0

100

200

300

400

500

600

1000 Bbps 100 Bbps

Ti
m
e
(u
se
cs
)

No liblog Liblog

Figure 7: RTT overhead: measured by lmbench. The error
bars cannot be seen in these graphs because the standard devi-
ation is negligible.

we first measured the average log growth rate of the ap-
plications we use ourselves: I3/Chord and the OCALA
proxy. For this experiment, we started a small I3 network
on PlanetLab and attached a single local proxy. No addi-
tional workload was applied, so the processes were only
sending their basic background traffic. We also show the
logging rates for wget downloading an executable file
when we artificially limit its download rate to simulate
applications with various network throughput. Figure 8
shows the (compressed) log space required per hour for
each application. This rate varies widely across appli-
cations and correlates directly with network throughput.
We have found the 3-6 MB/hour produced by our own
applications to be quite manageable.

Figure 9 illustrates the degree to which message con-
tents affect the total log size. We limited wget to a 1
KB/s download rate and downloaded files of various en-
tropy. The first file was zero-filled to maximize com-
pressibility. Then we chose two real files: File A is a

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association296



0

10

20

30

40

50

60

70

wget-
1KBps

wget-
4KBps

wget-
16KBps

i3 server OCALA

Lo
g
G
ro
w
th
R
at
e
(M
B/
ho
ur
)

Figure 8: Log bandwidth: Log size written per hour for various
applications. The bottom three columns correspond to wget
with the specified cap on its download rate.

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

Zero File A File B Random

Lo
g
G
ro
w
th
R
at
e
(M
B/
ho
ur
)

Figure 9: Log entropy: Log size written by wget depends on
compressibility of incoming data.

binary executable and File B is a liblog checkpoint.
Finally, we try a file filled with random numbers, which,
presumably, is incompressible. The difference between
zero and full entropy is over an order of magnitude, al-
though most payloads are presumably somewhere in the
middle.

5.4 Checkpoint Overhead

Finally, we measured the checkpoint latency (Figure 10)
and size (Figure 11) for a few of our test applications.
The checkpoint size depends on the amount of the ap-
plication’s address space that is in use. The checkpoint
latency is dominated by the time required to copy the ad-
dress space to file system buffers, which is directly pro-
portionally to the (uncompressed) checkpoint size. These
costs can be amortized over time by tuning the check-
point frequency. The trade-off for checkpoint efficiency
is slower replay, because more execution must be re-
played on average before reaching the point of interest.

0

5

10

15

20

25

30

35

40

i3 server wget ssh OCALA

C
he
ck
po
in
tL
at
en
cy
(m
illi
se
cs
)

Figure 10: Checkpoint Latency: time taken to dump memory
to checkpoint file for various applications.

0

1

2

3

4

5

6

7

8

i3 server wget ssh OCALA

C
he
ck
po
in
tS
iz
e
(M
B)

Compressed Uncompressed

Figure 11: Checkpoint Size: total and compressed size of
checkpoints for various applications.

5.5 Evaluation Summary

These experiments suggest that the CPU overhead im-
posed by liblog is sufficiently small for many environ-
ments and has little affect on network performance. Log-
ging could consume considerable disk space (and disk
bandwidth), but the distributed applications we are fa-
miliar with (I3/Chord and OCALA) could store logs for
a week or two, given 1GB of storage. Checkpoints also
consume a noticeable amount of space, but writing one
once an hour is probably sufficient for most cases.

6 Experience
We have been working on liblog for over a year, but
we completed the prototype described in this paper only
a few weeks ago. In the intervening time, we have used
the tool on distributed applications with which we are
familiar, namely I3/Chord [SAZ+02] and the OCALA
proxy [JKK+06]. We have already discovered several
errors in these applications. In this section, we will de-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 297



scribe how liblog helped in these cases, along with a
few stories from earlier prototypes and work debugging
liblog itself.

6.1 Programming Errors
To start, we found a few simple mistakes that had es-
caped detection for months. The first, inserted acci-
dentally by one of this paper’s authors over a year
ago, involved checking Chord timeouts by calling
gettimeofday within a “MAX” macro that evaluated
its arguments twice. The time changed between calls, so
the value returned was not always still the maximum.

We also found an off-by-one error in code that as-
sumed 1-based arrays and timer initialization code that
did not add struct timeval microseconds properly,
both in OCALA’s I3 library.

