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Abstract new executions that were not covered by prior testing.

Deadlock immunity is a property by which programs, Furthermore, modern systems accommodate extensions
once afflicted by a given deadlock, develop resistancavritten by third parties, which can introduce new dead-
against future occurrences of that and similar deadlockdocks into the target systems (e.g., Web browser plugins,
We describe a technique that enables programs to aut@nterprise Java beans).

matically gain such immunity without assistance from Debugging deadlocks is hard—merely seeing a dead-
programmers or users. We implemented the techniquiack happen does not mean the bug is easy to fix.
for both Java and POSIX threads and evaluated it wittDeadlocks often require complex sequences of low-
several real systems, including MySQL, JBoss, SQLite probability events to manifest (e.g., timing or workload
Apache ActiveMQ, Limewire, and Java JDK. The resultsdependencies, presence or absence of debug code, com-
demonstrate effectiveness against real deadlock buggjler optimization options), making them hard to repro-
while incurring modest performance overhead and scalduce and diagnose. Sometimes deadlocks are too costly
ing to 1024 threads. We therefore conclude that deadlocto fix, as they entail drastic redesign. Patches are error-
immunity offers programmers and users an attractive tooprone: many concurrency bug fixes either introduce new

for coping with elusive deadlocks. bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
1 Introduction We expect the deadlock challenge to persist and likely

Writing concurrent software is one of the most challeng—become worse over time: On the one hand, software
ystems continue getting larger and more complex. On

ing endeavors faced by software engineers, because it rt ther hand 10 10 the advent of mult hi
quires careful reasoning about complex interactions be: eto er "’(‘jn ihOWI?g 0 (;:a ve”nlc;] mdu I-Core archi-
tween concurrently running threads. Many programmerée.C ures and other forms ot paraflel hardware, new ap-
consider concurrency bugs to be some of the most ir]_phcatlons are written using more threads, while exist-

sidious and, not surprisingly, a large number of bugs aré"9 applications achieve higher degrees of runtime con-

related to concurrency [16]. currency. There exist proposals for making concurrent

The simplest mechanism used for synchronizing Conprogramming easier_, such as transactiongl memory [8],
éﬂjt issues surrounding 1/0 and long-running operations

threads do not coordinate correctly in their use of Iocks,make |t.d|ff|cult to proy|de atomicity tran.sparently.
deadlock can ensue—a situation whereby a group of In this paper, we introduce the notion of deadlock
threads cannot make forward progress, because each off@munity—a property by which programs, once afflicted
is waiting to acquire a lock held by another thread inby agiven deadlock, develop resistance against future oc-
that group. Deadlock immunity helps develop resistancé€urrences of similar deadlocks. We describe Dimmunix,
against such deadlocks. a tool for developing deadlock immunity with no assis-

Avoiding the introduction of deadlock bugs during de- tance from programmers or users. The first time a dead-
velopment is challenging. Large software systems aréock pattern manifests, Dimmunix automatically cap-
developed by multiple teams totaling hundreds to thoulures its signature and subsequently avoids entering the
sands of programmers, which makes it hard to main.same patt.ern. Signatures can be proactively distributed
tain the coding discipline needed to avoid deadlock bugst0 immunize users who have not yet encountered that
Testing, although helpful, is not a panacea, because exefieadlock. Dimmunix can be used by customers to de-
cising all possible execution paths and thread interleaviend against deadlocks while waiting for a vendor patch,
ings is still infeasible in practice for all but toy programs and by software vendors as a safety net.

Even deadlock-free code is not guaranteed to execute In the rest of the paper we survey related wojR)(
free of deadlocks once deployed in the field. Depen-provide an overview of our syster§3d-54), give details of
dencies on deadlock-prone third party libraries or run-our technique{s), describe three Dimmunix implemen-
times can deadlock programs that are otherwise cortations £6), evaluate themg{), discuss how Dimmunix
rect. Upgrading these libraries or runtimes can introducecan be used in practicég), and concludes®).
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2 Reated Work fast are often reticent to take on this burden.

There is a spectrum of approaches for avoiding dead- Another approach to finding deadlocks is to use model
locks, from purely static techniques to purely dynamiccheckers, which systematically explore all possible state
ones. Dimmunix targets general-purpose systems, ndif the program; in the case of concurrent programs, this
real-time or safety-critical ones, so we describe this specincludes all thread interleavings. Model checkers achieve
trum of solutions keeping our target domain in mind.  high coverage and are sound, but suffer from poor scal-
Language-level approaches [3, 15] use powerful typeability due to the “state-space explosion” problem. Java
systems to simplify the writing of lock-based concurrentPathFinder, one of the most successful model checkers,
programs and thus avoid synchronization problems altois restricted to applications up 910 KLOC [10] and
gether. This avoids runtime performance overhead andoes not support native 1/O libraries. Real-world ap-
prevents deadlocks outright, but requires programmerglications are large (e.g., MySQL hasl MLOC) and
to be disciplined, adopt new languages and constructs, grerform frequent 1/O, which restricts the use of model
annotate their code. While this is the ideal way to avoidchecking in the development of general-purpose systems.
deadlocks, programmers’ human limits have motivated a Further toward the dynamic end of the spectrum, [17]
number of complementary approaches. discovers deadlocks at runtime, then wraps the corre-
Transactional memory (TM) [8] holds promise for sponding parts of the code in one “gate lock”; in subse-
simplifying the way program concurrency is expressed.quent executions, the gate lock must be acquired prior to
TM converts the locking order problem into a thread entering the code block. This approach is similar to [2],
scheduling problem, thus moving the burden from pro-except that the latter detects deadlocks statically, thus
grammers to the runtime, which we consider a goodexhibiting more false positives than [17]. In a dual ap-
tradeoff. There are still challenges with TM seman- proach to these two, [23] modifies the JVM to serialize
tics, such as what happens when programmers use lardlereads’ access to lock sets (instead of program code)
atomic blocks, or when TM code calls into non-TM code that could induce deadlocks. Dimmunix shares ideas
or performs 1/0. Performance is still an issue, and [14]with these dynamic approaches, but uses added context
shows that many modern TM implementations use lockinformation to achieve finer grain avoidance and consid-
based techniques to improve performance and are sulerably fewer false positives (as will be seer§i3).
ject to deadlock. Thus, we believe TM is powerful, butit  Finally, there are purely dynamic approaches, like
cannot address all concurrency problems in real system®x [18]. Upon deadlock, Rx can roll back a program
Time-triggered systems [13] and statically scheduledo a checkpoint and retry the execution in a modified en-
real-time systems [22] perform task synchronization bevironment; new timing conditions could prevent dead-
fore the program runs, by deciding schedules a pridock reoccurrence. However, Rx does not (and was not
ori based on task parameters like mutual-exclusion conmeant to) build up resistance against future occurrences
straints and request processing time. When such paranof the deadlock, so the system as a whole does not “im-
eters are known a priori, the approach guarantees safepyrove” itself over time. The performance overhead in-
and liveness; however, general-purpose systems rarefyuced by repeated re-executions can be unpredictable (in
have such information ahead of time. Event-triggeredthe extreme case of a deterministic deadlock, Rx cannot
real-time systems are more flexible and incorporate a prigo past it) and retried executions cannot safely span I/O.
ori constraints in the form of thread priorities; protocols In contrast, Dimmunix actively prevents programs from
like priority ceiling [20], used to prevent priority inver- re-encountering previously seen deadlock patterns.
sion, conveniently prevent deadlocks too. In general- Deadlock immunity explores a new design point on
purpose systems, though, even merely assigning priorithis spectrum of deadlock avoidance solutions, combin-
ties to the various threads is difficult, as the threads oftenng static elements (e.g., control flow signatures) with
serve a variety of purposes over their lifetime. dynamic approaches (e.g., runtime steering of thread
Static analysis tools look for deadlocks at compileschedules). This combination makes Dimmunix embody
time and help programmers remove them. ESC [7] usesew tradeoffs, which we found to be advantageous when
a theorem prover and relies on annotations to providewoiding deadlocks in large, real, general-purpose sys-
knowledge to the analysis; Houdini [6] helps generatetems.
some of these annotations automatically. [5] and [21] use
flow-sensitive analyses to find deadlocks. In Java JD .
1.4, the tool described in [21] reported 100,000 potenK—3 System Overview
tial deadlocks and the authors used unsound filtering t@°rograms augmented with a deadlock immunity system
trim this result set down to 70, which were then manu-develop “antibodies” matching observed deadlock pat-
ally reduced to 7 actual deadlock bugs. Static analyseterns, store them in a persistent history, and then alter
run fast, avoid runtime overheads, and can help preverfuture thread schedules in order to avoid executing pat-
deadlocks, but when they generate false positives, it iserns like the ones that were previously seen. With every
ultimately the programmers who have to winnow the re-new deadlock pattern encountered by the program, its re-
sults. Developers under pressure to ship production codsistance to deadlocks is improved.



