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Abstract
This paper presents PARADISE (PARAdigm for Dlalogue Sys-

tem Evaluation), a general framework for evaluating and comparing
the performance of spoken dialogue agents. The framework decou-
ples task requirements from an agent’s dialogue behaviors, supports
comparisons among dialogue strategies, enables the calculation of per-
formance over subdialogues and whole dialogues, specifies the relative
contribution of various factors to performance, and makes it possible
to compare agents performing different tasks by normalizing for task
complexity. After presenting PARADISE, we illustrate its application
to two different spoken dialogue agents. We show how to derive a per-
formance function for each agent and how to generalize results across
agents. We then show that once such a performance function has been
derived, that it can be used both for making predictions about future
versions of an agent, and as feedback to the agent so that the agent
can learn to optimize its behavior based on its experiences with users
over time.



1 Introduction

Interactive spoken dialogue systems are based on many component tech-
nologies: speech recognition, text-to-speech, natural language understanding,
natural language generation, and database query languages. While there has
been a great deal of progress in developing well-understood evaluation metrics
for many of these components [Sparck-Jones and Galliers, 1996, Walker, 1989,
Hirschman et al., 1990, Lee, 1988, Ralston et al., 1995, Pallett, 1985], there
has been less progress in developing metrics and frameworks for evaluating
dialogue systems that integrate all of these components.

One problem is that dialogue evaluation is not reducible to transcript eval-
uation, or to comparison with a wizard’s reference answers [Bates and Ayuso,
1993, Polifroni et al., 1992, Price et al., 1992], because the set of potentially
acceptable dialogues can be very large. Another problem is that there are
many potential metrics that can be used to evaluate a dialogue system. For
example, a dialogue system can be evaluated by measuring the system’s abil-
ity to help users achieve their goals, the system’s robustness in detecting and
recovering from errors of speech recognition or of understanding, and the
overall quality of the system’s interactions with users [Danieli and Gerbino,
1995, Hirschman and Pao, 1993, Polifroni et al., 1992, Price et al., 1992,
Sparck-Jones and Galliers, 1996, Simpson and Fraser, 1993]. It is not clear
how different metrics overlap with one another, or what the tradeoffs between
metrics might be.

Previous proposals for dialogue evaluation have focused on the develop-
ment of dialogue metrics that can be classified as objective or subjective.
Objective metrics can be calculated without recourse to human judgement,
and in many cases, can be logged by the spoken dialogue system so that they
can be calculated automatically. Objective metrics that have been used to
evaluate a dialogue as a whole include [Abella et al., 1996, Ciaremella, 1993,
Danieli and Gerbino, 1995, Hirschman et al., 1990, Hirschman et al., 1993,
Polifroni et al., 1992, Price et al., 1992, Sparck-Jones and Galliers, 1996,
Smith and Hipp, 1994, Smith and Gordon, 1997, Walker, 1996]:

o percentage of correct answers with respect to a set of reference answers

e percentage of successful transactions or completed tasks!

ITask-based success measures are only objective when the user’s task is well-defined,



e number of turns or utterances

o dialogue time or task completion time

® mean user response time

e mean system response time

e percentage of diagnostic error messages

e percentage of “non-trivial” (more than one word) utterances
e mean length of “non-trivial” utterances

Subjective metrics require subjects using the system and /or human evalu-
ators to categorize the dialogue or utterances within the dialogue along vari-
ous qualitative dimensions. Because these metrics are based on human judge-
ments, such judgements need to be reliable across judges in order to compete
with the reproducibility of metrics based on objective criteria. Subjective
metrics can still be quantitative, as when a ratio between two subjective
categories is computed. Subjective metrics that have been used to evaluate
dialogue systems include [Danieli and Gerbino, 1995, Boyce and Gorin, 1996,
Hirschman and Pao, 1993, Simpson and Fraser, 1993, Danieli et al., 1992,
Bernsen et al., 1996]:

e percentage of implicit recovery utterances (where the system uses di-
alogue context to recover from errors of partial recognition or under-
standing)

e percentage of explicit recovery utterances
e percentage of contextually appropriate system utterances

e cooperativity (the adherence of the system’s behavior to Grice’s con-
versational maxims [Grice, 1967])

e percentage of correct and partially correct answers

as in a controlled experiment. In a field study, determining whether a user accomplished
his or her task typically requires a subjective judgment.



e percentage of appropriate and inappropriate system directive and di-
agnostic utterances

e user satisfaction (user’s perceptions about the usability of a system,
usually assessed with multiple choice questionnaires that ask users to
rank the system’s performance on a range of usability features accord-
ing to a scale of potential assessments)

Both the objective and subjective metrics have been very useful to the
spoken dialogue community. For example, the metrics have enabled com-
parisons between different systems carrying out the same task. However,
both the metrics and the current methodologies for using them also have
important limitations.

One widely acknowledged limitation is that the use of reference answers
makes it impossible to compare systems that use different dialogue strategies
for carrying out the same task. This is because the reference answer approach
requires canonical responses (i.e., a single “correct” answer) to be defined
for every user utterance, even though there are potentially many correct
answers. For example, it is not possible to use the reference answer approach
to compare a system that gives a list of database values as a response to a
database query with a system that gives an abstract summary as a response.

A second limitation is that interdependencies between metrics are not
yet well understood. For example, various metrics may be highly correlated
with one another, and thus provide redundant information on performance.
Determining correlations requires a suite of metrics that are widely used, and
testing whether correlations hold across multiple dialogue applications.

A third limitation arises from the inability to tradeoff or combine var-
ious metrics and to make generalizations [Fraser, 1995, Sparck-Jones and
Galliers, 1996]. Consider a comparison of two train timetable information
agents [Danieli and Gerbino, 1995], where Agent A in Dialogue 1 uses an
explicit confirmation strategy, while Agent B in Dialogue 2 uses an implicit
confirmation strategy:

(1) User: I want to go from Torino to Milano.
Agent A: Do you want to go from Trento to Milano? Yes or No?
User: No.



(2) User: I want to travel from Torino to Milano.
Agent B: At which time do you want to leave from Merano to Milano?
User: No, [ want to leave from Torino in the evening.

In their evaluation, Danieli and Gerbino found that Agent A had a higher
transaction success rate and produced fewer inappropriate and repair utter-
ances than Agent B, and that Agent B produced dialogues that were approx-
imately half as long as Agent A’s. However, due to an inability to combine
metrics, they could not report whether Agent A’s higher transaction success
or Agent B’s efficiency was more critical to performance.

The ability to identify how multiple factors impact performance is also
critical for making generalizations across systems performing different tasks [Co-
hen, 1995, Sparck-Jones and Galliers, 1996]. It would be useful to know
how users’ perceptions of performance depend on the strategy used, and on
tradeoffs among factors like efficiency, usability, and accuracy. In addition to
agent factors such as the differences in dialogue strategy seen in Dialogues 1
and 2, task factors such as database size and environmental factors such as
background noise may also be relevant predictors of performance.

Walker proposed that a combined performance metric for dialogue sys-
tems could be derived as a weighted linear combination of a task-based suc-
cess measure and dialogue costs. She showed that, given particular assump-
tions about the weights for dialogue costs, effective dialogue strategies depend
on an interaction between task complexity and the hearer’s working memory
[Walker, 1993, Walker, 1996]. However, she did not specify how the weights
in the performance function could be computed.

This paper presents PARADISE, a general framework for evaluating and
comparing the performance of spoken dialogue agents that addresses these
limitations [Walker et al., 1997b]. PARADISE supports comparisons among
dialogue strategies by providing a task representation that decouples what
an agent needs to achieve in terms of the task requirements from how the
agent carries out the task via dialogue. PARADISE uses a decision-theoretic
framework to specify the relative contribution of various factors to an agent’s
overall performance. Following [Walker, 1993], performance is modeled as a
weighted function of a task-based success measure and dialogue-based cost
measures. However, here we show how to solve for the weights by correlating
user satisfaction with performance. We will also show that, once a perfor-
mance function has been derived, it can be used both to make predictions



about future versions of the agent and as the basis of feedback to the agent
so that the agent can learn to optimize its behavior based on its experiences
with users over time.

The goal of this paper is both to explain PARADISE and to illustrate
its application. In Section 2 we introduce PARADISE, and for expository
purposes, illustrate its use in a simplified train schedule information domain.
In Section 3 we illustrate the use of PARADISE in the evaluations of two
spoken dialogue agents: ELVIS [Walker et al., 1997a], an agent for accessing
email over the phone; and TOOT [Litman et al., 1998], an agent for accessing
online Amtrak train schedule information. We show how to derive a perfor-
mance function for each of these agents, and how to generalize results across
agents. In Section 4 we discuss how we can use the derived performance
function to make predictions and to learn how to optimize agent dialogue
behavior. In Section 5 we conclude and suggest future work.

2 PARADISE: A Framework for Deriving Per-
formance Models for Dialogue

PARADISE uses methods from decision theory [Keeney and Raiffa, 1976,
Doyle, 1992] to combine a disparate set of performance measures (i.e., user
satisfaction, task success, and dialogue cost, all of which have been previ-
ously noted in the literature) into a single performance evaluation function.
The use of decision theory requires a specification of both the objectives of
the decision problem and a set of measures (known as attributes) for opera-
tionalizing the objectives. The PARADISE model is based on the structure
of objectives (rectangles) shown in Figure 1.

The PARADISE model posits that performance can be correlated with
a meaningful external criterion such as usability, and thus that the over-
all goal of a spoken dialogue agent is to maximize an objective related
to usability. User satisfaction ratings [Kamm, 1995, Shriberg et al., 1992,
Polifroni et al., 1992] have been frequently used in the literature as an exter-
nal indicator of the usability of a dialogue agent. Thus, as shown in Figure 1,
user satisfaction is the top level objective to be maximized. The model fur-
ther posits that two types of factors are potential relevant contributors to
user satisfaction (namely task success and dialogue costs), and that both



efficiency and dialogue quality are potential relevant contributors to costs.
This reflects the proposal that performance is a weighted linear combination
of task success and dialogue costs [Walker, 1996]. A novel aspect of PAR-
ADISE is the use of multivariate linear regression to estimate a performance
equation. In particular, regression is used to solve for the weights in the
performance equation, and thereby to quantify the relative contribution of
the success and cost factors to user satisfaction.