The off-by-one error normally had no visible effect but
occasionally caused the proxy to choose a distant, high-
latency gateway. The two timer-related errors only man-
ifested occasionally but would cause internal events to
trigger too late, or too early, respectively.

These bugs had escaped earlier testing because they
were non-deterministic and relatively infrequent. But
once we noticed the problems, liblog was able to de-
terministically replay the exact execution paths so that
we could step through the offending code in GDB and
watch the problem unfold.

6.2 Broken Environmental Assumptions
Perhaps more interesting are bugs caused not by pro-
grammer mistakes but rather by correct implementation
based on faulty assumptions. To illustrate, here are two
problems in Chord we had found with an earlier liblog
prototype.

The first problem is common in peer-to-peer systems,
and was discussed along with solutions in a later pa-
per [FLRS05]. Basically, many network overlays like
Chord assume that the underlying IP network is fully
connected, modulo transient link failures. In practice,
some machine pairs remain permanently disconnected
due to routing policy restrictions and some links experi-
ence unexpected partial failure modes, such as transient
asymmetry. Both problems cause routing inconsistencies
in Chord, and both were witnessed by liblog in a net-
work deployed across PlanetLab [PL].

Rather than finding a coding error in the application,
replay showed us code that worked as designed. Our
project is focused on application debugging, and we do
not attempt to debug the underlying network; neverthe-
less, our logs clearly showed the unexpected message-
loss patterns. Of course the problem had not been de-
tected using simulation, because the simulator made the
same assumptions about the network as the application.

A second assumption we had made was that our appli-

cation processes would respond to keep-alive messages
promptly. Chord includes RTT estimation and timeout
code based on TCP, which expects a reasonable amount
variance. On PlanetLab, however, high CPU load occa-
sionally causes processes to freeze for several seconds,
long enough for several successive pings to time out.
Chord then incorrectly declared peers offline and poten-
tially misrouted messages.

Upon inspection, liblog showed us that the timeout
code was operating correctly, and the message tracing fa-
cilities detected the keep-alive responses arriving at the
correct machines, although long after they had been con-
sidered lost. The virtual clock timestamps let us correlate
otherwise-identical messages, as well as detect the long
delay in between system calls on the pinged machine.

6.3 Broken Usage Assumptions
We found two problems with the OCALA proxy’s over-
lay client initialization code, both caused by sensitivity
to the bootstrap gateway list. Like those of the previous
section, these “bugs” were not programming errors per
se, but rather user errors (providing an imperfect config-
uration list) or design flaws (not tolerating user error).

One phase of startup involves pinging these gateways
and triangulating the local machine’s latitude and longi-
tude based on the response times. We noticed that the
proxy occasionally made a very poor estimate of local
coordinates, which then caused a poor (high latency)
choice of primary gateways.

We investigated the phenomenon by setting break-
points in the relevant methods and stepping through the
replay. We noticed first that very few points were used
for triangulation. We then moved backwards in the ex-
ecution to find that only a small number of pings were
sent and that the proxy did not wait long enough for
most the replies. If care is taken to nominate only lightly
loaded gateways, triangulation works fine. If not, as in
our case, performance suffers until periodic maintenance
routines manage to choose a better gateway, which could
take hours.

We also discovered that the proxy client is very trust-
ing of liveness information contained in the initial gate-
way list. Normally this list is continually updated by an
independent process so that only active gateways are in-
cluded. If the list becomes stale, as we unintentionally
allowed, the proxy could waste minutes trying to contact
dead I3 servers before finally connecting.

We diagnosed the problem by replaying and compar-
ing the paths taken by two executions: one which ex-
hibited the interminable timeouts and one which lucked
upon a good subset of gateways immediately. This prob-
lem could easily be dismissed as invalid usage. Neverthe-
less, solving it relied on our ability to deterministically
replay the random choices made during the gateway se-

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association298



lection process.

6.4 Self-Debugging
The program we have spent the most time debugging re-
cently is liblog itself. Because the tools run as shared
libraries in the application address space, we are able to
use GDB to set breakpoints and to step through our own
code during replay, just like the supposed target applica-
tion. We used this ability to fix programming errors in
our message annotation layer and our remote discovery
service. Deterministic replay also made it easy to find
faults in our replay console because each log provided a
repeatable test case.