When buggy code runs and deadlocks, we refer to an Applicatiqn Thread

approximate suffix of the call flow that led to deadlock as Avoidance

adeadlock pattera-this is an approximation of the con- & %, lock-free

trol flow that turned the bug into a deadlock. A runtime = (eq\’e %é

instantiation of a deadlock pattern constitutekeadlock = 5 VT asyne
occurrence Thus, a deadlock bug begets a deadlock pati|1ock (L) goly RAG Queue
tern, which in turn begets a deadlock occurrence. Oné — acquire cache

deadlock pattern can generate a potentially unbounded =

number of runtime deadlock occurrences, e.g., because = — -
lock identities vary across different manifestations @ th RAG [erodicaly do-

. . . . unlock (L) process events
same deadlock pattern. Dimmunix automatically avoids search for cycles
previously seen deadlock patterns, in order to reduce the = e ey
number of deadlock occurrences. To recognize repeated = ’_
deadlock patterns, it saves “fingerprints” of every new Monitor Thread
pattern; we call thesgeadlock signaturesRuntime con- ) ) . )
ditions can cause a deadlock pattern to not always lead Figure 1: Dimmunix architecture.
to deadlock, in which case avoiding the pattern results in
a false positive (more details §5.5). tiated, there must exist threads, T»,... that either hold

The Dimmunix architecture is illustrated in Figure 1. or are allowed to wait for lockd.q, Ls,... while hav-
There are two partsavoidance instrumentation code ing call stacksSy, Sz,... An instantiation of a signature
prevents reoccurrences of previously encountered deagaptures the corresponding thread-lock-stack bindings:
locks and amonitor threadfinds and adds deadlock in- {(71, L1, S1), (T2, L2, S2), ...}
formation to the persistemteadlock history Avoidance The way in which a deadlocked prograstoversis
code can be directly instrumented into the target binaryrthogonal to Dimmunix and, in practice, would most
or can reside in a thread library. This instrumentationlikely be done via restart. Dimmunix can provide a hook
code intercepts the lock/unlock operations in target proin the monitor thread for programs to define more so-
grams and transfers control to Dimmunix any time lock phisticated deadlock recovery methods; the hook can be
or unlock is performed; Dimmunix itself runs within the invoked right after the deadlock signature is saved. For
address space of the target program. instance, plugging Rx’s checkpoint/rollback facility [18

At the beginning of a lock call, &questmethod in  into this application-specific deadlock resolution hook
the avoidance instrumentation decides whether to allowgould provide application-transparent deadlock recavery
the lock operation to proceed. This decision carGia Any scheduling-based approach to deadlock avoid-
if locking is allowed, orYIELD, if not. In the case of a ance faces the risk of occasionally reaching starvation
yield, the thread is forced by the instrumentation code tostates, in which threads are actively yielding, waiting
yield the CPU, and the lock attempt is transparently redn vain for synchronization conditions to change. In
tried later. When the program finally acquires the lock, Dimmunix, this is handled automatically: when induced
the instrumentation code invokasquired Unlock op-  starvation occurs, Dimmunix saves the signature of the
erations are preceded by a calrétease starvation state, breaks the starvation by canceling the

The avoidance code enqueues request, go, yield, agield for the starved thread holding most locks, and al-
quired, and release events onto a lock-free queue that isws the freed thread to pursue its most recently re-
drained by the monitor thread. The monitor wakes up pequested lock. Dimmunix will subsequently be able to
riodically and updates a resource allocation graph (RAGvoid entering this same starvation condition again.
according to received events, searches for deadlock cy- We recommend Dimmunix for general-purpose sys-
cles, and saves the cycle signatures to the persistent hitems, such as desktop and enterprise applications, server
tory. The delay between the occurrence of a deadloclsoftware, etc.; in real-time systems or safety-criticatsy
and its detection by the asynchronous monitor has an ugems, Dimmunix can cause undue interferens® 7).
per bound determined by the wakeup frequency. Systems in which even the very first occurrence of a

Dimmunix uses the RAG to represent a program’s syn-deadlock cannot be tolerated are not good targets for
chronization state. Most edges are labeled with the calDimmunix; such systems require more programmer-
stack of the origin thread, representing an approximatiorintensive approaches if they want to run deadlock-free.
of that thread’s recent control flow. When a deadlock is Dimmunix can be used by software vendors and end
found, Dimmunix archives a combination of the involved users alike. Faced with the current impossibility of ship-
threads’ stacks into a deadlock signature. ping large software that is bug-free, vendors could instru-

Avoiding deadlocks requires anticipating whether thement their ready-to-ship software with Dimmunix and
acquisition of a lock would lead to the instantiation of a get an extra safety net. Dimmunix will keep users happy
signature of a previously-encountered deadlock patterrby allowing them to use the deadlock-prone system while
For a signature with call stacKsS;, Ss,...} to be instan-  developers try to fix the bugs. Also, users frustrated with



deadlock-prone applications can use Dimmunix on theiinstance, on the above example, [17] would add a “gate
own to improve their user experience. We do not ad-ock” around the code fonpdate()and serialize all calls
vocate deadlock immunity as a replacement for correcto it, even in the case of execution patterns that do not
concurrent programming—ultimately, concurrency bugslead to deadlock, such d$s1, ss], [s1, s3]}. [23] would
need to be fixed in the design and the code—but it doeadd a “ghost lock” forA and B, that would have to be

offer a “band-aid” with many practical benefits. acquired prior to locking eithed or B.
Dimmunix achieves finer grain avoidance by (a)
4  An Example using call path information to distinguish between

_ _ ) ) executions—of all paths that end up &t Dimmunix
We now illustrate how Dimmunix works with an exam- 4y0ids only those that executed a call path previously
ple of two deadlock-prone threads. nain { seen to lead to deadlock—and (b) using runtime informa-
The pseutdocodle gn|theh”gh;[j s1: update(a,B) tion about which locks are held by other threads to avoid
accesses two global share ..

