
Data Structure Repair Using Goal-Directed Reasoning

Brian Demsky and Martin Rinard
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT
Data structure repair is a promising technique for enabling
programs to execute successfully in the presence of otherwise
fatal data structure corruption errors. Previous research in
this field relied on the developer to write a specification to
explicitly translate model repairs into concrete data struc-
ture repairs, raising the possibility of 1) incorrect transla-
tions causing the supposedly repaired concrete data struc-
tures to be inconsistent, and 2) repaired models with no
corresponding concrete data structure representation.

We present a new repair algorithm that uses goal-directed
reasoning to automatically translate model repairs into con-
crete data structure repairs. This new repair algorithm elim-
inates the possibility of incorrect translations and repaired
models with no corresponding representation as concrete
data structures.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Design, Languages, Reliability

Keywords
Data Structure Repair, Data Structure Invariants

1. INTRODUCTION
Programs usually assume that the data structures that

they manipulate are consistent. A software error or some
other event may cause the data structures to become incon-
sistent. Data structure repair is a useful technique that can

∗This research was supported in part by a fellowship from
the Fannie and John Hertz Foundation, DARPA Coop-
erative Agreement FA 8750-04-2-0254, DARPA Contract
33615-00-C-1692, the Singapore-MIT Alliance, and the NSF
Grants CCR-0341620, CCR-0325283, and CCR-0086154.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05,May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0002 ...$5.00.

restore the consistency properties and enable the program
to continue to execute successfully. Our previous work [7]
introduced a model-based approach in which the developer
writes a specification to identify the required data structure
consistency properties.

This model-based approach involves two views: a con-
crete view of the data structures as they are represented
in the memory and an abstract view that models the data
structures as sets of objects and relations between objects.
A set of model definition rules translates the concrete data
structures to the sets and relations in the abstract model.
The key consistency constraints are expressed using the sets
and relations in this model. This approach provides several
key benefits: 1) it provides a mechanism for separating ob-
jects that play different conceptual roles in a computation
into different sets — the developer can then specify differ-
ent constraints to apply to each of these different sets, 2) the
model definition rules provide a clean, simple mechanism to
specify a traversal of a data structure, and 3) it provides a
means to manage the complexity of data structure consis-
tency properties — the model definition rules encapsulate
the data structure representation complexity and the model
consistency constraints encapsulate the complexity inherent
in the consistency property. There are three challenges in
making this approach effective: 1) maintaining a correspon-
dence between the abstract model and the concrete data
structures, 2) generating a set of repairs that is sufficient to
repair any error, and 3) ensuring that all repairs terminate.

Our previous work [7] performed repairs on the abstract
model and relied on a set of user-defined external consistency
constraints to faithfully translate the repaired model state to
the data structures. While this approach automates much of
the repair process, the presence of the external consistency
constraints has several undesirable properties:

• An error in the external consistency constraints may
cause the repair algorithm to incorrectly translate the
model repair to the data structures. In this case the
data structures would remain inconsistent after the re-
pair.

• The repair algorithm may generate abstract models
that cannot be represented as concrete data structures.
To avoid this possibility, the developer may need to
add additional model constraints that prevent the re-
pair process from constructing such a model.

Our new algorithm replaces the external consistency con-
straints with a goal-directed reasoning algorithm on the model

definition rules. The new approach has several advantages
over the previous approach:

• It eliminates the effort involved in writing the external
consistency constraints.

• It eliminates the possibility of errors in the external
consistency constraints and guarantees that repairs are
correctly translated from the model to the data struc-
tures.

• It eliminates the possibility that the repair algorithm
may produce a model with no corresponding concrete
data structure representation.

1.1 Repair Algorithm Generator
A set of model definition rules defines a translation from

the concrete data structures to an abstract representation.
Each rule consists of a quantifier, a guard, and an inclusion
constraint that specifies an object (or a tuple) to include in
a set (or relation). These rules place objects into sets based
on criteria such as the values of the fields in the object and
the reachability of the object from other objects. The key
consistency constraints are expressed using the sets and re-
lations in the abstract model. Our specification language
includes constraints between the values of variables and ob-
ject fields, on the referencing relationships between objects,
and on the absence or presence of certain objects in a set.

During the repair process, the repair algorithm may be
forced to choose between several alternatives — in general,
there may be several distinct sets of repair actions that cause
a given violated constraint to become satisfied, several dis-
tinct sets of data structure updates that implement a given
model repair action, and several different ways to eliminate
any undesirable side effects of the data structure updates.
A naive repair strategy will often fail to terminate — it can
enter a loop in which it repeatedly repairs a violated con-
straint, only to have the constraint repeatedly invalidated as
a side effect of a subsequent action taken to repair another
constraint violated as a side effect of the first repair action.

Our compiler uses a repair dependence graph to reason
about the termination of the generated repair algorithm.
The nodes in this graph represent constraints, repair ac-
tions, and changes to the sets and relations in the abstract
model. The edges capture dependences between the con-
straints, repair actions, and the abstract model. The ab-
sence of certain kinds of cycles in the graph ensures that all
repairs will terminate. In addition to analyzing the graph
to determine termination, our compiler uses reasoning and
search to remove (subject to graph certain consistency con-
ditions) nodes to eliminate undesirable cycles. These re-
movals further constrain the actions of the generated repair
algorithm and ensure that the repair algorithm will never
choose a repair strategy that leads to an infinite repair loop.

Figure 1 shows a graphical overview of the repair process.
The square boxes in the figure correspond to data struc-
tures. The rounded boxes correspond to abstract models.
The arrows from the square boxes to the rounded boxes
map a data structure to the corresponding abstract model.
When invoked, the generated repair algorithm constructs
the abstract model and examines it to find any inconsisten-
cies. The arrow labelled “Model Construction” in Figure 1
shows this step. Whenever the repair algorithm discovers
an inconsistency, it selects an appropriate model repair ac-
tion to repair the inconsistency in the model. The arrow

101010101
011101000
101011100
101110010

101010101
011101000
101011100
101110010

101010101
011101000
101011100
101110010

Data Structure
 Update A'

Model Repair
 Action A

Model
Construction

Inconsistent
 Model

 Inconsistent
Data Structure

Repaired
 Model

 Repaired
Data Structure

. . . .

. . . .

Model Repair/
Update Pair

Model
Reconstruction

Figure 1: Overview of Repair Process

labelled “Model Repair Action A” in the figure shows the
model repair action step.