The remainder of this section explains the measures (ovals in Figure 1)
used to operationalize the set of objectives and the methodology for estimat-
ing a quantitative performance function that reflects the objective structure.
Section 2.1 describes PARADISE’s task representation, which is needed to
calculate the task-based success measure described in Section 2.2. Section 2.3
describes some of the cost measures considered in PARADISE, which reflect
both the efficiency and the naturalness of an agent’s dialogue behaviors.
Section 2.4 describes the use of linear regression and user satisfaction to es-
timate the relative contribution of the success and cost measures in a single
performance function.

2.1 Tasks as Attribute Value Matrices

A general evaluation framework requires a task representation that decouples
what an agent and user accomplish from how the task is accomplished using
dialogue strategies. We propose that an attribute value matriz (AVM) can
represent many dialogue tasks. This consists of the information that must be
exchanged between the agent and the user during the dialogue, represented
as a set of ordered pairs of attributes and their possible values. ?

As a first illustrative example, consider a simplification of the train timetable
domain of Dialogues 1 and 2, where the timetable only contains information
about rush-hour trains between four cities, as shown in Table 1.° This AVM
consists of four attributes (abbreviations for each attribute name are also

shown).? In Table 1, these attribute-value pairs are annotated with the

2For infinite sets of values, actual values found in the experimental data constitute the
required finite set.

3In addition to the AVMs presented in this paper, a more general set of examples can
be found in [Walker et al., 1997b).

4The AVM serves as an evaluation mechanism only. We are not claiming that AVMs
determine an agent’s behavior or serve as an utterance’s semantic representation.



direction of information flow to represent who acquires the information, al-
though this information is not used for evaluation. During the dialogue the
agent must acquire from the user the values of depart-city, arrival-city, and
depart-range, while the user must acquire depart-time.

Performance evaluation for an agent requires a corpus of dialogues be-
tween users and the agent, in which users execute a set of scenarios. Each
scenario execution has a corresponding AVM instantiation indicating the task
information that was actually obtained via the dialogue.

For example, assume that a scenario requires the user to find a train
from Torino to Milano that leaves in the evening, as in the longer versions of
Dialogues 1 and 2 in Figures 2 and 3.°

Table 2 contains an AVM corresponding to a “key” for this scenario.

All dialogues resulting from execution of this scenario in which the agent
and the user correctly convey all attribute values (as in Figures 2 and 3)
would have the same AVM as the scenario key in Table 2. The AVMs of the
remaining dialogues would differ from the key by at least one value. The
AVM represents the attribute value pairs as they exist at the end of the
dialog (AVMs are not created during the course of a dialog). Note that even
though the dialogue strategies in Figures 2 and 3 are radically different, the
AVM task representation for these dialogues is identical and the performance
of the system for the same task can thus be assessed on the basis of the AVM
representation.

This example used an AVM that contained a single value for each at-
tribute. However this representation can be extended to handle multiple
right answers (values). One way to do this is to represent the value as a
disjunction of possible values as illustrated in table 7. Another solution is to
use the entity relationship model [Korth, 1991] to design the AVM (see ap-
pendix). Note that the AVM representation is confined to a discrete (albeit
large) collection of responses.

2.2 Measuring Task Success

Success at the task for a whole dialogue (or subdialogue) is measured by
how well the agent and user achieve the information requirements of the

®These dialogues have been slightly modified from [Danieli and Gerbino, 1995]. The
attribute names at the end of each utterance will be explained below.



task by the end of the dialogue (or subdialogue). This section explains how
PARADISE uses the Kappa coefficient [Carletta, 1996, Siegel and Castellan,
1988] to operationalize the task-based success measure in Figure 1.

The Kappa coefficient, k, can be calculated from a confusion matrix that
summarizes how well an agent achieves the information requirements of a
particular task for a set of dialogues instantiating a set of scenarios.® For
example, Tables 3 and 4 show two hypothetical confusion matrices that could
have been generated in an evaluation of 100 complete dialogues with each of
two train timetable agents A and B (perhaps using the confirmation strate-
gies illustrated in Figures 2 and 3, respectively).” The values in the matrix
cells are based on comparisons between the dialogue and scenario key AVMs.
Whenever an attribute value in a dialogue (i.e., data) AVM matches the value
in its scenario key, the number in the appropriate diagonal cell of the matrix
(boldface for clarity) is incremented by 1. The off-diagonal cells represent
misunderstandings that are not corrected in the dialogue. Note that de-
pending on the strategy that a spoken dialogue agent uses, confusions across
attributes are possible, e.g., “Milano 7 could be confused with “morning.”

The effect of misunderstandings that are corrected during the course of
the dialogue are reflected in the costs associated with the dialogue, as will
be discussed below. The individual AVMs for the dialogue and the confusion
matrices derived from them reflect only the state of the information exchange
at the end of the dialogue. The time course of the dialogue and error handling
for any misunderstandings are assumed to be reflected in the costs associated
with the dialogue.

The matrix in Table 3 summarizes how the 100 AVMs representing each
dialogue with Agent A compare with the AVMs representing the relevant sce-
nario keys, while the matrix in Table 4 summarizes the information exchange
with Agent B. Labels vl to v4 in each matrix represent the possible values
of depart-city shown in Table 1; v5 to v8 are for arrival-city, etc. Columns
represent the key, specifying which information values the agent and user
were supposed to communicate to one another given a particular scenario.
(The equivalent column sums in both tables reflects that users of both agents
were assumed to have performed the same scenarios). Rows represent the

SConfusion matrices can be constructed to summarize the result of dialogues for any
subset of the scenarios, attributes, users or dialogues.
"The distributions in the tables were roughly based on performance results in [Danieli

and Gerbino, 1995].



data collected from the dialogue corpus, reflecting what attribute values were
actually communicated between the agent and the user. When the data con-
tains attribute values that are not present in the key (as in both of the case
studies described below), an extra row representing “all other values” can be
added for each relevant attribute.

Given a confusion matrix M, success at achieving the information require-
ments of the task is measured with the Kappa coefficient [Carletta, 1996,
Siegel and Castellan, 1988]:

_ P(A) - P(E)
1 - P(E)

P(A) is the proportion of times that the AVMs for the actual set of dialogues
agree with the AVMs for the scenario keys, and P(E) is the proportion of
times that the AVMs for the dialogues and the keys are expected to agree
by chance.®* When there is no agreement other than that which would be
expected by chance, k = 0. When there is total agreement, x = 1. & is
superior to other measures of success such as transaction success [Danieli
and Gerbino, 1995], concept accuracy [Simpson and Fraser, 1993], and per-
cent agreement [Gale et al., 1992] because  takes into account the inherent
complexity of the task by correcting for chance expected agreement. Thus &
provides a basis for comparisons across agents that are performing different
tasks.

When the prior distribution of the categories is unknown, P(E), the ex-
pected chance agreement between the data and the key, can be estimated
from the distribution of the values in the keys. This can be calculated from
confusion matrix M, since the columns represent the values in the keys. In
particular:

where t; is the sum of the frequencies in column i of M, and 7' is the sum of
the frequencies in M (¢; + ...+ t,).

8k has been used to measure pairwise agreement among coders making category judg-
ments [Carletta, 1996, Krippendorf, 1980, Siegel and Castellan, 1988]. Thus, the observed
user/agent interactions are modeled as a coder, and the ideal interactions as an expert
coder.
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P(A), the actual agreement between the data and the key, can be com-
puted over all the scenarios from the confusion matrix M:

X M)

P(A) = =510

When it is desirable to compute a per dialogue &, as we will do below, P(A)
can be computed on a per dialogue basis by simply calculating the percent
of the attribute values in the AVM instantiation for the dialogue that agree
with the attribute values in the AVM key for the dialogue scenario.

Given the confusion matrices in Tables 3 and 4, P(E) = 0.079 for both
agents.” For Agent A, P(A) = 0.795 over all scenarios and x = 0.777, while
for Agent B, P(A) = 0.59 over all scenarios and x = 0.555, suggesting that
Agent A is more successful than B in achieving the task goals.

2.3 Measuring Dialogue Costs

As shown in Figure 1, performance is also a function of a combination of cost
measures. Intuitively, cost measures should be calculated on the basis of any
user or agent dialogue behaviors that should be minimized. As discussed in
Section 1, a wide range of both efficiency and qualitative cost measures have
been used in previous work. Since it is not clear in advance of empirical work
which cost factors may be the strongest contributors to user satisfaction, it is
important that a wide range of these measures be used in empirical studies.
Furthermore, in order to make cross-task generalizations about important
factors, the same measures must be examined across different tasks. Section
3 discusses the particular set of cost measures used in our two case studies.

PARADISE represents each cost measure as a function ¢; that can be
applied to any (sub)dialogue. First, consider the simplest case of calculating
efficiency measures over a whole dialogue. For example, let ¢; be the total
number of utterances. For the whole dialogue D1 in Figure 2, ¢;(D1) is 23
utterances. For the whole dialogue D2 in Figure 3, ¢;(D2) is 10 utterances.

To calculate costs over subdialogues and for some of the qualitative mea-
sures, 1t is necessary to be able to specify which information goals each ut-

9Using a single confusion matrix for all attributes as in Tables 3 and 4 inflates k when
there are few cross-attribute confusions by making P(E) smaller. In some cases it might
be desirable to calculate « first for identification of attributes and then for values within
attributes, or to average x for each attribute to produce an overall & for the task.
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terance contributes to. PARADISE uses its AVM representation to link the
information goals of the task to any arbitrary dialogue behavior, by tagging
the dialogue with the attributes for the task.!'® This makes it possible to
evaluate any potential dialogue strategies for achieving the task, as well as
to evaluate dialogue strategies that operate at the level of dialogue subtasks
(subdialogues).'*

Consider the longer versions of Dialogues 1 and 2 in Figures 2 and 3.
Each utterance in Figures 2 and 3 has been tagged using one or more of the
attribute abbreviations in Table 1, according to the subtask(s) the utterance
contributes to. As a convention of this type of tagging, utterances that
contribute to the success of the whole dialogue, such as greetings, are tagged
with all the attributes. Since the structure of a dialogue reflects the structure
of the task [Carberry, 1989, Grosz and Sidner, 1986, Litman and Allen, 1990],
the tagging of a dialogue by the AVM attributes can be used to generate a
hierarchical discourse structure such as that shown in Figure 4 for Dialogue
1 (Figure 2). For example, segment (subdialogue) S2 in Figure 4 is about
both depart-city (DC) and arrival-city (AC). It contains segments S3 and S4
within it, and consists of utterances Ul ... U6.