- ) S these paths only when they indeed seem dangerous.
variables A and B, each 2 update(B,A)

protected by its own mutex. ’

51, 52,... are the equivalent of update(x,y) { 5 Deadlock and Starvation Avoidance
goto labels. For simplicity, we zz igiiﬁ;; We now present selected details of Dimmunix: the core
assume there are no pointers. ek data structure§6.1), detection §5.2), construction of

If two different threadsT; Eilgzkg; signatures §5.3), runtime avoidance of archived signa-
and T; run the code concur- } tures §5.4), calibration of signature matching precision
rently, they may attempt to (§5.5), auxiliary data structure§.6), and a synopsis of

lock A and B in opposite order, which can lead to pimmunix’s properties and limitationg%.7).
deadlock, i.e., ifT; executes statement and thenss,

while T; executes;, followed by s;. The call flow can ] o
be represented abstractly asl;:[s1, s3], Tj:[s2, s3]>. 5.1 Capturing Synchronization State

There exist other execution patterns too, such as.. . .
P Dimmunix conceptually uses a resource allocation graph

<7‘|};1[81f"83t]7t'Tj:[5t1r; ss]> dthat ?O not Idead dtlo dke ag_lock. . (RAG) to represent the synchronization state of a pro-
€ 1irst ime the code enters a deadlock, ImmunlXgram. In practice, the RAG is built on top of several

will see it as a cycle in the RAG and save its signature

) . erformance-optimized data structures (detaikbir®).
based on the threads’ call stacks at the time of their lock’ : : :
acquisitions. Wher; acquires the lock om, the re- The RAG is a directed graph with two types of ver-

turn addresses on its stack dse, s3], because it called tices: threadsf andlocks L. There are three types of
update(jfrom s, andlock() from ; 'Ss’imilarly whenT edges connecting threads to locks and one type of edges
acauires the Iolck ol T+'s call s'féck is| ' . U 0-;1 connecting threads to threa_dsRequest edge|$|d|c_ate

q NS 52,83]. PO that a thread” wants to acquire loci,, allow edgesn-
deadlock, the<T;:[s1, s3], Tj:[s2, s3]> call pattern is

saved to history as deadlock signatffe. ss], [s2, ss]}. dicate that thread’ has been allowed by Dimmunix to

Signatures do not include thread or lock identities, thusblOCk waiting for L, andhold edgesndicate thatl’ has

making them portable from one execution to the next acquired and presently holds lodk If the avoidance
9 P " . code decides to not allow a thredts lock request, it

C_:onS|der now a subsequent run of the program, Mill force T to yield. This state is reflected in the RAG
which some thread’), executess; followed by s;, ac- by ayield edgeconnecting thread to 7”, indicating that
quires the lock orB, and then some other thrediex- ¢ ¢\ rently yielding because of locks tHt acquired
ecutess, and then ’.“akes the call _tock(x)m statement a5 allowed to wait for. Dimmunix reschedules the
s3, in order to acquirel. If Dimmunix were to allow this paused thread’ whenever lock conditions change in a

lock operation to proceed, this execution could deadlockway that could enabl@ to acquire the desired lock. Fig-

Dimmunix infers the 7. i ack  T'scallsiack  ure 2 illustrates a subgraph of a real RAG.
deadlock danger by

matching the threads' —=2i2is2 main:sl A hold edge, likeL;2%T} 3, always points from a lock
call stacks (shown on [update:s3 update:s3 to a thread and indicates that the lock is held by that
right) to the signature. thread; it also carries as label a simplified versinof

Given that there is a match, Dimmunix decides tothe call stack that the thread had at the time it acquired

force T; to yield until the lock thafl}, acquired atss is the lock. A yield edge, likeT 3 S—“ing, always points
released. Afte3 is released]; is allowed to lockA and  from a thread to another thread; it indicates thaf has
proceed. In this way, the program became immune to th&een forced to yield becau$g, acquired a lock with call

deadlock patterd[si, s3], [s2, s3]} stackS, that would causé’ 3 to instantiate a signature
Note that Dimmunix does not merely serialize codeif it was allowed to execute lock().
blocks, as would be done by wrappingdate()in a Java In order to support reentrant locks, as are standard in

synchronizegl...} block or as was done in prior work. For Java and available in POSIX threads, the RAG is a multi-



— —> hpld —» request _standard wait—f(_)r graphs. _Yield cycles are used to_detect
handleRequest:19 --» yield — allow induced starvation. Any yield-based deadlock avoidance
doFilter:34 technique runs the risk of inducing one or more threads
acquireSocket:44 Dy to starve due to yielding while waiting for a thread that is
blocked. Thus, any dynamic scheduling-based deadlock
avoidance approach must also avoid induced starvation.
Consider Figure 3, which shows a RAG in which a

starvation state has been reached (nodes and edges not
used in the discussion are smaller and dotted; call stack

Ls

«
onEvent:72
handleRequest:19 ’
L3 doFilter:34 J

acquireSocket:44 x','

AN .

o’ nEvent:72
Lot/ handlegeqqutzle edge labels are not shown). For to be starved, both
_____ .- $ doForwardReq: 54 its yield edgesl’s — 7> andT; — T3 must be part of cy-
<« Y ockrea 1.7 cles, as well as both &f,’s yield edges. If the RAG had

only the (Tl, T, ..., Tl) and (Tl, Ts,L, Ty, T, ..., Tl)

) ) cycles, then this would not be a starvation state, be-
Figure 2: Fragment of a resource allocation graph.  causer, could evade starvation throudl, allowingT;

to eventually evade throudh;. If, as in Figure 3, cy-

) i cle(Ty,Ts, L, Ty, T5, ..., T1) is also present, then neither
set of edges; it can represent locks that are acquired Mulpead can make progress.

tiple times by the same holder and, thus, have to be re-
leased as many times as acquired before becoming avail-
able to other threads.

Finally, the RAG does not always provide an up-to- @

veed e, e

K

date view of the program’s synchronization state, since -3 . —> allow
it is updated lazily by the monitor. This is acceptable \'ﬁ.. @\ RS

for cycle detection, but the avoidance code needs some® % L —}
information to always be current, such as the mappingi;, ‘\ .
from locks to owners. Therefore, the avoidance instru- @ e “@

mentation also maintains a simpler “cache” of parts of . fm,)y = i
the RAG (in the form of simplified lock-free data struc-
tures) to make correct yield/allow decisions.

Figure 3: Starved threads in a yield cycle.

5.2 Detecting Deadlocks and Starvation We say that a thread is involved in aninduced star-

vation condition iff 7" is part of a yield cycle. A vyield

The monitor thread wakes up every milliseconds, : . .
drains all events from the lock-free event queue, and up(-:yCIe is a subgraph of the RAG in which all nodes reach-

dates the RAG according to these events; then it search@?le from a nod&" throgghTs y|e|d gdges can in turn
for cycles. The monitor only searches for cycles involv- rea‘?”f- Th_e graph in Figure 3 'S a yield cy(_:le.

ing edges that were added by the most recently processed Dimmunix uses cycle detection as a universal mech-
batch of events; there cannot be new cycles formed theniSm for detecting both deadlocks and induced starva-
involve exclusively old edges. The valueofs config- tion: when the monitor encounters a yield cycle in the

urable, and the right choice depends on the application d¢AC; It saves its signature to the history, as if it was a
hand: e.g., in an interactive program— 100 millisec- eadlock. Dimmunix uses the same logic to avoid both

onds would be reasonable. deadlock patterns and induced starvation patterns.