The compiler uses goal-directed reasoning to statically
map model repair actions to data structure updates. To im-
plement a model repair that removes an object from a given
set, for example, the compiler analyzes the model definition
rules to find all the rules whose inclusion constraint may
cause the object to be inserted into the set. The compiler
then analyzes the guards and the quantifiers of the rules to
extract a set of data structure properties whose satisfaction
ensures that no rule specifies that the object should be a
member of that set. Finally, the compiler generates code
to apply (as necessary) a set of data structure updates that
force all of these properties to hold. The effect is to remove
the object from the set.

After performing the model repair action, the repair al-
gorithm performs the corresponding data structure update.
The arrow labelled “Data Structure Update A’ ” in the fig-
ure shows this step. Note that there may also be potentially
undesirable side effects which cause additional inconsisten-
cies. To ensure that the model reflects these side effects, the
repair algorithm must rebuild the abstract model. In Fig-
ure 1, the curved arrow labelled “Model Reconstruction”
illustrates this model reconstruction. The generated repair
algorithm repeats this process to repair all of the inconsis-
tencies.

1.2 Contributions
This paper makes the following contributions:

• Basic Repair Approach: It presents an approach
that allows the developer to use an abstract model
to express important data structure consistency prop-
erties. Violations of these properties are repaired by
automatically translating model repairs back through
the model definition rules to automatically derive a set
of data structure updates that implement the repair.

• Repair Translation: It presents an algorithm that
uses goal-directed reasoning to derive a set of data
structure updates that implement the repair.

• Repair Dependence Graph: It introduces the re-
pair dependence graph, which captures dependences
between consistency constraints, repair actions, and
the abstract model. This graph supports formal rea-
soning about the effect of repairs on both the model
and the data structures. It also presents a set of con-

structure Block {
reserved byte[d.s.blocksize];

}
structure Disk {

Block b[d.s.numberofblocks];
label b[0]: Superblock s;

}
structure Superblock subtype of Block {

int numberofblocks;
int numberofinodes;
int blocksize;
int rootdirectoryinode;
int blockbitmapblock;
int inodetableblock;

}
structure BlockBitmap subtype of Block {

bit blockbitmap[d.s.numberofblocks];
}
structure InodeTable subtype of Block {

Inode itable[d.s.numberofinodes];
}
structure DirectoryBlock subtype of Block {

DirectoryEntry de[d.s.blocksize/128];
}
structure Inode {

int block[12];
int referencecount;

}
structure DirectoryEntry {

byte name[124];
int inode;

}
Disk *d;

Figure 2: Structure Definitions

ditions on the repair dependence graph. These condi-
tions identify a class of cycles whose absence guaran-
tees that all repairs will successfully terminate. It also
presents an algorithm that removes nodes in the graph
to eliminate problematic cycles. These removals pre-
vent the repair algorithm from choosing repair strate-
gies that may not terminate.

• Experience: It presents our experience using data
structure repair on several applications. Our experi-
ence indicates that data structure repair enables our
applications to recover from data structure corruption
errors to continue to execute successfully.

2. EXAMPLE
We next present a simple file system example that illus-

trates the operation of our repair algorithm.

2.1 Consistency Specification
The data structure consistency specification consists of

two parts: a part that specifies a translation from the con-
crete data structures into an abstract model, and a part
that specifies consistency constraints that this model must
satisfy. The translation part for our example consists of the
data structure definitions in Figure 2 (these definitions spec-
ify the physical layout of the data structures that comprise
the file system), the set and relation definitions in Figure 3
(these definitions specify the sets and relations in the model
of the file system), and the model definition rules in Fig-
ure 4 (these rules specify how to construct the model from
the data structures).

We now examine the data structure definitions in Figure 2
in more detail. The Disk structure definition specifies that
the disk consists of an array of Block structures with the
Superblock being stored in the first block. The superblock
defines the layout of the disk. The block bitmap contains
a bit for each block in the file system. If the block is used,
the bit is set to true.

The set declarations in Figure 3 are all of the form set S
of T : S1| . . . |Sn. Such a declaration specifies that the set
S in the model contains objects of type T (these types are
either base types such as int or structures) and that the sets
S1, . . . , Sn are subsets of the set S. The relation declarations
relation R : S1 -> S2 specifies that the relation R relates
the objects in set S1 to the objects in set S2.

Conceptually, the model definition rules in Figure 4 spec-
ify how to traverse the data structures to build the sets and
relations in the model. Each rule specifies quantifiers that
identify the scope of the variables in the body. The body
contains a guard and an inclusion condition. The inclusion
condition specifies an object (or tuple) that must be in a
specific set (or relation) if the guard is true. The least fixed
point of the model definition rules applied to the concrete
data structure generates the abstract model. The model def-
inition rules for the example are given in Figure 4. The first
model definition rule constructs the SuperBlock set, and the
second constructs the BlockBitmapBlock set.

The model constraints in Figure 5 identify the consis-
tency properties that the file system model must satisfy.
The first several constraints use the size predicate to spec-
ify that several sets (BlockBitmapBlock, InodeTableBlock,
RootDirectoryInode) must contain exactly one object. The
next constraints specify properties that the objects in a
given set must satisfy. For example, the constraint for i

in UsedInode, i.ReferenceCount=size(InodeOf.i) spec-
ifies that the reference count for each used inode must reflect
the number of directory entries that refer to that inode 1.
In general, each model constraint is a first-order logical for-
mula consisting of a sequence of quantifiers followed by a
quantifier-free boolean formula of basic propositions.

2.2 Repair Algorithm
The generated repair algorithm finds violations of the con-

sistency constraints in the model, synthesizes model repairs
that eliminate the consistency violations, then implements
these repairs using updates on the concrete data structures.
It then repeats the model construction, consistency violation
detection, model repair, and data structure repair process
until there are no more consistency violations.

We illustrate the operation of the repair algorithm by dis-
cussing the steps it takes to repair a file system whose su-
perblock has an out of bounds bitmap block index. The
second model definition rule in Figure 4 inserts the bitmap
block into the set BlockBitmap. But because the bitmap
block index d.s.blockbitmapblock is out of bounds, the
rule does not insert a block into the BlockBitmap set. The
resulting model therefore violates the first constraint from
Figure 5. To repair this violation, the repair algorithm trans-
fers a block from the FreeBlock set (the developer specifies
this set as the source of new Blocks to insert into other sets)
into the BlockBitmap set.