Tagging by AVM attributes is required to calculate costs over subdia-
logues, since for any subdialogue, task attributes define the subdialogue. For
subdialogue 5S4 in Figure 4, which is about the attribute arrival-city and
consists of utterances A6 and U6, ¢;(54) is 2.

Tagging by AVM attributes is also required to calculate the cost of some
of the qualitative measures, such as number of repair utterances. (Note that
to calculate such costs, each utterance in the corpus of dialogues must also be
tagged with respect to the qualitative phenomenon in question, e.g. whether
the utterance is a repair.'?) For example, let ¢; be the number of repair
utterances. The repair utterances for the whole dialogue D1 in Figure 2
are A3 through U6, thus ¢y(D1) is 10 utterances and c¢y(54) is 2 utterances.

10This tagging can be hand generated, or system generated and hand corrected. Pre-
liminary studies indicate that reliability for human tagging is higher for AVM attribute
tagging than for other types of discourse segment tagging [Passonneau and Litman, 1997,
Hirschberg and Nakatani, 1996].

Walker et al.[1997b] contains a complete example of the use of PARADISE at the
subdialogue level.

12Previous work has shown that this can be done with high reliability [Hirschman and

Pao, 1993].
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The repair utterance for the whole dialogue D2 in Figure 3 is U2, but note
that according to the AVM task tagging, U2 simultaneously addresses the
information goals for depart-range. In general, if an utterance U contributes
to the information goals of N different attributes, each attribute accounts for
1/N of any costs derivable from U. Thus, ¢2(D2) is .5.

Given a set of ¢;, it is necessary to combine the different cost measures in
order to determine their relative contribution to performance. The next sec-
tion explains how to combine « with a set of ¢; to yield an overall performance
measure.

2.4 Estimating a Performance Function

Given the definition of success and costs above and the model in Figure 1,
performance for any (sub)dialogue D is defined as follows:

Performance = (a * N (k)) — Zn: w; * N (¢;)

=1

Here a is a weight on «, the cost functions ¢; are weighted by w;, and A is a
7 score normalization function [Cohen, 1995]. We assume an additive perfor-
mance (utility) function because our analysis indicates that £ and the various
cost factors ¢; are utility independent and additive independent [Keeney and
Raiffa, 1976].

The normalization function is used to overcome the problem that the
values of ¢; are not on the same scale as k, and that the cost measures ¢;
may also be calculated over widely varying scales (e.g. response delay could
be measured using seconds while, in the example, costs were calculated in
terms of number of utterances). If the values of x and ¢; are not normalized,
then the magnitude of the coefficients o and w; will not reflect the relative
contribution of each factor to performance. This problem is easily solved by
normalizing each factor z to its Z score:

where o, is the standard deviation for z.
To illustrate the method for estimating a performance function, we will
use a subset of the data from Tables 3 and 4, shown in Table 5. Table 5
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represents the results from a hypothetical experiment in which eight users
were randomly assigned to communicate with Agent A and eight users were
randomly assigned to communicate with Agent B. Table 5 shows user satis-
faction (US) ratings (discussed below), x, number of utterances (#utt) and
number of repair utterances (#rep) for each of these users. Users 5 and 11
correspond to the dialogues in Figures 2 and 3 respectively. To normalize ¢
for user 5, we determine that ¢y is 38.6 and o, is 18.9. Thus, N'(¢;) is -0.83.
A similar calculation for user 11 gives A'(¢;) = -1.51.

To estimate the performance function, the weights « and w; must be
solved for. Recall that the claim implicit in Figure 1 was that the relative
contribution of task success and dialogue costs to performance should be
calculated by considering their contribution to user satisfaction. User sat-
isfaction is typically calculated with surveys that ask users to specify the
degree to which they agree with one or more statements about the behavior
or the performance of the system. A single user satisfaction measure can be
calculated from a single question, as the mean of a set of ratings, or as a
linear combination of a set of ratings. In Section 3, we will discuss the sur-
veys we used for user satisfaction and the way we calculated user satisfaction
ratings in our case studies. The hypothetical user satisfaction ratings shown
in Table 5 range from a high of 6 to a low of 1.

Given a set of dialogues for which user satisfaction (US), x and the set of
¢; have been collected experimentally, the weights o and w; can be solved for
using multivariate linear regression. Multivariate linear regression produces
a set of coefficients (weights) describing the relative contribution of each
predictor factor in accounting for the variance in a predicted factor. In this
case, on the basis of the model in Figure 1, US is treated as the predicted
factor. Normalization of the predictor factors (k and ¢;) to their Z scores
guarantees that the relative magnitude of the coefficients directly indicates
the relative contribution of each factor. Regression on the Table 5 data for
both sets of users tests which factors k, #utt, #rep most strongly predicts
US.

In this illustrative example, the results of the regression with all factors
included shows that only x and #rep are significant (p < .02). In order
to develop a performance function estimate that includes only significant
factors and eliminates redundancies, a second regression including only sig-
nificant factors must then be done. In this case, a second regression yields
the predictive equation:

14



Performance = 40N (k) — .78V (c3)

e, ais .40 and wq is .78. The results also show & is significant at p < .0003,
#rep significant at p < .0001, and the combination of x and #rep account
for 92% of the variance in US, the external validation criterion. The factor
#utt was not a significant predictor of performance, in part because #utt
and #rep are highly redundant. (The correlation between #utt and #rep is
0.91).

Given these predictions about the relative contribution of different factors
to performance, it is then possible to return to the problem first introduced
in Section 1: given potentially conflicting performance criteria such as ro-
bustness and efficiency, how can the performance of Agent A and Agent B
be compared? Given values for a and w;, performance can be calculated for
both agents using the equation above. The mean performance of A is -.44
and the mean performance of B is .44, suggesting that Agent B may perform
better than Agent A overall.

The evaluator must then however test these performance differences for
statistical significance. In this case, a ¢ test shows that differences are only
significant at the p < .07 level, indicating a trend only.

Finally, note that once the weights in the performance function have been
solved for, user satisfaction ratings no longer need to be collected. Instead,
predictions about user satisfaction can be made on the basis of the predictor
variables.

3 Two Case Studies

Above we both presented the PARADISE framework and used PARADISE to
evaluate two hypothetical dialogue agents in a simplified train timetable task
domain. In particular, we used PARADISE to derive a performance function
for our hypothetical task by estimating the relative contribution of a set
of potential predictors to user satisfaction. The PARADISE methodology
consisted of the following steps:

e definition of a task and a set of scenarios;

e specification of the AVM task representation;

15



e experiments with alternate dialogue agents for the task;

o calculation of user satisfaction using surveys;

e calculation of task success;

o calculation of dialogue cost using efficiency and qualitative measures;

e estimation of a performance function using linear regression and values
for user satisfaction, task success and dialogue costs;

e application of the performance function to experimental performance
data to compare performance differences among agent strategies, tasks,
or other experimental variables

In this section we describe the application of PARADISE to experimental
studies of two actual spoken dialogue systems: (1) ELVIS (Email. Voice In-
teractive System) [Walker et al., 1997a]; and (2) TOOT [Litman et al., 1998],
an agent for accessing online Amtrak schedule information over the phone.
Our experimental studies consist of controlled experiments with clearly de-
fined user tasks. Section 3.1 describes the spoken dialogue platform used to
implement both applications. Section 3.2 describes the experimental setup
for each dialogue agent. Section 3.3 discusses the performance equation de-
rived for each application, and generalizes results across applications.

3.1 Spoken Dialogue Platform

Both ELVIS and TOOT are implemented using a general-purpose platform
for voice dialogue agents, which combines automatic speech recognition (ASR),
an audio server for both voice recordings and text-to-speech (TTS), a phone
interface, a module for application specific functions, and modules for spec-
ifying the dialogue manager and the application grammars [Kamm et al.,
1997].

The speech recognizer is a speaker-independent hidden Markov model
(HMM) system with context-dependent phone models for telephone speech
and constrained grammars defining the vocabulary that is permitted at any
point in a dialogue [Rabiner et al., 1996]. The platform supports barge-in, so
that the user can interrupt the agent when it is speaking, e.g., when reading
a long email message. The grammar module supports dynamic grammar
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generation and loading because the ASR vocabulary must change during the
interaction, e.g., to support selection of email messages by content fields such
as sender and subject.

The text-to-speech technology is concatenative diphone synthesis [Sproat
and Olive, 1995]. The audio server can switch between voice recordings
and TTS and integrate voice recordings with T'TS. However, the ELVIS and
TOOT agents only use TTS due to the dynamic and unpredictable nature
of both web-based tables and email messages.

The application module for each application provides application spe-
cific functions. For example, ELVIS provides functions for accessing message
attributes such as subject and author, and using these attributes in folder
summaries and for selecting messages. TOOT’s application module provides
functions for accessing tables stored on AMTRAK’s web site and for selecting
subsets of these tables that satisfy constraints in the user’s query.

The dialogue manager is based on a state machine. Each state specifies
transitions to other states and the conditions that license these transitions, as
well as a grammar for what the user can say. State definitions also include the
specification of agent prompts in terms of templates, with variables that are
instantiated each time the state is entered. Prompts include: (1) an initial
prompt, which the agent says upon entering the state (this may include a
response to the user’s current request); (2) a help prompt which the agent
says if the user says help; (3) multiple rejection prompts which the agent says
if the speech recognizer confidence is too low to continue without more user
input; (4) multiple timeout prompts which the agent produces if the user
doesn’t say anything.