Events enqueued by the same thread are correctly or-
dered with respect to each other. As far as other t_hreao§_3 From Cyclesto Signatures
are concerned, we need to ensure a partial ordering that
guarantees geleasecvent on lockl. in threadT’; will ap- The signature of a cycle is a multiset containing the call
pear in the queue prior to any other thrégés acquired  stack labels of all hold edges and yield edges in that cy-
event onL. Given that the runtime (e.g., JVM) completes cle. The signature must be a multiset because different
lock(L) in T} strictly after it completed unlock() in 7;,  threads may have acquired different locks while having
and thereleaseevent inT; precedes the unlockj, and the same call stack, by virtue of executing the same code.
theacquiredeventin7; follows the lock({), the required Figure 2 shows a simple vyield cycle
partial ordering is guaranteed. (Tys,T22, L7,T13), whose signature is{S,,Sy}.
There are two cycle types of interest: deadlock cy-The signature is archived by the monitor into the history
cles and yield cycles. A thredfl is in a deadlockiff that persists across program restarts.
T is part of a cycle made up exclusively of hold, allow, A signature contains one call stack per thread blocked
and request edges—this is similar to deadlock cycles inn the detected deadlock or starvation. The number of



threads involved is bounded by the maximum number ofstantiation takes into consideration allow edges in addi-

threads that can run at any given time, so a signature cation to hold edges, because an allow edge represents a

have no more than that number of call stacks. A call stackcommitment by a thread to block waiting for a lock.

is always of finite size (usually set by the OS or thread If a potential deadlock instance is found, then the ten-

library); thus, the size of a signature is finite. Signaturestative allow edge is flipped around into a request edge,

are essentially permutations of “instruction addresses” i and a yield edge is inserted into the RAG cache ffbm

the code, and there is a finite number of instructions into each thread; # T in the signature instance: these

an application; given that duplicate signatures are disalthreadsT; are the “causes” of’s yield. Each yield

lowed, the signature history cannot grow indefinitely.  edge gets its label from its yield cause (e.g., in Figure 2,
After saving a deadlock signature, the monitor canp. .7y, gets labelS, from hold edgeL5S—“iT22). A

wait for deadlock recovery to be performed externally, oryie|q event is sent to the monitor andvAELD decision

it can invoke an appllcatlon—sp_euﬂq deadlock resolutl_oniS returned to the instrumentation.

handler. After saving a starvation signature, the monitor If no instance is found, thefi's allow edge is kept, the

can_break the starvation as describeg3n correspondingllow event is sent to the monitor, and a
Signatures abstract solely the call flow that led to deady Odecision is returned: any yield edges emerging from
lock or starvation; no program data (such as lock/threa he current thread’s nodé are removed

{nat signatures préserve the generalty of a deadiook par. V1en thecauirednethod s invoked, the correspond-
tern and are fully portable from one execution to the next, ' allow edge m_the RAG pache 'S converteq into a hold
Program state can vary frequently within one run or from.edge ar_1d _aacquwedevent Is sent to the monitor. When

' . releaseis invoked, the corresponding hold edge is re-
one run to the next (due to inputs, load, etc.) and requir-

ing that this state also be matched, in addition to the Cal[nCI)DVi?:n*?:r?i;eIr?)?/isgg\s/?vr\]/gTe(\a/Zﬁsu(?fui?ndrrErn:?eerzl?:ﬂlf/eirt'h
flow, would cause Dimmunix to incur many false neg- P %

atives. The downside of the generality of patterns ar ts pros and cons; they can be selected via a configuration

occasional false positives, as will be discussegbirs. lag. By default,weak immunitys enforced: induced
starvation is automatically broken (after saving its signa

o ] ture) and the program continues as if Dimmunix wasn't
5.4 Avoiding Previously Seen Patterns present—this is the least intrusive, but may lead to re-
occurrences of some deadlock patterns. The number of

'times the initially avoided deadlock pattern can reoccur

so that expensive operations (cycle detection,.history file?S bounded by the maximum nesting depth of locks in the
I/Q’ e_tc.), can be done asynchronously_, OUtS'_de the ap|5rogram. The intuitive reason behind this upper bound is
pllcatlo_n s_cr|t|cal path. The deadl_ock history is loaded that avoiding a deadlock or starvation is always done at
from disk into memory "_"t startup time and shared readyy 4 oo nesting level above the one where the avoided
only among aI_I threads; t_he monitor is the on_ly threaddeadlock or starvation occurs. $trong immunitynode,
leatl_ﬂg the hgstpryl,:poth lnl-ms_mory a_nd.on-d|sk. I the program is restarted every time a starvation is en-
s llustrated in Figure 1, Dimmunix intercepts all ., niereqd, instead of merely breaking the yield cycle—

lock anq qnlock calls i.n the target program or in.terceptsWh”e more intrusive, this mode guarantees that no dead-
them within a thread library. When the application per- lock or starvation patterns ever reoccur

forms a lock, the instrumentation invokes thequest .
o In our experience, one deadlock bug usually has one
method, which returns ¥IELD or GO answer. Thé&0 deadlock pattern (s€g). In the ideal case, if there are

case indicates that Dimmunix considers it safe (w.r.t. then deadlock bugs in the program, after exaatlpccur-
history) for the thread to block waiting for the lock; this P . .

does %lz)t mean the lock is available. \?Vhen the lock is ac_renc_es of d_eadlocks the program will have acquired im-
tually acquired, the instrumentation invokesaguired munity against alk, bugs. However, there could also be

method in the avoidance code; when the lock is reIeasecﬁ induced starvation cases and, in the worst case, each
o ' ew starvation situation will lead (after breaking) to the
it invokes areleasemethod—both methods serve solely d

gy eadlock that was being avoided. Thus, it will take

to _Ilfﬁdate the RA(?}' %S(;hey d(.) not re;curtr: an;qldeqsmrrw]. occurrences of deadlocks to develop immunity against all

erequestm,et od determines whether allowing the n deadlocks in the program. The exact values ahdk
.current.threadl“s lock request woulq take the program Eepend on the specific program at hand.
into a situation that matches a previously seen deadloc
or starvation. For this, it tentatively adds the correspond
ing allow edge to the RAG cache and searches for a5 Calibrating the Matching Precision
instantiation of a signature from history; this consists of
finding a set of (thread, lock, stack) tuples in the RAG A signature contains the call stacks from the correspond-
cache that provide an exact cover of the signature. Aling RAG cycle, along with a “matching depth,” indicat-
thread-lock-stack tuples in the instance must corresponihg how long a suffix of each call stack should be consid-
to distinct threads and locks. Checking for signature in-ered during matching. In the simplest case, this depth is

The avoidance code is split from the monitoring code



set to a fixed value (4 by default). However, choosing toosignature fully (i.e., the precise deadlock pattern) to be
long a suffix can cause Dimmunix to miss manifestationsavoided. Calibration merely makes Dimmunix more ef-
of a deadlock bug, while choosing too short a suffix canficient at avoiding deadlocks similar to the ones already
lead to mispredicting a runtime call flow as being headedencountered, without incurring undue false positives.