1The expression InodeOf.i denotes the image of i under
the inverse of the InodeOf relation — in other words, the
set of all objects that InodeOf relates to i.

set Block of Block : UsedBlock | FreeBlock
set UsedBlock of Block : SuperBlock |

FileDirectoryBlock | InodeTableBlock | BlockBitmap
set FileDirectoryBlock of Block : DirectoryBlock |

FileBlock
set UsedInode of Inode : FileInode | DirectoryInode
set DirectoryInode of Inode : RootDirectoryInode
set DirectoryEntry of DirectoryEntry
relation InodeOf: DirectoryEntry -> UsedInode
relation Contents: UsedInode -> FileDirectoryBlock
relation BlockStatus: Block -> int
relation ReferenceCount: UsedInode -> int

Figure 3: Set and Relation Definitions

true => d.s in SuperBlock
true => d.b[d.s.blockbitmapblock] as BlockBitmap

in BlockBitmap
true => d.b[d.s.inodetableblock] as InodeTable

in InodeTableBlock
for itb in InodeTableBlock, true =>

itb.itable[d.s.rootdirectoryinode] in
RootDirectoryInode

for j=0 to d.s.numberofblocks-1,
!(d.b[j] in UsedBlock) => d.b[j] in FreeBlock

for j=0 to d.s.numberofblocks-1,
for bbb in BlockBitmap, true =>
<d.b[j],bbb.blockbitmap[j]> in BlockStatus

for di in DirectoryInode, for j=0 to
(d.s.blocksize/128-1), for k=0 to 11,
true => (d.b[di.block[k]] as
DirectoryBlock).de[j] in DirectoryEntry

for e in DirectoryEntry,for itb in InodeTableBlock,
e.inode!=0 => itb.itable[e.inode] in FileInode

for e in DirectoryEntry,for itb in InodeTableBlock,
e.inode!=0 => <e, itb.itable[e.inode]> in InodeOf

for j in UsedInode, true =>
<j,j.referencecount> in ReferenceCount

for i in UsedInode, for j=0 to 11,
!(i.block[j]=0) => d.b[i.block[j]] in FileBlock

for i in UsedInode, for j=0 to 11,
!(i.block[j]=0) => <i,d.b[i.block[j]]> in Contents

Figure 4: Model Definition Rules

size(BlockBitmap)=1
size(InodeTableBlock)=1
size(RootDirectoryInode)=1
for u in UsedBlock, u.BlockStatus=true
for f in FreeBlock, f.BlockStatus=false
for i in UsedInode, i.ReferenceCount=size(InodeOf.i)
for b in FileDirectoryBlock,size(Contents.b)=1

Figure 5: Model Constraints

To generate an update that implements this transfer, the
compiler analyzes the model definition rule that constructs
the BlockBitmap set to determine that all objects in this set
come from the array d.b at offset d.s.blockbitmapblock.
As a result, the repair algorithm can implement the trans-
fer of the block into the BlockBitmap set by calculating
the block’s index in d.b and setting d.s.blockbitmapblock

equal to this value. To choose an appropriate index, the
algorithm analyzes the rule that constructs the FreeBlock

set to determine that all blocks in the FreeBlock set are from
the array d.b, and therefore it can set d.s.blockbitmapblock
to the index j of a block d.b[j] in the FreeBlock set. A
side effect of the data structure update is that the block be-
comes a member of the set UsedBlock of used blocks, which
removes the block from the FreeBlock set.

After this update, the repair algorithm rebuilds the ab-
stract model and discovers several violations of the fourth

and fifth constraints in Figure 5. These violations occur be-
cause the new bitmap block does not correctly reflect which
blocks are free and which blocks are in use. The repair
algorithm repairs each of these violations by updating the
incorrect tuples in the BlockStatus relation to reflect the
contents of the UsedBlock and FreeBlock sets — if a block u

is used, the repair algorithm ensures that <u,true> (and no
other tuple with u as its first component) is in BlockStatus,
and similarly for blocks in the set FreeBlock.

The translation of the model repairs to the concrete data
structures occurs as the model is rebuilt. Whenever the
sixth rule in Figure 4 attempts to add an incorrect tuple to
the BlockStatus relation, the repair algorithm performs a
data structure update that sets the corresponding element
(bbb.blockbitmap[j]) in the concrete data structure to the
correct value. After all of these updates are performed, the
repair algorithm rebuilds the model and finds that all of the
model constraints are satisfied. In this case, the repair algo-
rithm has used the redundant information in the file system
to regenerate the bitmap block without losing information.
In general, the repair algorithm will produce a consistent
data structure that is heuristically close to the original in-
consistent data structure. Of course, the new consistent data
structure may differ from the data structure that a (hypo-
thetical) correct program would have produced, especially if
the inconsistent data structure contains less information.

2.3 Repair Algorithm Generation
As illustrated in the preceding section, a successful repair

algorithm must: 1) traverse the model to find an inconsis-
tency, 2) identify the appropriate model repair action, 3)
perform the data structure updates to implement the model
repair action, 4) repeat to eliminate any remaining or newly
introduced inconsistencies, and 5) terminate. As described
above, the algorithm uses goal-directed reasoning to derive
the concrete data structure updates from the model defini-
tion rules. Goal-directed reasoning removes the need for the
external consistency constraints, and enables the repair algo-
rithm to guarantee that the repaired data structures satisfy
the consistency specification.

A basic issue in repair termination is that repairing one
constraint may cause another to be violated. If the repair of
the newly violated constraint, in turn, causes the originally
repaired constraint to become violated, there is an infinite
repair loop. The compiler uses a repair dependence graph
to reason about termination (see Section 6). The edges in
this graph capture any invalidation effects that the repair
of one constraint may have on other constraints; the ab-
sence of cycles in this graph guarantees that all repairs will
terminate.

3. OVERVIEW OF REPAIR ALGORITHM
Our compiler generates repair algorithms that use the fol-

lowing basic repair strategy:

1. Initial Model Construction: The repair algorithm
initially constructs an abstract model as described in
Section 3.1.

2. Inconsistency Detection: The repair algorithm eval-
uates the model constraints. If the repair algorithm
finds a violation, it proceeds to the next step. Oth-
erwise the data structure is consistent and the repair
process exits.

