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Abstract

In addition to ordinary words and names, real text contains non-standard “words”
(NSWs), including numbers, abbreviations, dates, currency amounts and
acronyms. Typically, one cannot find NSWs in a dictionary, nor can one find their
pronunciation by an application of ordinary “letter-to-sound” rules. Non-standard
words also have a greater propensity than ordinary words to be ambiguous with
respect to their interpretation or pronunciation. In many applications, it is
desirable to “normalize” text by replacing the NSWs with the contextually
appropriate ordinary word or sequence of words. Typical technology for text
normalization involves sets of ad hoc rules tuned to handle one or two genres of
text (often newspaper-style text) with the expected result that the techniques do
not usually generalize well to new domains. The purpose of the work reported
here is to take some initial steps towards addressing deficiencies in previous
approaches to text normalization.

We developed a taxonomy of NSWs on the basis of four rather distinct text
types—news text, a recipes newsgroup, a hardware-product-specific newsgroup,
and real-estate classified ads. We then investigated the application of several
general techniques including n-gram language models, decision trees and
weighted finite-state transducers to the range of NSW types, and demonstrated
that a systematic treatment can lead to better results than have been obtained by
the ad hoc treatments that have typically been used in the past. For abbreviation
expansion in particular, we investigated both supervised and unsupervised
approaches. We report results in terms of word-error rate, which is standard in
speech recognition evaluations, but which has only occasionally been used as an
overall measure in evaluating text normalization systems.
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1. Introduction

All areas of language and speech technology must deal, in one way or another, with real text.
In some cases the dependency is direct: for instance, machine translation, topic detection or
text-to-speech systems start with text as their input. In other cases the dependency is indirect:
automatic speech recognizers usually depend on language models that are trained on text. In
the ideal world, text would be “clean” in the sense that it would consist solely of fully spelled
words and names, and furthermore these spellings would be unambiguous, so that it would
be straightforward to reconstruct from the written form which exact word was intended. Un-
fortunately, written language deviates from this ideal in two important ways. First, in most
if not all languages there is ambiguity even for ordinary words: if we writebass, it is up
to you as the reader to figure out from the context whether we meantbassthe fish, orbass
the musical instrument. Second, in most genres of text, many things one finds in the text are
not ordinary words. These include: numbers and digit sequences of various kinds; acronyms
and letter sequences in all capitals; mixed case words (WinNT, SunOS); abbreviations; Ro-
man numerals; universal resource locators (URLs) and e-mail addresses. Such “non-standard
words”—NSWs—as we shall henceforth call them, are the topic of this paper.

NSWs are different from standard words in a number of important respects. First of all,
the rules for pronouncing NSWs are mostly very different from the rules for pronouncing
ordinary words. For numbers, for example, one typically needs a specialized module that
knows how to expand digit sequences into number names, spelled as ordinary words. For
abbreviations such asPvt (Private) one needs, in effect, to recover the missing letters and
then pronounce the resulting word. Secondly, most NSWs will not be found in dictionaries,
so that one cannot expect simply to look up their properties in a list; nor can one derive
them morphologically from words that are in a dictionary. What is worse is that even when
one does find a dictionary that includes such items—for example, a dictionary of common
abbreviations—the entries can often be misleading due to the third property, namely that
NSWs have a much higher propensity than ordinary words to be ambiguous. This ambiguity
often affects not only what the NSWs denote, but also how they are read. Thus, depending
upon the context in which it occurs, the correct reading ofIV could befour, fourth or I. V.
(for intravenous); IRA could be read asI.R.A. (if it denotes theIrish Republican Army) or
else, for many speakers,Ira (if it denotes anIndividual Retirement Account). 1750could be
seventeen fiftyas a date or building number, orseventeen hundred (and) fifty(or one thousand
seven hundred (and) fifty) as a cardinal number.

The particular problems these properties present for speech and language systems depend,
of course, upon the nature of the system. For text-to-speech (TTS) systems, the primary
consideration is how the NSW is pronounced. This is true also for automatic speech recog-
nition (ASR) since ASR systems depend upon language models trained on text, and these
models should reflect what people say, not merely what tokens exist in the text. (Note that
as techniques for using out-of-domain language model training data improve, methods for
extracting from text what people would say—not merely what is in the text—will be increas-
ingly important for utilizing the vast amounts of on-line text resources.) For topic detection,
machine translation or information extraction systems, the most important consideration will
be what the NSW denotes: in the given context is1750a number or a date? DoesIRA mean
Irish Republican Armyor Individual Retirement Account? Note, in particular, that in infor-
mation extraction, many important pieces of information that one might want to detect, such
as dates, currency amounts or organization names will often or even typically be written as
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NSWs; it is presumably worth knowing, if one is looking for the organization name IRA, that
the particular instance one is looking at in fact denotes the IRA.

For all of these reasons, text normalization—or the conversion of NSWs into standard
words—is an important problem. It is also quite a complex problem, due to the range of
different kinds of NSWs, the special processing required for each case, and the propensity
for ambiguity among NSWs as a class. Unfortunately, text normalization is not a problem
that has received a great deal of attention, and approaches to it have been mostly ad hoc: to
put the issue somewhat bluntly, text normalization seems to be commonly viewed as a messy
chore. In the TTS literature, text normalization is often presented (if at all) in a cursory
chapter or paragraph, before going on to address the more interesting issues of unit selection,
or intonational modeling. In ASR the issue is rarely discussed at all: text normalization has
to be addressed, of course, in order to make use of real text in language model training, but it
is typically handled via ad hoc scripts that are not considered worth writing about. One of the
consequences of this lack of systematic attention is the fact that we do not even have a good
taxonomy of NSWs, so that it may not be immediately clear to someone approaching the
problem of text normalization for the first time what the range of problems to be addressed
is.