for deadlock (i.e., this is a false positive). In this seatio

we describe how Dimmunix can optionally calibrate the

matching depth at runtime. 5.6 Auxiliary Data Structures

First, Dimmunix must be able to heuristically deter- . ]
mine whether it did not cause a false positive (FP), i.e.,Jhe RAG is extended with several other data structures,
whether forcing a thread to yield indeed avoided a deadWhich serve to improve both asymptotic and actual per-
lock or not. After deciding to avoid a given signatute ~ formance. For example, we achied1) lookup of
Dimmunix performs a retrospective analysis: All lock thread and lock nodes, because they are kept in a pre-
operations performed by threads involved in the poten@llocated vector and a lightly loaded hash table, respec-
tial deadlock are logged to the monitor thread, along withtively. In the case of library-based Dimmunix, the RAG
lock operations performed by the blocked thread after ithodes are embedded in the library’s own thread and mu-
was released from the yield. The monitor thread therf€X data structures. Moreover, data structures necessary
looks for lock inversions in this log; if none are found, for avoidance and detection are themselves embedded in
the avoidance was likely a FP, i.e., in the absence ofhe thread and lock nodes. For example, theyseit-
avoidance, there would have likely not been a deadlock Causecontaining all of a thread™s yield edges is di-

Using this heuristic, Dimmunix estimates the FP rater€ctly accessible from the thread ndatle
for each possible matching depth: when signatkires Dimmunix uses a hash table to map raw call stacks to
created, depth starts at 1 and is kept there for the firspur own call stack objects. Matching a call stack con-
N, avoidances of{, then incremented for the neki, sists of hashing the raw call stack and finding the cor-
avoidances ofX, and so on until maximum depth is responding metadata objest if it exists. FromsS, one
reached. TheV, parameter is 20 by default. Then can directly getto, e.g., thellowedset, containing han-
Dimmunix chooses the smallest depttthat exhibited ~dles to all the threads that are permitted to wait for locks
the lowest FP raté'P,,;, and setsX's matching depth  While having call stack’; Allowedincludes those threads
to d. that have acquired and still hold the locks. When check-

False positives are not exclusively due to overly genjng for signature instantiations, a thread v_viII check the
eral matching, but could also be caused by input or valug\llowedsets for all call stacks; from the signature to
dependencies; e.g., pattekhmay lead to deadlock for be matched. In most cases, at least one of these sets is
some inputs but not for others, so avoidigcan have ~empty, meaning there is no thread holding a lock in that
false positives even at the most precise matching depm;_tack configuration, so the signature is not instantiated.
For this reasonFP,,i, can be non-zero, and multiple =~ Complexity of therequestmethod in the avoidance
depths can have the sanmiéP,;, rate; choosing the codeisO(D - H -T!-G7T), whereD is the maximum
smallest depth gives us the most general pattern. depth at which Dimmunix can match a call staék,is

The algorithm implemented in Dimmunix is slightly the number of signatures in histor¥, is the maximum
more complex. For instance, to increase calibratiornumber of threads that can be involved in a deadlock, and
speed, when encountering a FP at deptiDimmunix G is the maximum number of locks acquired or waited
analyzes whether it would have performed avoidance haépr at the same time by threads with the exact same call
the depth bee + 1, k + 2,... and, if yes, increments stack. In practice]) is a constant and is almost always
the FP counts for those depths as well; this allows théwo [16], bringing complexity closer tO(H - G?).
calibration to run fewer thaiV 4 iterations at the larger Most accesses to the history and RAG cache are
depths. One could associate a per-stack matching depthread-safe, because they mutate allow and hold edges
instead of a per-signature depth; while this would be thethat involve the current thread only, so no other thread
oretically more precise, we found the current heuristic tocould be changing them at the same time. Téwrpuest
be satisfactory for the systems discussegi7in andreleasemethods are the only ones that need to both

Once X'’s calibration is complete, Dimmunix stops consult and update the sharédlowed set. To do so
tracking FPs forX. After X has been avoidedvr safely without using locks, we use a variation of Peter-
times, Dimmunix performs a recalibration, in case pro-son’s algorithm for mutual exclusion generalizedrto
gram conditions have changedl{ = 10* by default). threads [9].

Dynamic calibration is a way to heuristically choose a  To find cycles in the RAG, we use the Colored DFS al-
deadlock pattern that is more balanced than if we chose gorithm, whose theoretical complexity@(Ng + N -
fixed-length suffix of the call stacks. This optional cali- (|V| + |E|)), where the RAG is a graglY, E], the max-
bration algorithm is orthogonal to the rest of Dimmunix, imum number of threads issuing lock requests at any one
since avoiding an execution pattern that matches patime is N7, and the maximum number of events in the
tially a signature will cause all executions that match theasynchronous lock-free event queuévis.



5.7 Dimmunix Propertiesand Limitations  or a warning can be issued instead to the user indicating
. ] ) . this deadlock pattern is too risky to avoid.

In this section, we summarize the most important prop-  pimmunix cannot induce a non-real-time program to

erties of the algorithms presented so far. A formal de'produce wrong outputgven with strong immunity, be-

scriptiop of an earlier vgrsion of the algorithm and its c5,se Dimmunix works solely by altering thread sched-

properties can be found in [12]. ules. Schedulers in general-purpose systems (like a com-

Dimmunix can never affect a deadlock-free program’smodity JVM) do not provide strong guarantees, so the
correctness Dimmunix saves a signature only when a correctness of a program’s outputs cannot reasonably de-
deadlock actually happens, i.e., when there is a cyclgyend on the scheduler. Starvation, as described above, is
in the RAG. A program that never deadlocks will have g |iveness issue in a non-real-time system, so it cannot
a perpetually empty history, which means no avoidanceead to the generation of incorrect outputs, i.e., it cannot
will ever be done. violate safety.

Dimmunix must know about all synchronization Dimmunix never adds a false deadlock to the history
mechanismsused in the system. In programs that since it detects and saves only signatures of true dead-
mix Dimmunix-instrumented synchronization with non- |ock patterns. Without a real deadlock, there cannot be a
instrumented synchronization, Dimmunix can interferedeadlock cycle in the RAG, hence the signature database
with the mechanisms it is unaware of (e.g., a programcannot contain the signature of a deadlock pattern that
that combines non-instrumented busy-wait loops withnever led to deadlock.
instrumented POSIX threads locks could be starved).

Thus, Dimmunix requires that the non-instrumented syn- . .
chronization routines be indicated in a configuration file,6 Dimmunix for Java and POSI X Threads