3. Conjunction Selection: The repair algorithm se-
lects one of the conjunctions in the disjunctive normal
form of the violated constraint. It will ensure that the
constraint holds by repairing the basic propositions in
this conjunction. The conjunction choice can be con-
trolled by the developer or by a cost function that
assigns a cost to the repair of each basic proposition.

4. Model Repair: For each violated basic proposition
in the conjunction, the repair algorithm performs an
abstract repair on the model. If an object (or a tu-
ple) is added to a set (or a relation) or a tuple in a
relation is modified, the repair algorithm immediately
performs the corresponding data structure update. If
an object (or tuple) is to be removed from a set (or a
relation), the repair algorithm registers the data struc-
ture updates that remove the particular object. Step 6
will perform the corresponding data structure updates
as it rebuilds the model. Step 5 performs all other
updates.

5. Data Structure Updates: The repair algorithm must
perform data structure updates to implement the model
repair. Section 3.2.2 describes how the compiler uses
goal-directed reasoning to generate a set of data struc-
ture updates to implement the model repair.

6. Model Update: The repair algorithm performs the
model construction described in Step 1. Whenever an
object (or tuple) is added to a set (or relation), the
repair algorithm checks if the object (or tuple) was
in the set (or relation) in the previous version of the
model from Step 4. If the object (or tuple) was not in
the set (or relation), the repair algorithm checks if a
specific data structure update has been registered for
the given object (or tuple) and set (or relation). If
one has, the repair algorithm performs the given data
structure update as described in Step 5. Otherwise
it checks if a compensation update exists for the rule
responsible for the addition of the new object (or tu-
ple). If one exists, the repair algorithm performs the
compensation update in the same manner as Step 5. If
any updates are performed, the model is recomputed.
Once this recomputation has completed, the repair al-
gorithm deletes the old model and deletes the updates
registered to objects or tuples. Then the repair algo-
rithm proceeds to Step 2.

3.1 Model Construction
The model definition rules define a translation from the

concrete data structures to the abstract model. The model
construction phase constructs the abstract model by com-
puting the least fixed point of the model definition rules
applied to the concrete data structure. Finally, the model
construction algorithm keeps track of the memory layout to
ensure that the data structures are physically well formed
(that they reside in allocated memory and do not illegally
overlap).

3.2 Repairing a Single Constraint
The inconsistency detection algorithm iterates over all val-

ues of the quantified variables in the model constraints, eval-
uating the body of the constraint for each possible combi-
nation of the values. If the body evaluates to false, the

algorithm has detected a violation and has computed a set
of bindings for the quantified variables that make the con-
straint false. The compiler converts the constraint to dis-
junctive normal form (disjunctions of conjunctions of basic
propositions), and performs steps 3 through 5 in the repair
algorithm description from Section 3.

At this point the algorithm has repaired the violated con-
straint. However, the updates may have violated other con-
straints. The repair algorithm therefore rebuilds the model
and repairs any new or remaining violated constraints.

3.2.1 Model Repair Actions
The model repair action taken to repair a violated basic

proposition depends on the form of the proposition. For
size propositions, such as size(BlockBitmap)=1, the gen-
erated repair algorithm simply adds or removes objects (or
tuples) from the appropriate set (or relation) to satisfy the
proposition. For equality (or inequality) propositions, such
as i.ReferenceCount=size(InodeOf.i), the generated re-
pair algorithm calculates a value that makes the proposi-
tion true, then assigns the value to the left hand side of the
proposition. For inclusion propositions of the form V in SE
the generated repair algorithm simply adds or removes the
specified object (or tuple) to or from the specified set (or
relation).

3.2.2 Data Structure Updates
We next discuss how the compiler uses goal-directed rea-

soning to translate model repairs into actions that correctly
update the concrete data structures. Given a model repair
that adds an object to a set (or a tuple to a relation), the
compiler finds all model definition rules with an inclusion
constraint that may cause the object (or tuple) to be added
to the set (or relation). The goal is to synthesize a set of
data structure updates that cause the guard of one of these
rules to be satisfied, which in turn ensures that the object
(or tuple) is in the set (or relation).

We assume the guards are in disjunctive normal form.
The compiler chooses a rule, chooses one of the guards’ con-
junctions, then generates updates to the data structure that
ensure that all of the propositions in the conjunction are
true. The specific update depends on the form of the propo-
sition; eg. for inequality propositions such as v.f < E, the
update computes E to generate a value that satisfies the
proposition, then assigns this value to v.f.

The compiler uses a similar strategy to implement repairs
that remove an object (or tuple) from a set (or relation).
It chooses a set of propositions that includes at least one
proposition from each conjunction of each rule that could
cause the object (or tuple) to appear in the set (or rela-
tion). It then generates actions that falsify the propositions
in this set. The compiler statically verifies that these sets of
propositions will not be contradictory. Finally, the compiler
checks that there is no dependence cycle between proposi-
tions that use and define the same struct field or variable.
The compiler generates a data structure update that satis-
fies the corresponding set of propositions in a dependence-
preserving order.

3.2.3 Compensation Updates
Consider a set of concrete data structure updates whose

intended effect is to add an object to a set in the abstract
model. These updates satisfy the guard of the model defini-

tion rule that adds the object to the set. But these updates
may also have unintended side effects. For example, they
may affect the guards of other model definition rules, which
may in turn cause other undesirable changes to the model. It
is sometimes possible to generate more precise updates that
prevent these changes by performing additional compensa-
tion updates that falsify the guards in the model definition
rules that caused the additions to take place.

We therefore augment our translation algorithm to ana-
lyze the model definition rules to, when possible, automati-
cally generate additional compensation updates to eliminate
the undesirable side effects. When a model definition rule
may be affected by a data structure update, our algorithm
examines that rule to derive additional updates that restore
its original value. The net effect is to improve the precision
of the translation by synthesizing larger, more precise data
structure updates for each model repair.

3.2.4 New Objects
A repair action may need a source of new objects to add

to sets to bring them up to the specified size or to serve as
wrapper objects. As illustrated in Section 2, other sets (as
specified in the set and relation definition) are one potential
source. For primitive types, such as integers, the action
can simply synthesize new values. For structs, memory
allocation primitives are a potential source of new objects.
We allow the developer to specify which source to use and,
in the absence of such guidance, use heuristics to choose a
source.