Some bugs in liblog, such as incomplete libc
wrappers, manifest as non-determinism during replay.
Ironically, this non-determinism made them easy to de-
tect because we could step through the execution at the
point where the original execution and replay diverged in
order to isolate the failure. This approach also led us to
realize the problem of applications accessing undefined
heap and stack memory.

6.5 Injected Bugs
Our tool is interactive, aiding a human programmer but
requiring their domain knowledge and expertise. We find
it difficult to quantify the benefit liblog provides be-
cause the user injects a large amount of variability into
the process. Ideally, we will be able to compile a large
library of “real” bugs that exist in tested and used appli-
cations for some time before being fixed with liblog.
But this process is slow and unpredictable.

Projects that develop automated analytic techniques
often pull known errors from bug databases and CVS his-
tories in order to quantify how many of the problems can
be re-fixed with their tools. This path is also available to
use, but the results would be somewhat suspect as the hu-
man tester may have some prior knowledge of old bugs.
Similar doubts may arise if one set of programmers man-
ually introduces errors into a current application code
base for testing by an independent second group. This
trick has the benefit of testing our tools on bugs that are
arbitrarily complex or slow to develop.

While we wait for our library of real bugs to grow,
we have decided to try both of these somewhat-artificial
testing methods. So far we have only started on the latter,
with one author injecting an error into the I3/Chord code
base while the other uses liblog to isolate and fix it.
Preliminary results suggest that the task is equivalent to
debugging Chord in a local simulator. We plan to have
more results in this vein soon.

7 Related Work
Deterministic replay has been a reasonably active re-
search subject for over two decades. Most of this work

centered on efficient logging for multiprocessors and dis-
tributed shared memory computers; for an overview of
the field we recommend an early survey by Dionne et
al [DFD96] and later ones by Huselius [Hus02] and Cor-
nelis et al [CGC+03].

None of these previous projects focused on deployed,
distributed applications or addressed the technical chal-
lenges raised by that set of requirements. In particular,
our support of consistent group replay in a mixed envi-
ronment is unique, and we are the first to address the
challenges described in Section 3, such as supporting
multithreaded applications without kernel support.

On the other hand, the core techniques of logging
and replay have been explored thoroughly, and we bor-
rowed or reinvented much from earlier projects. Specif-
ically, Lamport clocks [Lam78] have been used for con-
sistent replay of MPI [RBdK99] and distributed shared
memory [RZ97]. Replaying context switches to enforce
deterministic replay in multithreaded apps was based
on DejaVu [KSC00], which built the technique into a
Java Virtual Machine. Finally, some projects have inte-
grated GDB and extended its interface to include replay
commands [SKAZ04, KDC05], but only liblog seam-
lessly provides consistent replay across multiple pro-
cesses.

Our library-based implementation most closely re-
sembles Jockey [Sai05]; they also have simple binary-
rewriting functionality to detect use of non-deterministic
applications. Flashback [SKAZ04] also has many sim-
ilarities, but they chose to modify the host OS. Their
modifications enable very efficient checkpoints and (po-
tentially) simplified thread support. We chose instead to
implement all of liblog at user level in order to maxi-
mize its portability and to lower barriers to use on shared
infrastructure. Also, our support for multiple threads, mi-
gratable checkpoints, and consistent replay across ma-
chines makes liblog more appropriate for distributed
applications.

The DejaVu project [KSC00] shared our goal of re-
playing distributed applications. Like liblog, they sup-
port multithreaded applications and consistently replay
socket-based network communication. Unlike liblog,
they targeted Java applications and built a modified Java
Virtual Machine. Thus they addressed a very different set
of implementation challenges. Also, they do not support
consistent replay in a mixed environment, although they
do sketch out a potential solution.

8 Conclusion
We have designed and built liblog, a new log-
ging and replay tool for deployed, distributed ap-
plications. We have already found it to be useful
and would like to share the tool with others in the
distributed systems community. A software distribu-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 299



tion package and more information is available at
http://research.geels.org:8080/.

We have plans for a few additional improvements to
liblog, both to reduce its runtime overhead and to re-
move some of the limitations listed in Section 4. Mean-
while, we hope to receive feedback from the community
that will help us improve its usability.

Our ongoing research plan views liblog as a plat-
form for building further analysis and failure detection
tools. Specifically, replaying multiple processes together
provides a convenient arena for analyzing distributed
state. We see great potential for consistency checking and
distributed predicate evaluation tools.