similar to the way RacerX [5] does; Dimmunix will then e currently have three implementations of Dimmunix:
ignore the avoidance decision whenever a call to the forpne for Java programs and two for programs using
eign synchronization is encountered. POSIX threads (pthreads): one for FreeBSD libthr and
Some deadlock patterns are too risky to avolBay  the other for Linux NPTL. They can be downloaded from
there is an operatiol that is implemented such that all htt p: // di muni x. epfl.ch/. The Java version has
possible execution paths are deadlock-prone. Dimmunix.1400 lines of Java code. The FreeBSD version has
essentially prunes those paths that have deadlocked in the1100 lines of C++ code plus-20 lines changed in
past, leaving only those that have not deadlockedi¥for  libthr, while the Linux version has-1700 lines of C++
this could mean eventually pruning all execution pathscode plus~30 lines changed in NPTL. The latter's extra
leading to the loss of¥’s functionality. Although we code is to support both 32-bit and 64-bit platforms.
have never noticed such functionality loss in thousands The implementations illustrate two different ap-
of executions of several instrumented desktop and serveiroaches: the Java version directly instruments the tar-
programs, it is possible in principle, so Dimmunix offers get bytecode, while the pthreads implementations rely on
two options when running in “weak immunity” mode:  modified pthreads libraries. Neither approach requires
First, Dimmunix allows users to disable signatures.access to a program’s source code nor does it ask pro-
Every time Dimmunix avoids a signature, it logs the grammers to changes how they write their code.
avoidance action in a field of the signature in the his- Java provides three main synchronization primitives:
tory. Now consider the following use scenario: a user ismonitors, explicit locks, and wait queues; our imple-
in front of their Web browser and, every time a suspectednentation currently supports the first two. Monitors are
deadlock is avoided, Dimmunix beeps, the way pop-updeclared using aynchronized(x]...} statement, which
blockers do. Say the user clicks on a menu item andranslates, at the bytecode level, immnitorenter(x)
s/he just hears a beep but nothing happens—the merfollowed by the code block, followed byonitorexit(x)
has been disabled due to avoidance. The user can nosin additionalmonitorexit(x)is placed on the exception
instruct Dimmunix to disable the last avoided signature path. If a thread attempts to enter a monitor it is already
the same way s/he would enable pop-ups for a given sitén, the call returns immediately; the thread will have to
The signature will never be avoided again and the menexit that monitor the same number of times it entered it
is usable again (but it may occasionally deadlock, sincébefore the monitor becomes available to others.
the deadlock pattern is not being avoided). In order to intercept the monitor entry/exit and explicit
Second, if users cannot be directly involved in lock/unlock requests, we use an aspect-oriented com-
detecting such starvation-based loss of functionalitypiler, AspectJ [1], to directly instrument target programs
Dimmunix has a configurable system-wide upper boundat either bytecode or source level. The instrumented Java
(e.g., 200 msec) for how long Dimmunix can keep abytecode can be executed in any standard Java 1.5 VM or
thread waiting in order to avoid a deadlock pattern; oncdater. We implemented the avoidance code as aspects that
this maximum is reached, the thread is released from thget woven into the target program before and after every
yield. Once a particular pattern has accumulated a largenonitorenterandlock bytecode, as well as before every
number of such aborts, it can be automatically disabledmonitorexitandunlockbytecode. The aspects intercept



the corresponding operations, update all necessary dataverhead does Dimmunix introduce, and how does this
structures, and decide whether to allow a lock request ooverhead vary as parameters charfge?)? What is the

to pause the thread instead. Call stacks are vectors afpact of false positives on performandgd 3)? What
<methodName, file:line# strings. The monitor thread overheads does Dimmunix introduce in terms of resource
is started automatically when the program starts up.  consumption{7.4)?

Dimmunix pauses a thread by making a Javait We evaluated Dimmunix with several real systems:
call from within the instrumentation code; we do not MySQL (C/C++ open-source database), SQLite (C open-
use Thread.yield because we foundait to scale con- source embedded database), Apache ActiveMQ (Java
siderably better. There is one synchronization objectppen-source message broker for enterprise applications),
yieldLock[T], dedicated to each thredfl and, when JBoss (Java open-source enterprise application server),
T is to yield, the instrumentation code callgeld- Limewire (Java peer-to-peer file sharing application), the
Lock[t].wait(). When a thread” frees a lockL’ ac- Java JDK (provider of all class libraries that implement
quired with call stacks’, then all threadq’; for which  the Java API), and HawkNL (C library specialized for
(T',L',S") € yieldCauseTl;] (see§5.6) have no more network games). These are widely-used systems within
reason to yield, so they are woken up via a call totheir category; some are large, such as MySQL, which
yieldLocK[I;].notifyAll(). has over 1 million lines of code excluding comments.

For POSIX threads, we modified thel i bt hr li- For all experiments reported here, we used strong im-
brary in FreeBSD and the Native POSIX Threads Librarymunity, with =100 msec; in the microbenchmarks we
(NPTL) in Linux, which is part of glibc. The modified li- used a fixed call stack matching depth of 4. Measure-
braries are 100% compatible drop-in replacements. Portments were obtained on 8-core computers (2x4-core Intel
ing to other POSIX threads libraries is straightforward.Xeon E5310 1.6GHz CPUs), 4GB RAM, WD-1500 hard
The pthreads-based implementations are similar to thdisk, two NetXtreme Il GbE interfaces with dedicated
Java implementation, with a few exceptions: GbE switch, running Linux and FreeBSD, Java HotSpot

The basic synchronization primitive in POSIX threads Server VM 1.6.0, and Java SE 1.6.0.
is the mutex and there are three types: normal mu-
tex, recursive mutex (equivalent to Java’s reentrant lock) ; ;
and error-checking mutex, which returB®EADLK if 7.1 Effectiveness Against Real Deadlocks
a thread attempts to lock a non-recursive locked mutexn practice, deadlocks arise from two main sources: bugs
and thus self-deadlock. Dimmunix does not watch forin the logic of the program§f.1.1) and technically per-
self-deadlocks, since pthreads already offers the erromissible, but yet inappropriate uses of third party code
checking mutex option. (§7.1.2); Dimmunix addresses both.

We instrumented all the basic mutex management
functions. Locks associated with conditional variables7
are also instrumented. Having direct access to the thread
library internals simplifies data access; for example, in-To verify effectiveness against real bugs, we reproduced
stead of keeping track of locks externally (as is done indeadlocks that were reported against the systems de-
the Java version), we can simply extend the original li-scribed above. We used timing loops to generate “ex-
brary data structures. Call stacks are unwound with backploits,” i.e. test cases that deterministically reprodlice
trace(), and Dimmunix computes the byte offset of eachthe deadlocks. It took on average two programmer-days
return address relative to the beginning of the binary ando successfully reproduce a bug; we abandoned many
stores these offsets in execution-independent signaturebugs, because we could not reproduce them reliably. We

Java guarantees that all native lock() operations arean each test 100 times in three different configurations:
blocking, i.e., after a successfidquestthe thread will  First, we ran the unmodified program, and the test always
eitheracquirethe lock or become blocked on it. This is deadlocked prior to completion. Second, we ran the pro-
not the case for pthreads, which allows a lock acquisitiorgram instrumented with full Dimmunix, but ignored all
to time out pthreadmutextimedlocR or to returnimme-  yield decisions, to verify that timing changes introduced
diately if there is contentiorpthreadmutextrylock). To by the instrumentation did not affect the deadlock—
support trylocks and timedlocks, we introduced a newagain, each test case deadlocked in every run. Finally,
event in pthreads Dimmunix callezhnce] which rolls  we ran the program with full Dimmunix, with signatures
back a previous lockequestupon a timeout. of previously-encountered deadlocks in the history—in
each case, Dimmunix successfully avoided the deadlock
. and allowed the test to run to completion.