4. DEVELOPER CONTROL OF REPAIRS
The repair algorithm often has multiple options for how to

satisfy a given constraint; these options may translate into
different repaired data structures. We recognize that some
repair actions may produce more desirable data structures
than other repair actions, and that the developer may wish
to influence the repair process. We have therefore provided
the developer with several mechanisms that he or she can
use to control how the repair algorithm chooses to repair an
inconsistent data structure.

The developer can specify that the repair algorithm should
not modify certain fields, sets, or relations. The repair algo-
rithm can then provide feedback that characterizes the in-
consistencies that can be repaired without modifying these
elements. Some repair actions involve adding an object to a
set. The developer can specify the source of the object; typi-
cal sources are a memory allocator or another set of objects.
We similarly allow the developer to control the source of tu-
ples added to relations. Finally, the developer can provide
hand-coded routines to repair certain consistency violations.

5. THE REPAIR DEPENDENCE GRAPH
The repair algorithm constructs a repair dependence graph

〈N, E〉 to reason about the termination of the repair algo-
rithm on a system of constraints. The nodes represent model
conjunctions, repair actions, and model definition rules. The
edges capture dependences between the model constraints,
repair actions, model definition rules, and choices in the re-
pair process.

5.1 Nodes in Role Dependence Graph
The graph contains the following nodes:

• Model conjunction nodes: In disjunctive normal
form, each model constraint Ci is of the form Ci =
Qi1, ..., Qim

∨jmax
j Cij . There is one node Nij for each

conjunction Cij in the model constraint Ci and an ad-
ditional node Nij′ , where j′ = jmax + l, for each quan-
tifier Qil in the model constraint.

• Model repair nodes: For each basic proposition
Cijk in each conjunction Cij there is a set of nodes⋃

l{Aijkl} corresponding to the model repair actions
that the repair algorithm may use to repair that basic
proposition. There are also two model repair nodes Ar

for each set and relation, one to model insertions, and
the other removals.

• Data structure update nodes: There is a set of
data structure update nodes

⋃
m{Rijklm} for each model

repair node Aijkl in the graph. These update nodes
represent the concrete data structure updates that im-
plement the repair. There is also a similar set of nodes⋃

s{Rrs} for each model repair node Ar.

• Increase and decrease scope nodes: For each model
definition rule Mw, there is an increase scope node Sw

and a decrease scope node Fw. These nodes repre-
sent the side effects that an update has on the model
definition rules — in particular, that a data structure
update may increase the scope of a model definition
rule (i.e., cause the model definition rule to add a new
object to a set or a new tuple to a relation) or de-
crease the scope of a model definition rule (i.e., cause
the removal of an object from a set or a tuple from
relation).

• Consequence and compensation nodes: For each
model definition rule Mw, there is a pair of rule con-
sequence nodes CwT and CwF that represent the con-
sequences of increasing or decreasing the scope of a
given model definition rule. For each model defini-
tion rule there is a set of compensation update nodes⋃

z{Rwz} that represent compensation updates that
may be used to prevent the undesired scope increase
of a model definition rule.

5.2 Edges in the Graph
The edges E in the repair dependence graph represent

how the model and data structure repairs may affect other
parts of the model and data structures. The important de-
pendence chains flow 1) from repaired conjunctions to con-
junctions that the repairs may falsify, 2) from repaired con-
junctions to quantifiers whose scope the repair may increase
or decrease, 3) from data structure updates to conjunctions
that the update may falsify, and 4) from data structure up-
dates to quantifiers whose scope the repair may increase or
decrease.

For example, there is an edge 〈Nij , Aijkl〉 ∈ E from each
model conjunction node Nij to each abstract repair node
Aijkl that may repair one of the basic propositions in the
conjunction. There are other edges to capture dependences
between each of the different classes of nodes. These are
described in more detail in our technical report [8].

5.2.1 Model Repair Effects
There must be an edge from a model repair node to a

conjunction node if the model repair may falsify the con-

junction. The compiler uses a procedure that determines if
the repair of a first basic proposition may falsify a second
basic proposition (this proposition is taken from the con-
junction that the repair of the first proposition may falsify).
Our technical report [8] gives the complete set of rules used
to determine if the repair of one proposition may falsify a
second.

5.2.2 Data Structure and Compensation Updates
Performing an update changes the concrete data struc-

ture. This change may cause additional increases or de-
creases in the scopes of the model definition rules. The re-
pair dependence graph must contain edges from data struc-
ture update and compensation update nodes that reflect
these changes. The default rule is that updating a field
f in the concrete data structures may either decrease or in-
crease the scope of any model definition rule that uses f,
requiring an insertion of a corresponding edge in the repair
dependence graph. The algorithm implements exceptions to
this rule (and omits the corresponding edges in these cases)
for initial additions to a set, updates that effect only a sin-
gle binding of a model definition rule, and recursive data
structures. These exceptions are described in detail in our
technical report [8].

5.2.3 Scope Increases and Decreases
Increases or decreases in the scope of a model definition

rule may change the abstract model. In particular, if the
change in scope of a model definition rule causes an object
(or tuple) to be added to or removed from a set (or rela-
tion), the resulting change in the model may falsify model
constraints that depend on the set (or relation) or cause
additional changes in the scopes of other model definition
rules. The repair dependence graph contains edges that ac-
count for these possibilities. Our technical report [8] gives
the complete set rules for adding edges.

6. TERMINATION
By construction, the edges in the graph capture all of the

repair dependences of the repair algorithm. As a result,
the transitive closure of the edges from a conjunction node
captures all of the possible effects of repairing that model
conjunction. Any infinite repair therefore shows up as a
cycle.

The repair dependence graph must be acyclic with the
exception of cycles that solely contain scope decrease and
consequence nodes, cycles that solely contain scope increase
and consequence nodes, or cycles that are not reachable
from the model conjunction nodes 2. The repair algorithm
may remove model conjunction nodes, data structure update
nodes, and consequence/compensation update nodes to sat-
isfy these cyclity constraints. After modifying the graph,
the algorithm never uses deleted repairs. The final graph
must satisfy the following conditions in order to ensure that
repairs exist for violated constraints: 1) there is at least one
model conjunction node for each constraint in the model, 2)
each abstract repair node has at least one edge to a data
structure update, and 3) each scope increase or decrease

2Note that these cycles do not affect termination as no work
is associated with scope decrease cycles, scope increase cy-
cles can only discover as many objects as exist in the heap,
and the actions in unreachable cycles are never used.

node has at least one edge to a consequence or compensa-
tion update node.