Each of these specifications is affected by the agent’s dialogue strategy.
An agent’s dialogue strategy is implemented as a combination of the prompts
that are played to the user and the state transitions that the agent makes
in response to the user’s utterance. In particular, alternative prompts can
be specified for all types of prompts (initial, help, rejection and timeout) to
provide alternate dialogue strategies in each state.

3.2 Experimental Design

Both the ELVIS and TOOT experiments were designed to test different di-
alogue strategies for the particular agent involved in the experiment. Both
experiments required every user to complete a set of application tasks in con-
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versations with a particular version of the agent. Instructions to the users
were given on a set of web pages; there was one page for each experimental
task. Fach web page consisted of a brief general description of the function-
ality of the agent, a list of hints for talking to the agent, a task description,
and information on how to call the agent. Each page also contained a form
for specifying information acquired from the agent during the dialogue, and
a survey, to be filled out after task completion, designed to probe the user’s
satisfaction with the system. Users read the instructions in their offices be-
fore calling the agent from their office phone. In this section, we describe the
dialogue strategies tested in each case study (Section 3.2.1), the tasks that
each case study involved (Section 3.2.2), and how the values for task success,
the dialogue costs, and user satisfaction were logged and extracted from the
experimental data (Section 3.2.3).

3.2.1 Dialogue Strategies Tested

The types of dialogue strategies that were tested were different for each
agent. The ELVIS experiments tested different initiative management strate-
gies, while the TOOT experiments tested different information presentation
strategies.?

In ELVIS, we tested a system-initiative (SI) versus a mixed-initiative (MI)
dialogue strategy [Walker et al., 1997a, Walker and Whittaker, 1990]. The
SI strategy uses directive prompts [Kamm, 1995], and controls the dialogue
by directing the user to select among a limited number of choices, as in

Dialogue 3:

(3) E: Hi, I've got your mail. Say Read, or Summarize, or say Help for
more options.
U: Read.
E: Select messages by subject, by sender, or in order of arrival?
U: Sender.
E. Which sender?
U: Kim. ....

The MI strategy never volunteers information. It assumes that users

13The ELVIS experiments also tested other types of dialogue strategies, e.g. information
presentation strategies, although we will not present those results here.
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know what to do and therefore it lets the user control the dialogue as in
Dialogue 4:

4) E: Hi, I've got your mail.
g
U: Read me my messages from Kim...

The hypotheses we investigated were: (1) the SI strategy would be easier
for novice users and would result in better ASR performance; (2) the MI
strategy would be easier to use and would be preferred by users once they
had some experience with the system; and (3) the ability to summarize and
select messages by content attributes such as sender and subject would lead
to greater dialogue efficiency. Our results are reported in detail in Walker et
al.[1997a, 1998a].

In TOOT, we tested a literal versus a cooperative dialogue strategy for
presenting information in a displayless environment [Abella et al., 1996, God-
deau et al., 1996, Seneft et al., 1995, Meng et al., 1996, Pieraccini et al., 1997,
Allen and Perrault, 1980]. The difference in the presentation strategies was
linked to two conditions: (A) when there was no information that matched
a user’s query; and (B) when there was too much matching information to
present in a single utterance. For condition A, the first strategy reports only
the literal answer to the query, as in the fragment of the TOOT dialogue
shown in (5):

(5) T: Do you want me to find the trains going to Chicago from Philadel-
phia on Sunday around 10:30 am now?

U: Yes.

T:There are no trains going to Chicago from Philadelphia on Sunday
around 10:30 am. Do you want to continue and find a new set of trains?

The second strategy automatically relaxes the user’s time constraint, and
also allows the user to perform additional relaxations, as in (6):

(6) ...
T: There are no trains going to Chicago from Philadelphia on Sunday
around 10:30 am. The closest earlier train leaves at 9:28 am every day,

and it takes 1 day 3 hours 36 minutes. The closest later train leaves
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at 11:45 am on Saturday and Sunday, and it takes 22 hours 5 minutes.
Please say “relax” to change your departure time or travel day, or say
“continue” if my answer was sufficient, or say “repeat” to hear this
message again.

For condition B, the first strategy groups the information to be presented
into manageable units, then lists each unit, as in (7):

(7) T: Do you want me to find the trains going to Philadelphia from New
York City on the weekend around 4 o’clock pm now?

U: Yes.

T: There are 7 trains available around 4 o’clock pm. Here are the
first 3 trains. The 1st train leaves at 3:00 pm on Saturday and Sunday,
and it takes 1 hour 12 minutes. The 2nd train leaves at 3:20 pm every
day, and it takes 1 hour 22 minutes. The 3rd train leaves at 4:00 pm
on Sunday, and it takes 1 hour 12 minutes. Do you want to hear the
rest of the trains?

The second strategy instead summarizes the range of trains available,
then allows the user to group and list the trains, or to further constrain the
query, as in (8):

(8) ...
T: There are 7 trains available around 4 o’clock pm. Here is the earliest
train we have. The first train leaves at 3:00 pm on Saturday and
Sunday, and it takes 1 hour 12 minutes. Here is the latest train we
have. The seventh train leaves at 5:00 pm on Saturday, and it takes 1
hour 12 minutes. Please say “list” to hear trains 3 at a time, or say
“add constraint” to constrain your departure time or travel day, or say
“continue” if my answer was sufficient, or say “repeat” to hear this
message again.

The hypothesis we investigated was that strategy performance was de-
pendent on task. Our results are reported in detail in [Litman et al., 1998].
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3.2.2 Task Descriptions

For ELVIS, each user performed three tasks in sequence, and each task con-
sisted of two subtasks, totaling six subtasks in all. Each subtask was repre-
sented by a scenario where the agent and the user had to exchange informa-
tion about criteria for selecting messages and information within the message
body. Two sample task scenarios are shown below, where scenarios 1.1 and
1.2 were done in the same conversation with ELVIS:

e TASK 1.1: You are working at home in the morning and plan to go
directly to a meeting when you go into work. Kim said she would send
you a message telling you where and when the meeting is. Find out
the Meeting Time and the Meeting Place.

o TASK 1.2: The second task involves finding information in a different
message. Yesterday evening, you had told Lee you might want to call
him this morning. Lee said he would send you a message telling you
where to reach him. Find out Lee’s Phone Number.

Scenario 1.1 is represented in terms of the attribute value matrix (AVM)
in Table 6. The AVM representation for all six subtasks is similar to Table
6.

For TOOT, each user performed 4 tasks in sequence. FEach task was
represented by a scenario where the user had to find a train satisfying certain
constraints, by using the agent to retrieve and process online train schedules.
A sample task scenario is as follows:

e TASK 1: Try to find a train going to Boston from New York City
on Saturday at 6:00 pm. If you cannot find an exact match, find
the one with the closest departure time. Please write down the exact
departure time of the train you found as well as the total travel
time.

The scenarios in TOOT are represented by an attribute value matrix
which includes the attributes in Table 1 (with different possible values) as
well as the attributes “depart-day” and “travel-time.”
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3.2.3 Collection and Extraction of Experimental Measures

In each case study, experimental results were collected by three means, and
a set of cost metrics were extracted. Cost metrics are given in boldface
below. First, all of the dialogues were recorded. This allows us to transcribe
utterances and to check aspects of the timing of the interaction, such as
whether there were long delays for agent responses, and how many times
users barged in on agent utterances (the variable named Barge Ins). In
addition, the recording was used to calculate the total time of the interaction
(the variable named Elapsed Time).

Second, the agent’s dialogue behavior was logged in terms of entering
and exiting each state in the state transition table for the dialogue. For each
state, the system logged the dialogue strategy that the agent executed, as well
as the number of timeout prompts that were played (Timeout Prompts),
the number of times that ASR rejected the user’s utterance (ASR Rejec-
tions), and the number of times that the user accessed the state-specific
help messages by saying Help (Help Requests). The number of System
Turns and the number of User Turns were also calculated on the basis of
this data. In addition, the ASR result for the user’s utterance was logged,
including the log-likelihood score that ASR assigned to the utterance. The
recordings were used in combination with the logged ASR result to calcu-
late a concept accuracy measure for each utterance by hand (i.e., whether
the recognizer’s output correctly captured the task-related information in
the utterance). Mean concept accuracy was then calculated over the whole
dialogue and used as a Mean Recognition Score for the dialogue.

Third, users were required to fill out a web page form after each task.
Users first specified whether they thought they had completed the task or not
(Completed). Users next specified the information that they had acquired
from the agent (e.g., in ELVIS, the values for Email.attl and Email.att2
in Table 6). This information was used in conjunction with the (logged)
information that the agent had acquired from the user (e.g., in ELVIS, the
value for Selection Criteria in Table 6) to compute Kappa. Finally, users
responded to a survey on their subjective evaluation of their satisfaction with
the agent’s performance. The survey as it was instantiated for ELVIS follows:

e Was ELVIS easy to understand in this conversation? (TTS Perfor-
mance)
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e In this conversation, did ELVIS understand what you said? (ASR
Performance)

e In this conversation, was it easy to find the message you wanted? (Task

Ease)

o Was the pace of interaction with ELVIS appropriate in this conversa-
tion? (Interaction Pace)

e In this conversation, did you know what you could say at each point of
the dialogue? (User Expertise)

o How often was ELVIS sluggish and slow to reply to you in this conver-
sation? (System Response)

o Did ELVIS work the way you expected him to in this conversation?
(Expected Behavior)

o In this conversation, how did ELVIS’s voice interface compare to the
touch-tone interface to voice mail?'* (Comparable Interface)

e From your current experience with using ELVIS to get your email, do
you think you’d use ELVIS regularly to access your mail when you are
away from your desk? (Future Use)

Most question responses ranged over values such as (almost never, rarely,
sometimes, often, almost always). Fach of these responses was mapped to
an integer in 1 ... 5. Some questions had (yes, no, maybe) responses. Each
question emphasized the user’s experience with the system in the current
conversation, with the hope that satisfaction measures would indicate per-
ceptions specific to each conversation, rather than reflecting an overall evalu-
ation of the system over the three tasks. We calculated a User Satisfaction
score (cumulative satisfaction) for each dialogue by summing the scores of
the multiple choice questions in the survey.