7 Evaluation The results are centralized in Table 1. We include
In this section we answer a number of practical questhe number of yields recorded during the trials with full
tions. First and foremost, does Dimmunix work for real Dimmunix as a measure of how often deadlock patterns
systems that do I/O, use system libraries, and interaotvere encountered and avoided. For most cases, there is
with users and other systenf(1)? What performance one yield, corresponding to the one deadlock reproduced

1.1 TrueDeadlock Bugs



#Yieldsper Trial DIk Patterns
System Bug# | Deadlock Between ... M AVg Max # [ Depth
MySQL 6.0.4 37080 | INSERT and TRUNCATE in two different threads 1 1 4 1 4
SQLite 3.3.0 1672 | Deadlock in the custom recursive lock implementation 1 1 1 1 3
HawkNL 1.6b3 n/a | nIShutdown() called concurrently with nIClose() 10 10 10 1 2
MySQL 5.0 JDBC | 2147 | PreparedStatement.getWarnings() and Connection.glose( 1 1 1 1 3
MySQL 5.0 JDBC | 14972 | Connection.prepareStatement() and Statement.close() 1 1 1 1 4
MySQL 5.0 JDBC | 31136 | PreparedStatement.executeQuery() and Connection()close 1 1 1 1 3
MySQL 5.0 JDBC | 17709 | Statement.executeQuery() and Connection.prepareatém 1 1 1 1 3
Limewire 4.17.9 1449 | HsqIDB TaskQueue cancel and shutdown() 15 15 15 2 10,10
ActiveMQ 3.1 336 | Listener creation and active dispatching of messages tsucoer 1 181079 221292 1 2
ActiveMQ 4.0 575 | Queue.dropEvent() and PrefetchSubscription.add() 11252| 80387 | 113652 3 2,2,2

Table 1: A few reported deadlock bugs avoided by Dimmunixdpydar server and desktop applications.

by the test case. In some cases, however, the numbégrnative to this dilemma: avoid the deadlocks when and
of yields was much higher, because avoiding the initialif they manifest. This requires no programmer interven-
deadlock enabled the test to continue and re-enter thigon and no JDK modifications.
same deadlock pattern later. For all but the ActiveMQ
tests there were no false positives; in the case of ACFprntwriter class: Withw a PrintWiriter, concurrently call w.write(
tiveMQ, we could not accurately determine if any of the| and CharArraywriter.writeTo(w)
reported yields were false positives. Vector Concurrently call; .addAll(v2) andve.addAll(v1)
We also inspected the code for each bug, to determing Hashtable With 4, a member ofi; andh, a member ofy, con-

how many different deadlock patterns can be generat d;“r.rently callh, .equals(foo) and,.equals(bar)

. . ¥ tringBuffer With StringBuffers s; and s2, concurrently call
by the bug. The last two columns in Table 1 indicate the ;| apnend¢,) andss.appendg:)
number of deadlock patterns (“#” column) and the siz BeanContextSupportoncurrent propertyChange() and remove()
of the pattern (“Depth” column). Depth corresponds to
the type of matching depth discussed5. Dimmunix  Table 2: Java JDK 1.6 deadlocks avoided by Dimmunix.
correctly detected, saved, and avoided all patterns, éxcep
in the case of ActiveMQ #575, where we were able to

only reproduce one of the three patterns, so Dimmuni
only witnessed, saved and avoided that one. X7-2 Per formance Overhead

In this section we systematically quantify Dimmunix’s
7.1.2 Invitationsto Deadlock impact on system performance, using request throughput
and latency as the main metrics. First, we repogfir2.1
When using third party libraries, it is possible to use theend-to-end measurements on real systems and then use
offered APIs in ways that lead to deadlock inside the li- synthetic microbenchmarks to drill deeper into the per-
brary, despite there being no logic bug in the calling pro-formance characteristic§7.2.2).
gram. For example, several synchronized base classes in
the Javz?\ runtime environment can lead to de_zadlocks. 7.21 Real Applications
Consider two vectorsv;, vy in a multithreaded
program—sinc&ectoris a synchronized class, program- To measure end-to-end overhead, we ran standard per-
mers allegedly need not be concerned by concurrent adermance benchmarks on “immunized” JBoss 4.0 and
cess to vectors. However, if one thread wants to add alMySQL 5.0 JDBC. For JBoss, we used the RUBIS e-
elements ofvy to vy via v1.addAll(v2), while another  commerce benchmark [19], for MySQL JDBC we used
thread concurrently does the reverse sanddAll(v),  JDBCBench [11]. For HawkNL, Limewire, and Ac-
the program can deadlock inside the JDK, because undeiveMQ we are unaware of any benchmarks.

the covers the JDK locks, thenv, in one thread, and, We took the measurements for various history sizes, to
thenv; in the other thread. This is a general problem forsee how overhead changes as more signatures accumu-
all synchronizedollectionclasses in the JDK. late. Since we had insufficient real deadlock signatures,

Table 2 shows deadlocks we reproduced in JDK 1.6.0we synthesized additional ones as random combinations
they were all successfully avoided by Dimmunix. While of real program stacks with which the target system per-
not bugs per se, these are invitations to deadlock. Ideforms synchronization. From the point of view of avoid-
ally, APIs should be documented thoroughly, but thereance overhead, synthesized signatures have the same ef-
is always a tradeoff between productivity and pedantryfect as real ones. Figure 4 presents the results.
in documentation. Moreover, programmers cannot think The cost of immunity against up to 128 deadlock sig-
of every possible way in which their APl will be used. natures is modest in large systems with hundreds of
Runtime tools like Dimmunix provide an inexpensive al- threads in realistic settings—e.g., JBoss/RUBIS ran with
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shared data structures, releases the lock, and then per-
forms computation outside the critical section.

opment teams themselves could also provide deadlock
signatures to customers until fixes for the bugs becom

available T:igure 5: Dimmunix microbenchmark lock throughput

as a function of number of threads. Overhead is 0.6% to

) 4.5% for FreeBSD pthreads and 6.5% to 17.5% for Java.
7.2.2 Microbenchmarks

. : - . We observe that Dimmunix scales well: for up to 1024
To dissect Dimmunix's performance behavior and lJnOIer'threads the pthreads implementation exhibits maximum
stand how it varies with various parameters, we wrote 8 5o 0\,/erhepad while tr?e Java implementation maxi-
synchronization-intensive microbenchmark that creates 0 . P

N, threads and has them svnchronize on locks from andm 17.5%. The difference between the implementa-

toial of N, locks shared am%ng the threads: a lock is‘Filions is, we believe, primarily due to Java-specific over-

held for¢;,, time before being released and a new Iockheads (such as returning the C"?‘” stack_ as a vector c_)f
strings vs. mere pointers in C, or introducing extra mem

Is requested aftaf,., time; the delays are_lmplemer_neq ory fences around synchronizgdblocks, that pthreads
as busy loops, thus simulating computation done InSIdedoes not do). As the benchmark approaches the behavior
and outside the critical sections. The threads call multi- ' P

ple functions within the microbenchmark so as to build V€ €€ I real applications that perform I/O, we wou_Id
. S S expect the overhead to be further absorbed by the time
up different call stacks; which function is called at each

level is chosen randomly, thus generating a uniformlyﬁpegthbeesﬁvsvefvg lﬁfég:g:gg}?giﬁ;?;ﬁ ;ﬂovfkl'?r?rtguthf_
distributed selection of call stacks. yp ' 9

. put with the values oé;,, andd,,;,—Figure 6 shows the
We also wrote a tool that generates synthetic deadzg i for Java; pthreads results are similar.
lock history files containing? signatures, all of sizé; The overhead introduced by Dimmunix is highest
for a real appllca_uonH represents the number of d‘?ad' when the program does nothing but lock and unlock (i.e.,
lock/starvation signatures that have accumulated in the _, ~0). This is not surprising, because Dimmunix
history, and a signature’s size indicates the number o é?ercgéts fhe calls to Iock/unlocl,< and performs addi-
threads involved in that deadlock. Generated signature

it of rand tack binati f hroni onal computation in the critical path. lock/unlock are
consist of random stack combinations for sync ro.n'za'generallyfast operations that take a few machine instruc-
tion operations in the benchmark program—not signa

t f real deadlocks. but ded as if th tions to perform, so adding X0more instructions in the
ures ot real deadlocks, but avoided as It they were. path will cause the overhead to bexdOHowever, as the

Overhead as a function of the number of threads: interval between critical sectiong,(,;) or inside critical
Figure 5 shows how synchronization throughput (insections §;,,) increases, the throughput difference be-
terms of lock operations) varies with the number oftween the immunized vs. non-immunized microbench-
threads in Java and pthreads, respectively. We chosmark decreases correspondingly. For most common sce-
d;»=1 microsecond and,,;=1 millisecond, to simulate narios (i.e., inter-critical-section intervals of 1 nskic-

a program that grabs a lock, updates some in-memorgnd or more), overhead is modest.
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Note that a direct comparison of overhead between
Dimmunix and the baseline is somewhat unfair to 15 g
Dimmunix, because non-immunized programs deadlock € 19 | i
and stop running, whereas immunized ones continue run-°
ning and doing useful work.