7. EXPERIENCE
We next discuss our experience using our repair tool to

detect and repair inconsistencies in data structures from sev-
eral applications: a word processor, a parallel x86 emulator,
an air-traffic control system, a Linux file system, and an
interactive game.

7.1 Methodology
We implemented our data structure repair algorithm. This

implementation consists of approximately 20,800 lines of
Java code and C code; the implementation compiles speci-
fications into C code that performs the consistency checks
and (if necessary) repairs the data structures. The source
code for the tool and sample specifications are available at
http://www.cag.lcs.mit.edu/∼bdemsky/repair. We ran the
applications (with the exception of the parallel x86 emula-
tor) on an IBM ThinkPad X23 with a 866 Mhz Pentium III
processor, 384 MB of RAM, and RedHat Linux 8.0.

For each application, we identified important consistency
constraints and developed a specification that captured these
constraints. We also obtained a workload that caused the
application to generate corrupt data structures. When pos-
sible, the workload triggered a known programming error.
In other cases, we used fault insertion to mimic either the
effect of a previously corrected programming error or a com-
mon data structure inconsistency source. We then compared
the results of running a chosen workload with and without
inconsistency detection and repair.

7.2 AbiWord
AbiWord is a full-featured word processing program avail-

able at www.abisource.com. It consists of over 360,000 lines
of C++ code, and can import and export many file formats
including Microsoft Word documents. It uses a piece ta-
ble data structure to internally represent documents. The
piece table contains a doubly-linked list of the document
fragments. A consistent piece table contains a reference to
both the head and the tail of the doubly linked list of docu-
ment fragments. A consistent fragment contains a reference
to the next fragment in the list and a reference to the pre-
vious fragment in the list. Furthermore, a consistent list
of fragments contains both a section fragment and a para-
graph fragment. We developed a specification for the piece
table data structure. Our specification consists of 94 lines,
of which 70 contain structure definitions. 3

A bug in version 0.9.5 (and all previous versions) of Abi-
Word causes AbiWord to attempt to append text to a piece
table which lacks a section fragment or a paragraph frag-
ment. This bug is triggered by importing certain valid Mi-
crosoft Word documents, causing AbiWord to fail with a
segmentation violation when the user attempts to load the

3To reduce specification overhead, we developed a structure
definition extraction tool that uses debug information in the
executable to automatically generate the structure defini-
tions. This tool works for any program that can be compiled
with Dwarf-2 debugging information. For AbiWord, we used
this tool to automatically generate all of the data structure
definitions. The total specification effort for this application
therefore consisted of 24 lines of model definition rules and
model constraints.

document. We obtained such a document and used our sys-
tem to enhance AbiWord with data structure repair as de-
scribed in this paper. Our experimental results show that
data structure repair enables AbiWord to successfully open
and manipulate the document. Further inspection reveals
that loading this document causes AbiWord to attempt to
append text to an (inconsistent) empty fragment list. Our
repair algorithm detects the attempt to append text to the
empty list and repairs the inconsistency by adding a section
fragment and a paragraph fragment, breaking any cycles
in the fragment list, connecting the fragments using their
next fields, pointing the prev field of each fragment to the
previous fragment, and redirecting the head pointer to the
beginning of the list and the tail pointer to the end of the
list. The result of this repair is that AbiWord is able to
successfully append the text to the list and continue on to
read and edit Word documents without the loss of any in-
formation. Without repair, AbiWord fails as it attempts to
read in the document.

7.3 Parallel x86 emulator
The parallel x86 emulator is a software-based x86 emula-

tor that runs x86 binaries on the MIT RAW machine [15].
The x86 emulator uses a tree data structure to cache trans-
lations of the x86 code. To efficiently manage the size of the
cache, the emulator maintains a variable that stores the cur-
rent size of the cache. A bug in the tree insertion method,
however, causes (under some conditions) the cache manage-
ment code to add the size of the inserted cache item to this
variable twice. When this item is removed, its size is sub-
tracted only once. The net result of inserting and removing
such an item is that the computed size of the cache becomes
increasingly larger than the actual size of the cache. The
end result is that the emulator eventually crashes when it
attempts to remove items from an empty cache.

We developed a specification that ensures that the com-
puted size of the cache is correct. Our specification consists
of 110 lines, of which 90 contain structure definitions. Our
test workload ran gzip on the x86 emulator. Without repair,
the emulator stops with a failed assertion. With repair, the
emulator successfully executes gzip.

7.4 CTAS
The Center-TRACON Automation System (CTAS) is a

set of air-traffic control tools developed at the NASA Ames
research center [1]. The system is designed to help air traf-
fic controllers visualize and manage complex air traffic flows.
The current source code consists of over 1 million lines of C
and C++ code. Versions of this source code are deployed in
the continental United States and are in daily use. CTAS
maintains data structures that store aircraft data. Our ex-
periments focus on the objects that store the flight plans.
These flight plan objects contain both an origin and desti-
nation airport identifier. The software uses these identifiers
as indices into an array of airport data structures. Flight
plans are transmitted to CTAS as a long character string.
The structure of this string is somewhat complicated, and
parsing the flight plan string is a challenging activity.

Our fault insertion methodology attempts to mimic er-
rors in the flight plan processing that produce illegal values
in the flight plan data structures. When the program uses
these illegal values to access the array of airport data, the
array access is out of bounds, which typically leads to the

program failing because of an addressing error. Our speci-
fication captures the constraint that the flight plan indices
must be within the bounds of the airport data array. The
specification itself consists of 101 lines, of which 84 lines
contain structure definitions. The primary challenge in de-
veloping this specification was reverse engineering the source
to develop an understanding of the data structures. Once we
understood the data structures, developing the specification
was straightforward.

We used a recorded midday radar feed from the Dallas-
Ft. Worth center as a workload. Without repair, CTAS
fails because of an addressing exception. With repair, it
continues to execute in a largely acceptable state. Specif-
ically, the effect of the repair is to potentially change the
origin or destination airport of the aircraft with the faulty
flight plan. Even with this change, continued operation is
clearly a better alternative than failing. First, one of the
primary purposes of the system, visualizing aircraft flow, is
unaffected by the repair. Second, only the origin or desti-
nation airport of the plane whose flight plan triggered the
error is affected. All other aircraft are processed with no
errors at all.