In terms of the model shown in Figure 1, the User Satisfaction score
is used as a measure of User Satisfaction. Kappa measures actual task suc-
cess. The measures of System Turns, User Turns and Elapsed Time are

14The instantiation of the survey for TOOT did not contain a “comparable interface”
question.
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efficiency cost measures. The qualitative measures are Completed, Barge
Ins, Timeout Prompts, ASR Rejections, Help Requests, and Mean
Recognition Score. Because we were concerned about the reliability of
the qualitative measures, we mainly used measures that the system could log
automatically, which did not require hand labeling. The only measures in
the experiments reported here that require hand labeling are Mean Recog-
nition Score and Barge Ins. As we mentioned above, we believe that at
this stage, it is impossible to prejudge which measures contribute to user
satisfaction. Instead, we use PARADISE and empirical data to tell us which
measures have merit, and to quantify their relative importance.

3.3 Deriving a Performance Equation from Experimen-
tal Data

This section describes the results of two different experiments, one with
ELVIS and one with TOOT. Table 7 illustrates the type of information that
was accumulated at the end of each experiment, as a result of the logging
and hand-labeling of data described above.

Each row in the table represents a dialogue in the collected dialogue cor-
pus. For each dialogue, the logged information consists of the user, the task
the user performed, the actions that the agent performed in each dialogue
state which depends on the agent’s dialogue strategy parameters, and values
for all of the other variables discussed in Section 3.2.3. These include values
for User Satisfaction (US), for the task success measure Kappa (x), for
cost efficiency measures such as Elapsed Time (ET) and System Turns
(STs), and for qualitative costs measures such as Timeout Prompts (TOs)
and Mean Recognition Score (MRS). We show below how experimen-
tal data such as these can be used to derive a performance function within
applications, and how results can be generalized across applications. For
more detailed information about these experiments, see [Walker et al., 1997a,
Walker et al., 1998a, Litman et al., 1998].

The ELVIS experimental data consists of three dialogues for each of three
tasks for 48 users, for a total of 144 dialogues and 6481 turns. Most users suc-
cessfully completed each task in about 5 minutes; average x over all subjects
and tasks was .82 and mean elapsed time was 315 seconds. P(E), estimated
by using the data from all subjects and tasks, was .5, while P(A) was .91.
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When we applied PARADISE to ELVIS experimental data to derive a perfor-
mance equation, we found that user perception of task completion (COMP,
p = .004), elapsed time (ET, p = .001) and mean recognition score (MRS, p
< .0001) were the factors that significantly contributed to user satisfaction:

Performance = 20N (COM P) + 45N (M RS) — 23N (ET)

COMP was a significant factor in predicting user satisfaction (rather than k)
because user’s perceptions of task completion sometimes varied from . It is
interesting to note that although task completion and efficiency have typically
been assumed to be the most important factors in a system’s success, the
relative magnitude in the performance equation of the coefficient for MRS,
a qualitative measure, is greater than the measures related to task success
(COMP) and the efficiency measure (ET).

Plugging our experimental data back into this performance function shows
that the mean performance of the system-initiative (SI) strategy is greater
than the mean performance of the mixed-initiative (MI) strategy. There
were two main reasons for this difference: the MI strategy was harder to
learn and MRS for MI was much lower on average. However, as we had
hypothesized, performance for MI increased over successive tasks as users’
expertise increased. We are continuing to explore how users’ expertise affects
performance of the MI strategy.

The TOOT experimental data consists of 4 tasks for each of 12 users, for
a total of 48 dialogues and 1344 turns. Average x over all subjects and tasks
was .81 and mean elapsed time was 267 seconds. P(E) (chance expected
agreement, estimated by using the data from all subjects and tasks) was
.05, indicating that the TOOT task was inherently more complex than the
ELVIS task. That is, in TOOT, it would have been harder to guess the
correct attribute values in the AVM scenario keys. Although P(A) averaged
over all subjects and tasks was .82 (in contrast to .91 for ELVIS), the & scores
indicate that TOOT and ELVIS in fact perform comparably with respect to
task success. This is because x adjusts P(A) to account for P(E).

The performance equation derived from the application of PARADISE
to the experimental data for TOOT shows that user’s perception of task
completion (COMP, p < .0002), mean recognition score (MRS, p < .003),
and the number of times that the user interrupted the system (Bargelns, p
< .0004) were significant factors:
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Performance = 45N (COM P) + 35N (M RS) — 42N (Bargelns)

Our performance function demonstrates that TOOT performance involves a
combination of task success and dialogue quality factors. It is interesting
to note that in the case of TOOT, none of the efficiency measures are sig-
nificant predictors of performance. Like the results from ELVIS, the results
from TOOT again draw into question the frequently made assumption that
efficiency is one of the most important measures of system performance.

Plugging the experimental TOOT data back into the derived performance
function shows that the mean performance scores of the literal and coopera-
tive dialogue strategies are not significantly different. As discussed in [Litman
et al., 1998], this reflects the fact that of the three (fairly equally weighted)
factors in the performance function, only COMP significantly differs across
the literal and cooperative presentation strategies.

Finally, remember that one of the major goals of PARADISE is the abil-
ity to make generalizations about factors that contribute to performance in
dialogue agents by combining data across applications. Performance function
estimation should be done iteratively over many different tasks and dialogue
strategies to see which factors generalize. In this way, the field can make
progress on identifying the relationship between various factors and can move
towards more predictive models of spoken dialogue agent performance.

Because the same measures were collected in ELVIS and TOOT, we can
make a first step towards generalization by combining the data from the two
experiments. When we combine the data, we find that COMP (p = .0001),
MRS (p < .0001), and ET (p = .0004) are significant:

Performance = 23N (COMP) + 43N (MRS) — 21N (ET)

Thus the factors that are important over both applications generalize the
factors that were shown to be important in the ELVIS data set, but the rela-
tive magnitude of the coefficients change when modeling the combined data
set, reflecting the strong contribution that COMP plays in the performance
model for TOOT.'® Interestingly, this performance equation demonstrates

15The fact that ET but not Bargelns generalizes across applications might also reflect the
fact that the combined dataset contains 144 ELVIS dialogues and only 48 TOOT dialogues.
In future work we will explore the use of sampling techniques to balance combined data.
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a trade-off between recognizer performance (MRS) and efficiency (ET) that
was noted in other work [Danieli and Gerbino, 1995]. Note again, that in
the generalized performance equation as in ELVIS, recognizer performance
contributes more to user satisfaction than efficiency, even though it has of-
ten been assumed that users care more about efficiency. Our hypothesis is
that people are not very accurate perceivers for efficiency measures such as
elapsed time. This would be consistent with other findings in the literature
on spoken dialogue interfaces and user interfaces in general [Geelhoed et al.,
1995]. Instead, we hypothesize that users are more attuned to qualitative as-
pects of the dialogue that are highly correlated with recognizer performance.
In particular, users may be particularly attuned to the confusion that re-
sults from misunderstandings and to requests to repeat what they have said.
Future work utilizing PARADISE in different tasks will attempt to verify
this hypothesis as well as develop other generalizations about performance
in spoken dialogue agents.

4 Using the Performance Equation

In Section 3 we showed how PARADISE could be used to evaluate different
versions of an agent and to make generalizations across different agents about
the factors that are critical predictors of performance. We did this by (1)
deriving a performance function for each agent, and then (2) by combining
experimental data across multiple agents and then deriving a performance
function for the combined data. Here we will show that once we have derived
a performance equation, that there are many ways in which we can use it.

4.1 Learning to Optimize Dialogue Strategy Choices

One potentially broad use of the PARADISE performance function is as
feedback to the agent. There are many stochastic optimization algorithms
that require an objective performance function to provide feedback to the
agent. These algorithms make it possible for the agent to learn how to
optimize its behavior automatically. Some possible algorithms are Genetic
Algorithms [Goldberg, 1989, Russell and Norvig, 1995], Q-learning [Watkins,
1989], TD-Learning [Tesauro, 1992], and Adaptive Dynamic Programming
[Bellman, 1957, Sutton, 1991, Russell and Norvig, 1995, Barto et al., 1995].
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The basic idea is to apply the performance function to any dialogues D; in
which the agent conversed with a user. Then each dialogue has an associated
real numbered performance value P;, which represents the performance of
the agent for that dialogue. If the agent can make different choices in the
dialogue about what to do in various situations, this performance feedback
can be used to help the agent learn automatically, over time, which choices
are optimal. Learning could be either on-line so that the agent tracks its
behavior on a dialogue by dialogue basis, or off-line where the agent collects
a lot of experience and then tries to learn from it.

In previous work, Walker proposed that the performance value P; can be
used as the agent fitness function in a genetic algorithm (a type of reinforce-
ment learning algorithm) [Walker, 1993]. Biermann and Long applied a type
of reinforcement learning algorithm to the selection of agent messages in a
speech-graphics Pascal tutor [1996]. Levin and Pieraccini[1997] pointed out
that dialogue must be characterized as a Markov Decision Process in order
to apply reinforcement learning.

In each case, the performance value P; is used as a ‘fitness function’ or a
‘reward’ in algorithms that assign a utility to the dialogue strategy choices
that the agent made in that dialogue. The basis of such algorithms is the
Maximum Expected Utility Principle:

Maximum Expected Utility Principle: An optimal action is
one that maximizes the expected utility of outcome states.

In principle, this approach would allow the agent to learn how to optimize
over a large set of actions (dialogue strategy choices). Here, we illustrate the
approach by applying Adaptive Dynamic Programming to the trivial problem
of deciding whether ELVIS’s system-initiative strategy or mixed-initiative
strategy is more optimal. In this case, we already know that the system-
initiative strategy is more optimal: the point here is simply to illustrate the
method. See [Walker et al., 1998b] for experiments on more complex action
choices.