References
[CGC+03] Frank Cornelis, Andy Georges, Mark Christiaens, Michiel

Ronsse, Tom Ghesquiere, and Koen De Bosschere. A tax-
onomy of execution replay systems. In Proceedings of In-
ternational Conference on Advances in Infrastructure for
Electronic Business, Education, Science, Medicine, and
Mobile Technologies on the Internet, 2003.

[Ckp] Ckpt project website. http://www.cs.wisc.edu/ zandy/ckpt/.

[DFD96] Carl Dionne, Marc Feeley, and Jocelyn Desbiens. A tax-
onomy of distributed debuggers based on execution replay.
In Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applica-
tions, Sunnyvale, CA, August 1996.

[FLRS05] Michael J. Freedman, Karthik Lakshminarayanan, Sean
Rhea, and Ion Stoica. Non-transitive connectivity and
dhts. In Proceedings of WORLDS, December 2005.

[GDB] Gnu debugger website. http://gnu.org/software/gdb/.

[HH05] Alex Ho and Steven Hand. On the design of a perva-
sive debugger. In Proceedings of the International Sympo-
sium on Automated Analysis-Driven Debugging, Septem-
ber 2005.

[Hus02] Joel Huselius. Debugging parallel systems: A state of
the art report. Technical Report MDH-MRTC-63/2002-1-
SE, Maelardalen Real-Time Research Centre, September
2002.

[JKK+06] Dilip Joseph, Jayanthkumar Kannan, Ayumu Kubota,
Karthik Lakshminarayanan, Ion Stoica, and Klaus Wehrle.
Ocala: An architecture for supporting legacy applications
over overlays. In Proceedings of NSDI, May 2006.

[KDC05] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines. In Proceedings of the USENIX 2005 Annual
Technical Conference, June 2005.

[KSC00] Ravi Konuru, Harini Srinivasan, and Jong-Deok Choi. De-
terministic replay of distributed java applications. In Pro-
ceedings of International Parallel and Distributed Pro-
cessing Symposium, May 2000.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[NM92] Robert H. B. Netzer and Barton P. Miller. Optimal tracing
and replay for debugging message-passing parallel pro-
grams. In Proceedings of the International Conference
on Supercomputing, November 1992.

[NPC05] Satish Narayanasamy, Gilles Pokam, and Brad Calder.
Bugnet: Continuously recording program execution for
deterministic replay debugging. In 32nd International
Symposium on Computer Architecture, 2005.

[PL] Planet-lab project website. http://planet-lab.org/.

[Pur] Purify website. http://ibm.com/software/awdtools/purify/.

[Py] Python project website. http://python.org/.

[RBdK99] Michiel Ronsse, Koenraad De Bosschere, and
Jacques Chassin de Kergommeaux. Execution re-
play for an mpi-based multi-threaded runtime system.
In Proceedings of the International Conference Parallel
Computing, 1999.

[RZ97] Michiel Ronsse and Willy Zwaenepoel. Execution re-
play for treadmarks. In Proceedings of EUROMICRO
Workshop on Parallel and Distributed Processing, January
1997.

[Sai05] Yasushi Saito. Jockey: A user-space library for record-
replay debugging. In Proceedings of the International
Symposium on Automated Analysis-Driven Debugging,
September 2005.

[SAZ+02] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker,
and Sonesh Surana. Internet indirection infrastructure. In
Proceedings of ACM SIGCOMM, August 2002.

[SH] Simics hindsight. http://www.virtutech.com/products/simics-
hindsight.html.

[SKAZ04] Sudarshan M. Srinivashan, Srikanth Kandula, Christo-
pher R. Andrews, and Yuanyuan Zhou. Flashback: A
lightweight extension for rollback and deterministic re-
play for software debugging. In Proceedings of the
USENIX 2004 Annual Technical Conference, June 2004.

[SSL] Openssl project website. http://openssl.org/.

[TH00] Henrik Thane and Hans Hansson. Using deterministic re-
play for debugging of distributed real-time systems. In
Proceedings of 12th Euromicro Conference on Real-Time
Systems, June 2000.

[Val] Valgrind project website. http://valgrind.org/.

[XBH03] Min Xu, Rastislav Bodik, and Mark Hill. A flight data
recorder for enabling fullsystem multiprocessor determin-
istic replay. In 30th International Symposium on Com-
puter Architecture, 2003.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association300