Rebooting CTAS after a crash is an inadequate solution.
After a reboot, CTAS takes several minutes to reacquire
flight plans and radar data. Furthermore, there are many
classes of errors which rebooting does not solve: the system
will often reacquire the data, reprocess it, and fail again for
the same reason.

7.5 Freeciv
Freeciv is an interactive, multi-player game available at

www.freeciv.org. The Freeciv server maintains a map of the
game world. Each tile in this map has a terrain value cho-
sen from a set of legal terrain values. Additionally, cities
may be placed on the tiles. Our fault injection strategy
changes the terrain values in pseudo-randomly selected tiles
35 times during the execution of the program. There are
two possible errors: illegal terrain values or cities located
on an ocean tile instead of a land tile. Our repair algo-
rithm repairs these kinds of errors by assigning a legal ter-
rain value to any tile with an illegal value and by assigning
a land terrain value to any ocean tiles containing a city. The
specification consists of 191 lines, of which 173 lines contain
structure definitions. The principle challenge in developing
this specification was reverse engineering the Freeciv source
(which consists of 73,000 lines of C code) to develop an un-
derstanding of the data structures. Once we understood the
data structures, developing the specification was straight-
forward.

Freeciv comes with a built-in test mode in which several
automated players play against each other. Our workload
simply runs the program in this built-in test mode. The
map was configured to contain 4,000 tiles. With repair, the
game was able to execute without failing (although the game
played out differently because of changed terrain values).
Without repair, the game crashed with a segmentation fault
caused by indexing an array with an illegal terrain value.

7.6 A Linux File System
Our Linux file system application implements a simplified

version of the Linux ext2 file system. The file system, like
other Unix file systems, contains bitmaps that identify free
and used disk blocks. The file system uses these disk blocks

to support fast disk block and inode allocation operations.
For our experiments we used a file system with 1024 disk
blocks. Our consistency specification contains 108 lines, of
which 55 lines contain structure definitions. Because the
structure of such file systems is widely documented in the
literature, it was relatively easy for us to develop the spec-
ification. In general, we have found that developing specifi-
cations is a straightforward task once one understands the
relevant data structures.

Our fault insertion mechanism for this application sim-
ulates the effect of a system crash: it shuts down the file
system (potentially in the middle of an operation that re-
quires several disk writes), then discards the cached state.
Our workload opens and writes several files, closes the files,
then reopens the files to verify that the data was written
correctly. To apply our fault insertion strategy to this work-
load, we crash the system part of the way through writing
the files, then rerun the workload. The second run of the
workload overwrites the partially written files and checks
that the final versions are correct.

In all of our tested cases, the algorithm is able to repair the
file system and the workload correctly runs to completion.
Without repair, files end up sharing inodes and disk blocks
and the file contents are incorrect. In addition to repairing
the errors introduced by our failure insertion strategy, our
tool is also able to allocate and rebuild the blocks contain-
ing the inode and block allocation bitmaps, allocate a new
inode table block, and allocate a new inode for the root di-
rectory. The repair algorithm is limited in that if the entries
describing aspects of basic file system format (such as the
size of the blocks) become corrupted, the tool may fail to
correctly repair the file system.

7.7 Discussion
At this point we have developed two specifications for

CTAS, Freeciv, and the file system: one that requires the de-
veloper to provide external consistency constraints to explic-
itly translate the repaired model to the data structure [7],
and the specifications discussed in this paper, which use
goal-directed reasoning to automatically generate this trans-
lation. We found that the new specifications were much
simpler to write because goal-directed reasoning eliminated
two important potential sources of errors. First, because our
new system automatically generated the data structure up-
dates, we did not have to develop a (potentially buggy) set
of external consistency constraints to translate the repaired
model back into the concrete data structures. Second, and
more importantly, our new system eliminated the possibil-
ity that the data structure repair algorithm could generate
a consistent model with no corresponding data structure.
With our old system, the developer had to reason about all
of the potential repair sequences to determine if any such
sequence might generate such a repaired model. Moreover,
the only way to eliminate a repair sequence that produced
a repaired model with no corresponding data structure was
to develop additional consistency constraints to eliminate
problematic repair sequences.

Another advantage is that the new specifications for Freeciv
and the Linux file system are approximately 14% smaller
than the old specifications. For CTAS, the new system en-
abled us to add some additional constraints while maintain-
ing a specification of approximately the same size.

We did not develop an AbiWord specification for the pre-

vious system. While it is difficult to say in hindsight exactly
how difficult it would have been to develop such a specifi-
cation, we believe that it would have been much more diffi-
cult than developing the specification for our current system.
Specifically, we believe that our specification would have al-
lowed repaired models with no corresponding data struc-
tures. Moreover, it would have been impossible to develop
additional consistency constraints that would have ruled out
these repaired models. The only recourse would have been
to reason about the potential repair sequences that the sys-
tem could have performed in an attempt to determine if the
repair sequences would actually generate a repaired model
with no corresponding data structure.

Specifically, our initial AbiWord specification would likely
have had a set containing the fragments in the document
and a relation modelling the linking relation between these
fragments. If the previous repair algorithm added an ob-
ject to this set without updating the linking relation (in the
old system there was no way to state the correspondence
between the set and the relation), it would have generated
a consistent model that does not correspond to any data
structure. As a result, the previous repair algorithm would
fail to generate a consistent data structure.

Goal-directed reasoning eliminates this possibility — be-
cause it maintains the connection between the concrete data
structure and the abstract model, any addition to the set
also updates the relation. Our new system therefore en-
sures that whenever the algorithm updates the set, it also
appropriately updates the relation and the concrete data
structures. The net effect is that the developer can simply
write the specification and be assured that the repaired data
structures will satisfy the consistency properties.

We did not develop a specification for the x86 emulator
for our previous system. We believe, however, that our spec-
ification for the previous system would not have produced
repaired models with no corresponding data structures. The
primary benefits for this benchmark are therefore the elimi-
nation of the possibility of errors in the external consistency
constraints and a shorter specification.