Calculating the optimal action via Adaptive Dynamic Programming is
based on the following recursive equation, which is the basis for dynamic
programming [Bellman, 1957]:

U(S;) = R(S:) + maaXZMZU(Sj)
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where 5;, 5 are states that the agent can be in, 5; is a successor state to state
Si, U(S;) is the utility of state S;, R(.S;) is a reward associated with being in
state S;, and M; is the probability of reaching state \5; if action a is taken in
state 5;. The state transition model M is learned from direct observations
of transitions in the state/action history sequences that are logged as a set
of dialogues are collected.

Value Iteration is the process of updating the estimate of U(S;), based
on updated utility estimates for neighboring states, i.e. the equation above
becomes:

Uir1(S;) = —I—maXZM“ Ui(S

where U;(.5;) is the utility estimate for state SZ' after t iterations. The perfor-
mance value P;, calculated by applying the PARADISE performance equa-
tion, is used as the utility for the final states of the dialogue. Value iteration
stops when the difference between U;(.S;) and U;41(5;) is below a threshold,
and utility values have been associated with the earlier states in the dia-
logue, in which various action (strategy) selections were made. The result of
value iteration is a table, specifying for each state 5;, the action A; that will
maximize the expected utility of the agent.

The result of applying the ADP algorithm to the choice that ELVIS makes
between system and mixed initiative is illustrated in Figure 5. At the end
of 108 training sessions (dialogues), U(system-initiative) is estimated at .39
and U(mixed-initiative) is estimated at -.43.

We are currently applying these techniques to optimize choice of presen-
tation strategies for summarizing email folders in ELVIS and schedule tables

in TOOT and for reading email messages in ELVIS [Walker et al., 1998b].

4.2 Making Predictions

Another potentially broad use of the PARADISE performance function is to
use it as a predictive model that can be both validated and refined by further
experiments. For example, recall the performance equation derived from the

combined ELVIS and TOOT data:
Performance = 23N (COMP) + 43N (MRS) — 21N (ET)

This equation, which states that mean recognition score (MRS) is the most
important contributor to performance, yielded the best fit to our data. Thus,
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one prediction we can make from this equation is that if we can improve mean
recognition score (especially if we can do so without decreasing the value of
COMP or increasing ET), then we can increase performance by some amount.

One way that this prediction could be validated would be to replace the
recognizer used in our implementation platform with an improved version
(i.e., one that yielded a higher mean recognition score), rerun our experiments
with new users, and confirm that performance does indeed increase by the
predicted amount. Unfortunately we do not currently have access to a better
speech recognizer, so cannot perform these experiments at this time.

However, even without changing our speech recognizer, we believe that
we can still improve mean recognition score, by changing various dialogue
behaviors of our agents. For example, the mean recognition score in the
system-initiative version of ELVIS is higher than in the mixed-initiative ver-
sion [Walker et al., 1997a]. It has also been suggested that by changing the
wording of reprompts, user inputs can be elicited that are less likely to be
misrecognized [Boyce and Gorin, 1996].

These observations have motivated our current work - the development
of adaptive versions of ELVIS and TOOT, that can recognize poor speech
recognition performance and change future dialogue behavior accordingly.
In particular, our research involves the development of a classifier for “prob-
lematic” dialogues (with respect to speech recognition), and the use of this
classifier to determine when to adapt an agent’s dialogue behavior (e.g., to
change from a more natural mixed-initiative dialogue strategy to a system-
initiative strategy). We predict that this ability to recognize and respond
to poor speech recognition will yield higher mean recognition scores, and
based on the performance equation shown above, higher agent performance.
We will test this prediction by using PARADISE to evaluate adaptive and
non-adaptive versions of ELVIS and TOOT.

5 Discussion

This paper presented the PARADISE framework for evaluating spoken dia-
logue agents, and illustrated its application in two case studies. The PAR-
ADISE performance measure is a function of both task success and dialogue
costs. The methodology for deriving this performance measure from data
consists of the following steps:
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e definition of a task and a set of scenarios;

e specification of the AVM task representation;

e experiments with alternate dialogue agents for the task;

o calculation of user satisfaction using surveys;

e calculation of task success using &;

o calculation of dialogue cost using efficiency and qualitative measures;

e estimation of a performance function using linear regression and values
for user satisfaction, x and dialogue costs;

e application of the performance function to experimental performance
data to compare performance differences among agent strategies, tasks,
or other experimental variables;

e comparison with other agents/tasks to determine which factors gener-
alize;

e refinement of the performance model.

The PARADISE framework has a number of advantages compared to
previous work. First, PARADISE supports comparisons among dialogue
strategies, with a task representation that decouples what an agent needs
to achieve in terms of the task requirements from how the agent carries out
the task via dialogue. Second, because PARADISE’s task success measure x
normalizes for task complexity, PARADISE provides a basis for comparing
agents performing different tasks. Because x depends on P(A) and P(A) mea-
sures the percentage of attributes that were acquired correctly, our success
measure is not binary (i.e., all or none), but rather can reflect partial success
at achieving a task. Third, PARADISE supports performance evaluation at
any level of a dialogue, because task success and dialogue costs can be calcu-
lated for any dialogue subtask. Because performance can be measured over
any subtask and dialogue strategies can range over subdialogues or the whole
dialogue, performance can be associated with individual dialogue strategies.
Fourth, the PARADISE performance function combines success measures
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with both objective and subjective cost measures, and specifies how to quan-
tify the relative contributions of these measures to overall performance. To
our knowledge, we are the first to propose using user satisfaction to determine
weights on factors related to performance.

In addition, the PARADISE framework is broadly integrative, incorporat-
ing aspects of transaction success, concept accuracy, multiple cost measures,
and user satisfaction. In PARADISE, transaction success is reflected in x,
corresponding to dialogues with a P(A) of 1. The PARADISE performance
measure also captures information similar to concept accuracy, where low
concept accuracy scores translate into either higher costs for acquiring infor-
mation from the user, or lower « scores.

One limitation of the PARADISE approach is that the current task-based
success measure does not handle the possibility that some solutions might
be better than others. For example, in the train timetable domain, we might
like our task-based success measure to give higher ratings to agents that sug-
gest express over local trains, or that provide helpful information that was
not explicitly requested, especially since the better solutions might occur in
dialogues with higher costs. It might be possible to address this limitation by
using the interval scaled data version of x [Krippendorf, 1980]. Another pos-
sibility is to simply substitute a domain-specific task-based success measure
in the performance model for k.

Our approach also does not make a distinction between providing a wrong
solution and a failure to provide a solution. Subsequently we did not address
what the impact would be of providing a wrong solution (or likewise a failure
to provide a solution) to user satisfaction.

Another possible limitation is that PARADISE currently models perfor-
mance as a linear combination of task success and dialogue costs. This choice
was made because « and costs appear to be both additive independent and
utility independent [Keeney and Raiffa, 1976]). However, it is possible that
user satisfaction data collected in future experiments (or other data such as
willingness to pay or use) would indicate otherwise. If so, continuing use of
an additive function might require a transformation of the data, a reworking
of the model shown in Figure 1, or the inclusion of interaction terms in the
model [Cohen, 1995].

We believe that the evaluation model presented here has many appli-
cations in spoken dialogue processing, and that the framework is also ap-
plicable to other dialogue modalities, and to human-human task-oriented
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dialogues. In addition, while there are many proposals in the literature for
algorithms for dialogue strategies that are cooperative, collaborative or help-
ful to the user [Webber and Joshi, 1982, Pollack et al., 1982, Joshi et al., 1984,
Chu-Carroll and Carberry, 1995], very few of these strategies have been evalu-
ated as to whether they improve any measurable aspect of a dialogue interac-
tion. As we have demonstrated here, any dialogue strategy can be evaluated,
so it should be possible to show that a cooperative response, or other co-
operative strategy, actually improves task performance by reducing costs or
increasing task success. We hope that this framework will be broadly applied
in future dialogue research.
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7 Appendix

The AVM representation introduced in section 2.1 can be extended using the
entity relationship model to handle multiple right answers. As an illustration
we will use the task scenario depicted in Table 6. Figure 6 depicts the scheme
for this task.

Figure 7 illustrates the instantiation of the task scheme shown in figure 6.

This representation is a formal extension of the AVM and can be used
to handle multiple answers. The added advantage of this representation is
that the information can be organized very systematically into a relational
database (Sybase, Oracle, etc.), analyzed and easily accessed for evaluation
purposes.

References

[Abella et al., 1996] Alicia Abella, Michael K Brown, and Bruce Buntschuh.

33



Development principles for dialog-based interfaces. In FCAI-96 Spoken
Dialog Processing Workshop, Budapest, Hungary, 1996.

[Allen and Perrault, 1980] James F. Allen and C. Raymond Perrault. Ana-
lyzing intention in utterances. Artificial Intelligence, 15:143-178, 1980.

[Barto et al., 1995] A.G. Barto, S. J. Bradtke, and S. P. Singh. Learning to
act using real-time dynamic programming. Artificial Intelligence Journal,

72(1-2):81-138, 1995.

[Bates and Ayuso, 1993] Madeleine Bates and Damaris Ayuso. A proposal
for incremental dialogue evaluation. In Proceedings of the DARPA Speech
and NL Workshop, pages 319-322, 1993.

[Bellman, 1957] Richard E. Bellman. Dynamic Programming. Princeton Uni-
versity Press, Princeton, N.J., 1957.

[Bernsen et al., 1996] Niels Ole Bernsen, Hans Dybkjaer, and Laila Dybk-
jaer. Principles for the design of cooperative spoken human-machine dia-

logue. In International Conference on Spoken Language Processing, [CSLP
96, pages 729-732, 1996.

[Biermann and Long, 1996] A. W. Biermann and Philip M. Long. The com-
position of messages in speech-graphics interactive systems. In Proceedings
of the 1996 International Symposium on Spoken Dialogue, pages 97-100,
1996.

[Boyce and Gorin, 1996] S. Boyce and A. L. Gorin. User interface issues for
natural spoken dialogue systems. In Proceedings of ISSD, pages 65—68,
1996.

[Carberry, 1989] S. Carberry. Plan recognition and its use in understanding
dialogue. In A. Kobsa and W. Wahlster, editors, User Models in Dialogue
Systems, pages 133-162. Springer Verlag, Berlin, 1989.