Impact of history size and matching depth: The per- 8 16 32 64 128 256 512 1024
formance penalty incurred by matching current execu- Number of threads
tions against signatures from history should increase
with the size of the history (i.e., number of signatures) as Figure 8: Breakdown of overhead for Java Dimmunix.
well as the depth at which signatures are matched with
current stacks. Average length of a signature (i.e., aver- The results for Java are shown in Figure 8—the bulk of
age number of threads involved in the captured deadlockihe overhead is introduced by the data structure lookups
also influences matching time, but the vast majority ofand updates. For pthreads, the trend is similar, except
deadlocks in practice are limited to two threads [16], sothat the dominant fraction of overhead is introduced by
variation with signature size is not that interesting. the instrumentation code. The main reason is that the
In addition to the matching overhead, as more andchanges to the pthreads library interfere with the fastpath
more deadlocks are discovered in the program, the proef the pthreads mutex: it first performs a compare-and-
gram must be serialized increasingly more in order to beswap (CAS) and only if that is unsuccessful does it make
deadlock-safe (i.e., there are more deadlocks to avoid)—a system call. Our current implementation causes that
our overhead measurements include both effects. CAS to be unsuccessful with higher probability.
We show in Figure 7 the performance overhead intro-
duced by varying history size from 2-256 signatures. Th -
overhead introduced by history size and matching dept 3 FalsePostives

is relatively constant across this range, which means thakny approach that tries to predict the future with the pur-
searching through history is a negligible component ofygse of avoiding bad outcomes suffers from false posi-
Dimmunix overhead. tives, i.e., wrongly predicting that the bad outcome will
Breakdown of overhead: Having seen the impact of occur. Dimmunix is no exception. False positives can
number of threads, history size, and matching deptharise when signatures are matched too shallowly, or when
we profiled the overhead, to understand which parts ofhe lock order in a pattern depends on inputs, program
Dimmunix contribute the most. For this, we selec- state, etc. Our microbenchmark does not have the latter
tively disabled parts of Dimmunix and measured the locktype of dependencies.

head [%]
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In a false positive, Dimmunix reschedules threadsto Dimmunix’s 61.2% overhead at stack depth 1. There
in order to avoid an apparent impending deadlock thatvere 561,627 false positives with gate locks; in contrast,
would actually not have occurred; this can have negativédimmunix’s false positives ranged from 0 (at depth 10)
or positive effects on performance, the latter due to reto 573,912 (at depth 1). This is consistent with the fact
duced contention. We concern ourselves here with théhat, for stack depth 1, the two approaches are similar.
negative effects, which result from a loss in parallelism: As mentioned ing5.7, false positives can also dis-
Dimmunix serializes “needlessly” a portion of the pro- able functionality. We did not encounter such loss dur-
gram execution, which causes the program to run sloweting any of the thousands of executions of the various

In our microbenchmark, leb be the program’s maxi- server and desktop applications described in this paper,
mum stack depth (we sé1=10) and letk be the depth at  but Dimmunix does provide two resolutions for these sit-
which we match signature stacks in the avoidance codeiations: manual or automatic disabling of signatures.
We consider a true positive to be an avoidance triggered
by a match at deptlD; a false positive occurs when a g
signature is matched to depthbut would not match to 7.4 Resource Utilization
depthD. If k=D, there are no false positives, becauseThe final aspect of Dimmunix we wish to measure is
the signatures are matched exactly, butfD, then we  how many additional resources it requires, compared to
can get false positives, because several different runtimgon-immunized programs. Dimmunix uses CPU time
stacks produce a match on the same signature. for computation, memory for its data structures, and disk

In order to determine the overhead induced by falsespace for the history. The latter is insignificant: on the or-
positives, we compare the lock throughput obtainedder of 200-1000 bytes per signature, amounting to tens of
while matching at depths<D (i.e., in the presence of KBs for a realistic history. CPU overhead was virtually
false positives) to that obtained while matching at depthzero in all our measurements; in fact, delaying some of
D (no false positives)—the difference represents the timghe threads can even lead to negative overhead, through
wasted due to false positives. To measure the overheatie reduction of contention.
introduced by Dimmunix itself, separate from that in- |n measurements ranging from 2-1024 threads, 8-32
troduced by false positives, we measure the overheaghared locks, and a history of 64 two-thread signatures,
of Dimmunix when all its avoidance decisions are ig- the pthreads implementations incurred a memory over-
nored (thus, no false positives) and subtract it from thenead of 6-25 MB, and the Java implementation 79-127
baseline. Calibration of matching precision is turned off.MB. As described ir§5.6, we use preallocation to reduce
Figure 9 shows the results—as the precision of matchingerformance overhead, and the data structures them-
is increased, the overhead induced by false positives d&elves have redundancy, to speed up lookups. We expect
creases. There are hardly any false positives for depths ef Dimmunix version optimized for memory footprint to
8 and 9 because the probability of encountering a stackave considerably less memory overhead.
that matches at that depth and not at depth 10 is very low.

8 Using Dimmunix in Practice

64 threads, 8 locks, 64 sigs, siglen 2, §,,=1 msec, §,,=1 msec . . . .
100 - E— Dimmunix helps programs develop resistance against
False Positives mmmmm deadlocks, without assistance from programmers (i.e.,
80 | Dimmunix /3 | . ope .
= no annotations, no specifications) or from system users.
g 60 g Dimmunix can be used as a band-aid to complement all
£ ol | the other development and deployment tools for soft-
g ware systems, such as static analyzers and model check-
20 - 8 ers. In systems that have checkpoint facilities [18] or are
o il e B i i microrebootable [4], strong immunity can offer strong
1 2 3 4 5 6 7 8 9 10 guarantees at low cost; in other general-purpose systems,
Matching stack depth weak immunity lends progressively stronger resistance
to deadlocks, without incurring additional recoveries.
Figure 9: Overhead induced by false positives. Aside from achieving immunity, Dimmunix can also

be used as an alternative to patching and upgrading: in-
We ran this same experiment using the techniquestead of modifying the program code, it can be “patched”
based on gate locks [17], the best hybrid dynamic/stati@gainst deadlock bugs by simply inserting the corre-
deadlock avoidance we know of. To avoid the 64 deadsponding bug’s signature into the deadlock history and
locks represented in history, 45 gate locks were requiredasking Dimmunix to reload the history; the target pro-
since [17] does not use call stacks, matching depth igram need not even be restarted. Similarly, vendors
irelevant. Throughput overhead with gate locks wascould ship their software with signatures for known
70%—more than an order of magnitude greater thardeadlocks, as an alternative to fixing them in the released
Dimmunix’s 4.6% overhead for stack deptl® and close  code when doing so is too expensive or risky.
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