7.8 Performance
To evaluate the performance of our consistency check and

repair algorithm, we computed two numbers: 1) the mean
time required to perform a consistency check for a consistent
data structure, and 2) the mean time required to perform
the consistency check and the repair for an inconsistent data
structure (rendered inconsistent via fault injection). Table 1
presents the mean consistency check times (over ten trials)
for the different applications and the mean consistency check
and repair times. In general, the check and repair times
are dominated by the model construction overhead. The
check and repair times therefore correlate with the number
of times the repair process rebuilds the model. For AbiWord

Application Time to check
consistency (ms)

Time to check
and repair (ms)

AbiWord 0.06 0.55
CTAS 0.07 0.15
Freeciv 3.62 15.66
File system 4.22 263.14

Table 1: Time to check consistency and perform re-
pairs

the mean number of times that the repair algorithm rebuilds
the model is 10, for CTAS the mean is 3, for the file system
the mean is 119.2, while for Freeciv the mean is 4.6. The
number of times the model is rebuilt is, in turn, correlated
with the number of data structure updates that the repair
algorithm performs. The mean number of updates is 7 for
AbiWord, 1 for CTAS, 59.1 for the file system, and 1.8 for
Freeciv. As these numbers show, the fault injection strategy
for the file system produces faults that require substantially
more data structure updates to repair.

8. RELATED WORK
We survey related work in software error detection [12,

20], traditional error recovery, manual data structure repair,
and databases.

Reboot potentially augmented with checkpointing is one
approach to error recovery. Database systems use a combi-
nation of logging and replay to avoid the state loss normally
associated with rolling back to a previous checkpoint [10].
There has recently been renewed interest in applying many
of these classical techniques in new computational environ-
ments such as Internet services [5] and in extending these
techniques to reboot a minimal set of components rather
than the complete system [3].

The Lucent 5ESS telephone switch [9, 17, 13, 21] and
IBM MVS operating system [16] use inconsistency detection
and repair to recover from software failures. Both of these
systems contain a set of manually coded procedures that
periodically inspect their data structures to find and repair
inconsistencies. The reported results indicate an order of
magnitude increase in the reliability of the system [10].

Researchers have incorporated constraint mechanisms into
programming languages. In Kaleidoscope [14] the developer
writes programs using a hybrid of imperative-style program-
ming and constraints. Kaleidoscope does not include an
analog of our model-based approach, as a result, it can be
very difficult, if not impossible, to express constraints on
recursive data structures or other multi-element heap struc-
tures. Another example of a constraint maintenance system
as a programming abstraction is Alphonse [11]. Rule based
programming [2, 6] is a technique in which the developer
defines a condition and an action to take in response.

Database researchers have developed integrity manage-
ment systems that enforce database consistency constraints.
These systems typically operate at the level of the tuples and
relations in the database, not the low-level data structures
that implement this abstraction [4, 19, 22].

Some journaling or log-structured file systems are always
consistent on the disk, eliminating the possibility of file sys-
tem corruption caused by a system crash [18]. Repair re-
mains valuable even for these systems in that it can enable
the system to recover from file system corruption caused by
other sources such as software errors or hardware damage.

9. CONCLUSION
Data structure repair can be an effective technique for

enabling programs to recover from data structure damage
to continue to execute successfully. A developer using our
model-based approach specifies how to translate the con-
crete data structures into an abstract model, then uses the
sets and relations in the model to state key data structure
consistency constraints. Our automatically generated repair

algorithm finds and repairs any data structures that violate
these properties. The key results in this paper include a
technique for analyzing the model definition rules to trans-
late model repairs into data structure updates and the use of
the repair dependence graph to formulate and solve the re-
pair termination analysis problem. Our experience indicates
that goal-directed data structure repair can effectively re-
pair otherwise crippling data structure inconsistency errors
and enable systems to continue to execute. This approach
promises to substantially reduce the development costs and
increase the effectiveness of data structure repair, enabling
its application to a wider range of software systems.

9.1 Acknowledgments
We would like to thank David Wentzlaff for his help with

the MIT RAW x86 emulator.

10. REFERENCES
[1] Center-tracon automation system.

http://www.ctas.arc.nasa.gov/ .

[2] A. Mishra et al. R++: Using rules in object-oriented designs.
In OOPSLA, July 1996.

[3] G. Candea and A. Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. In HotOS-VIII, May 2001.

[4] S. Ceri and J. Widom. Deriving production rules for constraint
maintenance. In VLDB, pages 566–577, 1990.

[5] D. A. Patterson et al. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case studies. Technical
Report UCB//CSD-02-1175, UC Berkeley Computer Science,
March 15, 2002.

[6] D. Litman et al. Modeling dynamic collections of
interdependent objects using path-based rules. In OOPSLA,
October 1997.

[7] B. Demsky and M. Rinard. Automatic detection and repair of
errors in data structures. In OOPSLA, October 2003.

[8] B. Demsky and M. Rinard. Data structure repair using
goal-directed reasoning. Technical Report 950, MIT Computer
Science and Artificial Intelligence Laboratory, 2004.

[9] G. Haugk. The 5ESS(TM) switching system: Maintenance
capabilities. AT&T Technical Journal, 64(6 part 2):1385–1416,
July-August 1985.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[11] R. Hoover. Incremental computation as a programming
abstraction. In PLDI, 1992.

[12] J. Corbett et al. Bandera : Extracting finite-state models from
Java source code. In ICSE, 2000.

[13] D. A. Ladd and J. C. Ramming. Two application languages in
software production. In VHLL, October 1994.

[14] G. Lopez. The Design and Implementation of Kaleidoscope, A
Constraint Imperative Programming Language. PhD thesis,
University of Washington, April 1997.

[15] M. B. Taylor et al. The Raw microprocessor: A computational
fabric for software circuits and general-purpose programs. In
IEEE Micro, Mar/Apr 2002.

[16] S. Mourad and D. Andrews. On the reliability of the IBM
MVS/XA operating system. TSE, September 1987.

[17] N. Gupta et al. Auditdraw: Generating audits the FAST way.
In ISCE, 1997.

[18] M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. In SOSP, Oct.
1991.

[19] S. Ceri et al. Automatic generation of production rules for
integrity maintenance. TODS, 19(3), September 1994.

[20] S. Hallem et al. A system and language for building
system-specific, static analyses. In PLDI, 2002.

[21] T. Griffin et al. Generating update constraints from PRL5.0
specifications. In Preliminary report presented at AT&T
Database Day, September 1992.

[22] S. D. Urban and L. M. Delcambre. Constraint analysis: A
design process for specifying operations on objects. TKDE,
2(4), December 1990.