[Carletta, 1996] Jean C. Carletta. Assessing the reliability of subjective cod-
ings. Computational Linguistics, 22(2):249-254, 1996.

[Chu-Carroll and Carberry, 1995] Jennifer Chu-Carroll and Sandra Car-

berry. Response generation in collaborative negotiation. In Proceedings

34



of the Conference of the 33rd Annual Meeting of the Association for Com-
putational Linguistics, pages 136-143, 1995.

[Ciaremella, 1993] A. Ciaremella. A prototype performance evaluation re-

port. Technical Report Project Esprit 2218 SUNDIAL, WP8000-D3, 1993.

[Cohen, 1995] Paul R. Cohen. Empirical Methods for Artificial Intelligence.
MIT Press, Boston, 1995.

[Danieli and Gerbino, 1995] M. Danieli and E. Gerbino. Metrics for eval-
uating dialogue strategies in a spoken language system. In Proceedings
of the 1995 AAAI Spring Symposium on Empirical Methods in Discourse
Interpretation and Generation, pages 34-39, 1995.

[Danieli et al., 1992] M. Danieli, W. Eckert, N. Fraser, N. Gilbert, M. Guy-
omard, P. Heisterkamp, M. Kharoune, J. Magadur, 5. McGlashan,

D. Sadek, J. Siroux, and N. Youd. Dialogue manager design evaluation.

Technical Report Project Esprit 2218 SUNDIAL, WP6000-D3, 1992.

[Doyle, 1992] Jon Doyle. Rationality and its roles in reasoning. Computa-
tional Intelligence, 8(2):376-409, 1992.

[Fraser, 1995] Norman M. Fraser. Quality standards for spoken dialogue
systems: a report on progress in EAGLES. In ESCA Workshop on Spoken
Dialogue Systems Vigso, Denmark, pages 157-160, 1995.

[Gale et al., 1992] William Gale, Ken W. Church, and David Yarowsky. Es-
timating upper and lower bounds on the performance of word-sense dis-
ambiguation programs. In Proc. of 30th ACL, pages 249-256, Newark,
Delaware, 1992.

[Geelhoed et al., 1995] Erik Geelhoed, Peter Toft, Suzanne Roberts, and
Patrick Hyland. To influence time perception. In Proceedings of the Con-
ference on Computer Human Interaction, 1995.

[Goddeau et al., 1996] David Goddeau, Helen Meng, Joe Polifroni,
Stephanie Seneff, and Senis Busayapongchai. A form-based dialogue man-
ager for spoken language applications. In Fourth International Conference
on Spoken Language Processing, 1996.

35



[Goldberg, 1989] David Goldberg. Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison—Wesley, 1989.

[Grice, 1967] H. P. Grice. Logic and conversation. 1967.

[Grosz and Sidner, 1986] Barbara J. Grosz and Candace L. Sidner. Atten-
tions, intentions and the structure of discourse. Computational Linguistics,

12:175-204, 1986.

[Hirschberg and Nakatani, 1996] Julia Hirschberg and Christine Nakatani. A
g g
prosodic analysis of discourse segments in direction-giving monologues. In

34th Annual Meeting of the Association for Computational Linguistics,
pages 286-293, 1996.

[Hirschman and Pao, 1993] Lynette Hirschman and Christine Pao. The cost
of errors in a spoken language system. In Proceedings of the Third European

Conference on Speech Communication and Technology, pages 1419-1422,
1993.

[Hirschman et al., 1990] Lynette Hirschman, Deborah A. Dahl, Donald P.
McKay, Lewis M. Norton, and Marcia C. Linebarger. Beyond class A:
A proposal for automatic evaluation of discourse. In Proceedings of the
Speech and Natural Language Workshop, pages 109-113, 1990.

[Hirschman et al., 1993] L. Hirschman, M. Bates, D. Dahl, W. Fisher,
J. Garofolo, D. Pallett, K. Hunicke-Smith, P. Price, A. Rudnicky, and
E. Tzoukermann. Multi-site data collection and evaluation in spoken lan-

guage understanding. In Proceedings of the Human Language Technology
Workshop, pages 19-24, 1993.

[Joshi et al., 1984] Aravind K. Joshi, Bonnie L. Webber, and Ralph M.
Weischedel. Preventing false inferences. In COLINGS84: Proc. 10th Inter-
national Conference on Computational Linguistics, pages 134-138, 1984.

[Kamm et al., 1997] Candace Kamm, Shrikanth Narayanan, Dawn Dutton,
and Russell Ritenour. Evaluating spoken dialog systems for telecommu-
nication services. In 5th Furopean Conference on Speech Technology and

Communication, FEUROSPEECH 97, 1997.

36



[Kamm, 1995] Candace Kamm. User interfaces for voice applications. In
David Roe and Jay Wilpon, editors, Voice Communication between Hu-
mans and Machines, pages 422-442. National Academy Press, 1995.

[Keeney and Raiffa, 1976] Ralph Keeney and Howard Raiffa. Decisions with
Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and
Sons, 1976.

[Korth, 1991] Henry F. Korth. Database System Concepts. McGraw-Hill,
1991.

[Krippendorf, 1980] Klaus Krippendorf. Content Analysis: An Introduction
to its Methodology. Sage Publications, Beverly Hills, Ca, 1980.

[Lee, 1988] Kai-Fu Lee. Large Vocabulary Speaker-Independent Continous
Speech Recognizer: the Sphinx System. PhD thesis, 1988.

[Levin and Pieraccini, 1997] E. Levin and R. Pieraccini. A stochastic model
of computer-human interaction for learning dialogue strategies. In EU-

ROSPEECH 97, 1997.

[Litman and Allen, 1990] Diane Litman and James Allen. Recognizing and
relating discourse intentions and task-oriented plans. In Philip Cohen,
Jerry Morgan, and Martha Pollack, editors, Intentions in Communication.

MIT Press, 1990.

[Litman et al., 1998] Diane Litman, Shimei Pan, and Marilyn Walker. Eval-
uating Response Strategies in a Web-Based Spoken Dialogue Agent. In
Proceedings of ACL/COLING 98: 36th Annual Meeting of the Associa-
tion of Computational Linguistics, 1998.

[Meng et al., 1996] Helen Meng, Senis Busayapongchai, James Glass, Dave
Goddeau, Lee Hetherington, Ed Hurley, Christine Pao, Joe Polifroni,
Stephanie Seneff, and Victor Zue. Wheels: A conversational system in
the automobile classifieds domain. In Proceedings of the Fourth Interna-
tional Conference on Spoken Languaggge Processing, 1996.

[Pallett, 1985] David S. Pallett. Performance assessment of automatic speech

recognizers. J. Res. Natl. Bureau of Standards, 90:371-387, 1985.

37



[Passonneau and Litman, 1997] Rebecca J. Passonneau and Diane Litman.
Discourse segmentation by human and automated means. Computational

Linguistics, 23(1), 1997.

[Pieraccini et al., 1997] Roberto Pieraccini, Esther Levin, and Wieland Eck-
ert. AMICA: The AT&T mixed initiative conversational architecture. In
Furospeech, 1997.

[Polifroni et al., 1992] Joseph Polifroni, Lynette Hirschman, Stephanie Sen-
eff, and Victor Zue. Experiments in evaluating interactive spoken language
systems. In Proceedings of the DARPA Speech and NL Workshop, pages
28-33, 1992.

[Pollack et al., 1982] Martha Pollack, Julia Hirschberg, and Bonnie Webber.
User participation in the reasoning process of expert systems. In Pro-

ceedings First National Conference on Artificial Intelligence, pages pp.
358-361, 1982.

[Price et al., 1992] Patti Price, Lynette Hirschman, Elizabeth Shriberg, and
Elizabeth Wade. Subject-based evaluation measures for interactive spoken
language systems. In Proceedings of the DARPA Speech and NL Workshop,
pages 34-39, 1992.

[Rabiner et al., 1996] L. R. Rabiner, B. H. Juang, and C. H. Lee. An
overview of automatic speech recognition. In C. H. Lee, F. K. Soong,
and K. K. Paliwal, editors, Automatic Speech and Speaker Recognition,
Advanced Topics, pages 1-30. Kluwer Academic Publishers, 1996.

[Ralston et al., 1995] J. V. Ralston, D. B. Pisoni, , and John W. Mullen-
nix. Perception and comprehension of speech. In Syrdal, Bennet, and
Greenspan, editors, Applied Speech Technology, pages 233-287. CRC Press,
1995.

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig. Artificial Intel-
ligence: A Modern Approach. Prentiss Hall, Englewood Cliffs, N.J., 1995.

[Seneff et al., 1995] Stephanie Seneff, Victor Zue, Joseph Polifroni, Christine
Pao, Lee Hetherington, David Goddeau, and James Glass. The prelimi-
nary development of a displayless PEGASUS system. In ARPA Spoken
Language Technology Workshop, 1995.

38



[Shriberg et al., 1992] Elizabeth Shriberg, Elizabeth Wade, and Patti Price.
Human-machine problem solving using spoken language systems (SLS):
Factors affecting performance and user satisfaction. In Proceedings of the

DARPA Speech and NL Workshop, pages 49-54, 1992.

[Siegel and Castellan, 1988] Sidney Siegel and N. J. Castellan. Nonparamet-
ric Statistics for the Behavioral Sciences. McGraw Hill, 1988.

[Simpson and Fraser, 1993] A. Simpson and N. A. Fraser. Black box and
glass box evaluation of the SUNDIAL system. In Proceedings of the Third
FEuropean Conference on Speech Communication and Technology, pages

1423-1426, 1993.
[Smith and Gordon, 1997] Ronnie W. Smith and Steven A. Gordon. Effects

of variable initiative on linguistic behavior in human-computer spoken nat-
ural language dialog. Computational Linguistics, 23(1), 1997.

[Smith and Hipp, 1994] Ronnie W. Smith and D. Richard Hipp. Spoken Nat-
ural Language Dialog Systems: A Practical Approach. Oxford University
Press, 1994.

[Sparck-Jones and Galliers, 1996] Karen Sparck-Jones and Julia R. Galliers.
FEvaluating Natural Language Processing Systems. Springer, 1996.

[Sproat and Olive, 1995] R. Sproat and J. Olive. An approach to text-to-
speech synthesis. In W. B. Kleijn and K. K. Paliwal, editors, Speech Coding
and Synthesis, pages 611-633. Elsevier, 1995.

[Sutton, 1991] Richard S. Sutton. Planning by incremental dynamic pro-
g
gramming. In Proceedings Ninth Conference on Machine Learning, pages

353-357. Morgan-Kaufmann, 1991.

[Tesauro, 1992] G. Tesauro. Practical Issues in Temporal Difference Learn-

ing. Machine Learning, 8(3-4):257-277, 1992.
[Walker and Whittaker, 1990] Marilyn A. Walker and Steve Whittaker.

Mixed initiative in dialogue: An investigation into discourse segmenta-

tion. In Proc. 25th Annual Meeting of the ACL, pages 70-79, 1990.

39



[Walker et al., 1997a] Marilyn Walker, Donald Hindle, Jeanne Fromer,
Giuseppe Di Fabbrizio, and Craig Mestel. Evaluating competing agent
strategies for a voice email agent. In Proceedings of the Furopean Confer-

ence on Speech Communication and Technology, FUROSPEECH97, 1997.

[Walker et al., 1997b] Marilyn A. Walker, Diane Litman, Candace Kamm,
and Alicia Abella. PARADISE: A general framework for evaluating spo-
ken dialogue agents. In Proceedings of the 35th Annual Meeting of the
Association of Computational Linguistics, ACL/EACL 97, pages 271-280,
1997.

[Walker et al., 1998a] Marilyn Walker, , Jeanne Fromer, Giuseppe Di Fab-
brizio, Craig Mestel, and Donald Hindle. What can I say: Evaluating a
spoken language interface to email. In Proceedings of the Conference on

Computer Human Interaction (CHI 98), 1998.
[Walker et al., 1998b] Marilyn Walker, Jeanne Fromer, and Shrikanth

Narayanan. Learning optimal dialogue strategies: A case study of a spo-
ken dialogue agent for email. In ACL/COLING98: Proceedings of the 36th
Annual Meeting of the Association of Computational Linguistics, 1998.

[Walker, 1989] Marilyn A. Walker. Evaluating discourse processing algo-
rithms. In Proc. 27th Annual Meeting of the Association of Computational
Linguistics, pages 251-261, 1989.

[Walker, 1993] Marilyn A. Walker. Informational Redundancy and Resource
Bounds in Dialogue. PhD thesis, University of Pennsylvania, 1993.

[Walker, 1996] Marilyn A. Walker. The Effect of Resource Limits and Task
Complexity on Collaborative Planning in Dialogue. Artificial Intelligence
Journal, 85(1-2):181-243, 1996.

[Watkins, 1989] C. J. Watkins. Models of Delayed Reinforcement Learning.
PhD thesis, Cambridge University, 1989.

[Webber and Joshi, 1982] Bonnie Webber and Aravind Joshi. Taking the
initiative in natural language database interaction: Justifying why. In

Coling 82, pages 413-419, 1982.

40



MAXIMIZE USER SATISFACTION

MAXIMIZE TASK
SUCCESS MINIMIZE COSTS
KAPPA
EFFICIENCY QUALITATIVE
MEASURES MEASURES

AGENT RESPONSE DELAY
INAPPROPRIATE UTTERANCE RATIO
REPAIRRATIO
ETC.

NUMBER UTTERANCES
DIALOGUE TIME
ETC.

Figure 1: PARADISE’s structure of objectives for spoken dialogue perfor-
mance
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attribute possible values information flow
depart-city (DC) Milano, Roma, Torino, Trento to agent
arrival-city (AC) Milano, Roma, Torino, Trento to agent
depart-range (DR) | morning,evening to agent
depart-time (DT) | 6am,8am,6pm,8pm to user

Table 1: Attribute value matrix, simplified train timetable domain
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Al: Hello, This is Train Enquiry Service. DC,AC,DR,DT

Please speak after the tone. DC,AC,DR,DT
Which information do you need? DC,AC,DR,DT
Ul: I want to go from Torino to Milano. DC,AC
A2: Do you want to go from Trento to Milano? DC,AC
Yes or No? DC,AC
U2: No. DC,AC
A3: Do you want to leave from Trento? DC
Yes or No? DC
U3: No. DC
A4:  Where do you want to leave from? DC
U4: 1 want to leave from Torino. DC
Ab: Do you want to leave from Torino? DC
Yes or No? DC
Ub:  VYes. DC
A6: Do you want to go to Milano? AC
U6:  VYes. AC
A7: At which time do you want to leave? DR
U7: I want to travel in the evening. DR
A8: Do you want to leave between 6 and 9 p.m.? DR
Yes or No? DR
U8:  Yes. DR
A9: There is a train leaving at 8:00 p.m. DT

Figure 2: Extended Dialogue 1 (D1): Agent A dialogue interaction (Danieli
and Gerbino, 1995)
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B1: Hello, This is Train Enquiry Service. DC,AC,DR,DT

Please speak after the tone. DC,AC,DR,DT
Which information do you need? DC,AC,DR,DT
Ul: I want to travel from Torino to Milano. DC,AC
B2: At which time do you want to leave from Merano to Milano? DC,AC,DR
U2: No, I want to leave from Torino in the evening. DC, DR
B3: Do you want to leave from Torino between 6 and 11 p.m? DC, DR
Please answer Yes or No. DC, DR
U3:  VYes. DC, DR
B4: A train leaves at 8 p.m. DT

Figure 3: Extended Dialogue 2 (D2): Agent B dialogue interaction (Danieli
and Gerbino, 1995)
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attribute actual value
depart-city Torino
arrival-city Milano
depart-range | evening
depart-time | 8pm

Table 2: Attribute value matrix instantiation, scenario key for Dialogues 1
and 2
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KEY

DEPART-CITY

ARRIVAL-CITY

DEPART-RANGE

DEPART-TIME

DATA

vl v2 v3 v4

vh v6 v7 v8

v9 v10

vll v12 vli3 vl4

vl
v2
v3
v4

22 1
29

_
—_
o
[
[

3

v5
v6
v7
v8

20

v9
v10

45 10

vll
v12
vl3
vl4

sum

30 30 25 15

25 25 30 20

50 50

Table 3: Confusion matrix, Agent A
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KEY

DEPART-CITY ARRIVAL-CITY DEPART-RANGE DEPART-TIME
DATA vl v2Z v3 v4 v5 v6 v7 v8 v9 vi0 | vll  v12 v13 vl4

vl 16 1 4 3 2

v2 1 20 1 3

v3 5 1 9 4 2 4 2

v4 1 2 6 6 2 3

vh 4 15 2 3

v6 1 6 19

v7 5 2 1 1 15 4

v8 1 3 3 1 2 9 11

v9 2 39 10
v10 6 35
vll 20 5 5 4
v12 10 5 5
vl3 5 5 10 5
vl4 5 5 11
sum 30 30 25 15 25 25 30 20 50 50 25 25 25 25

Table 4:
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SEGMENT: &1

GOALS. DC,AC,DR DT
UTTERANCES AL.A9
SEGMENT: & SEGMENT: & SEGMENT: 6
GOALS DC,AC GOALS DR GOALS DT

UTTERANCES: UL..U6 UTTERANCES: A7..U8 UTTERANCES. A9

A\ A\

SEGMENT: S8 SEGMENT: 4
GOALS DC GOALS AC
UTTERANCES: A3..Us UTTERANCES A6..U6

Figure 4: Task-defined discourse structure of Agent A dialogue interaction
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user | agent | US | & c1 (#utt) | g (F#rep)

1 A 171 46 30

2 A 2|1 50 30

3 A 2|1 52 30

4 A 311 40 20

5 A 411 23 10

6 A 2|1 50 36

7 A 11]0.46 75 30

8 A 110.19 60 30

9 B 6|1 8 0

10 B 511 15 1

11 B 6|1 10 0.5

12 B 511 20 3

13 B 110.19 45 18

14 B 11]0.46 50 22

15 B 210.19 34 18

16 B 21 0.46 40 18
Mean(A) A 21083 49.5 27
Mean(B) B| 3.5 066 27.8 10.1
Mean NA | 2.75 | 0.75 38.6 18.5
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Table 5: Hypothetical performance data from users of Agents A and B




attribute actual value
Selection Criteria | Kim V Meeting
Email.attl 10:30
Email.att2 2D516

Table 6: Attribute value matrix instantiation, email scenario key for TASK
1.1
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user | task | agent state/strategy choices | US | & ET | STs | TOs | MRS | ......
1 1 SI:A1,17 SQ:A2717 .......... 24 1.0 220 18 15 90 | ...

1 2 SI:A1,17 SQ:A2717 .......... 27 .80 180 24 16 79

1 5 2 O e Y N AN K RRVOOUPIN

48 5 2 O e Y N AN E RRVOOUPIN

Table 7: Form of Logged Information about Strategy Choices and Perfor-
mance Metrics for a PARADISE Case Study: US = User Satisfaction, ET
= Elapsed Time, Sts = System Turns, TOs = Timeout Prompts, MRS =
Mean Recognition Score
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Utilities for SI and MI over Training Sessions

1.0

Utility
0.0

-0.5

-1.0

0 20 40 60 80 100
Training Instances (Dialogues)

Figure 5: Results of applying Adaptive Dynamic Programming to ELVIS

data for 108 Dialogues. S=Utility of System Initiative Strategy (SI).
M=Utility of Mixed Initiative Strategy (MI).
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task_id: int

4 I\
task_id: int
instantiation_id: int

selection criteria: string
email_attl: time
email_att2: string

- J

Figure 6: Scheme for the email scenario key for TASK 1.1
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task-id
1

task-id | instantiation-id | selection criteria | Email.attl | Email.att2

1 1 Kim 10:30 2D516

1 2 Meeting 10:30 2D516

Figure 7: Scheme instantiation for the email scenario key for TASK 1.1
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