The purpose of the work reported here is to address these deficiencies in previous ap-
proaches. We developed a taxonomy of NSWs on the basis of four rather distinct text types—
news text, a recipes newsgroup, a hardware-product-specific newsgroup, and real-estate clas-
sified ads. We then investigated the application of several general techniques (in combination)
including n-gram language models, decision trees and weighted finite-state transducers to the
entire range of NSW types, and demonstrated that a systematic treatment of such cases can
lead to better results than have been obtained by the spottier ad hoc treatments that have more
typically been used in the past. We also employed more systematic procedures for evaluating
performance than has heretofore generally been used in the text normalization literature.

The specific contributions of this research are:

• A proposal for ataxonomyof NSWs based on the examination of a diverse set of
corpora and the NSWs contained therein.
• Hand-tagged corpora from several specific domains: North American News Text Cor-

pus; real estate classified ads;
rec.food.recipes newsgroup text;pc110 newsgroup text. Some of these are pub-
licly available under various conditions: seeBlack, Sproat and Chen(2000) for a cur-
rent list of what is available.
• An implemented set of methods for dealing with the various classes of NSWs. These

include:

— A splitter for breaking up single tokens that need to be split into multiple tokens:
e.g.2BR,2·5BAshould be split into2 BR, 2·5 BA.

— A classifier for determining the most likely class of a given NSW.
— Methods for expanding numeric and other classes that can be handled “algorith-

mically”.
— Supervised and unsupervised methods for designing domain-dependent abbrevi-

ation expansion modules: the supervised methods presume that one has a tagged
corpus for the given domain; the unsupervised methods presume that all one has
is raw text.



290 R. Sproatet al.

• A publicly available set of tools for text normalization that incorporate these methods.
Again seeBlacket al. (2000) for what is currently available.

The remainder of this paper is organized as follows. In Section2 we discuss previous ap-
proaches to the analysis of NSWs. Section3 introduces a taxonomy of NSWs. Section4
describes the corpora we used in our study. Section5 gives some theoretical background
relevant to the text-normalization problem. Section6 outlines the general architecture of the
text normalization system, and describes each of the components in detail, presenting a sep-
arate evaluation of each component where appropriate. We focus in that section mostly on
supervisedmodels of normalization—that is, models that are trained or developed assuming
a corpus tagged with classes of NSWs and their expansions. Section7 focuses onunsuper-
visedmethods for identifying and handling abbreviations (what we termEXPN), methods that
can be applied to a completely untagged corpus to derive expansion models for abbreviations.
While much of this discussion would seem to belong in Section6, we chose to highlight it
in a separate section since one of the more novel contributions of this work is the demonstra-
tion that one can derive tolerable abbreviation expansion models with minimal or no human
annotation of a corpus of texts. Section8 presents several evaluations of the system on the
different corpora, under various training conditions. Finally, Section9 concludes the paper
with a summary and some general discussion.

2. Previous approaches

As we have noted, any system that deals with unrestricted text needs to be able to deal
with non-standard words. In practice, though, most of the work that has dealt with text-
normalization issues has been confined to three areas, namely text-to-speech synthesis, au-
tomatic speech recognition and text retrieval. We briefly consider the techniques applied in
these domains in Sections2.1–2.3below. Cross-cutting all these domains (though to date only
really applied in TTS) is the application ofsense disambiguationtechniques to the problem
of homograph resolutionfor NSWs. This is discussed here (Section2.4) as the only instance
of a fairly principled corpus-based technique that has been applied to (a part of) the text
normalization problem. Problems with these previous approaches are outlined in Section2.5.

2.1. Text-to-speech synthesis systems

The great bulk of work on “text normalization” in most TTS systems is accomplished using
hand-constructed rules that are tuned to particular domains of application (Allen, Hunnicutt
& Klatt , 1987; Sproat, 1997; Black, Taylor & Caley, 1999). For example, in various envi-
sioned applications of the AT&T Bell Labs TTS system, it was deemed important to be able
to detect and pronounce (U.S. and Canadian) telephone numbers correctly. Hence, a tele-
phone number detector (which looks for seven or ten digits with optional parentheses and
dashes in appropriate positions) was included as part of the text-preprocessing portion of the
system. On the other hand, although e-mail handles were commonplace even in the mid-
1980s when this system was designed, nobody thought of including a method to detect and
appropriately verbalize them. This kind of spotty coverage is the norm for TTS systems.

Expansion of non-standard words is accomplished by some combination of rules (e.g.
for expanding numbers, dates, letter sequences, or currency expressions) and lookup tables
(e.g. for abbreviations, or Roman numerals). Ambiguous expansions—e.g.St. as Saint or
Street—are usually handled by rules that consider features of the context. In this particular
case, if the following word begins with a capital letter, then it is quite likely that the correct
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reading isSaint (Saint John), whereas if the previous word begins with a capital letter, the
correct reading is quite likelyStreet. Simple rules of this kind are quite effective at capturing
most of the cases that you will find in “clean” text (i.e. text that, for instance, obeys the
standard capitalization conventions of English prose); but only, of course, for the cases that
the designer of the system has thought to include.

2.2. Text-conditioning tools

In the ASR community, a widely used package of tools for text normalization are the Lin-
guistic Data Consortium’s (LDC) “Text Conditioning Tools” (Linguistic Data Consortium,
1996). As is the case with most TTS systems, these text-conditioning tools depend upon a
combination of lookup tables (e.g. for common abbreviations); and rewrite rules (e.g. for
numbers). Disambiguation is handled by context-dependent rules. For instance there is a list
of lexical items (Act, Advantage, amendment . . . Wespac, Westar, Wrestlemania) after which
Roman numerals are to be read as cardinals rather than ordinals. Numbers are handled by
rules that determine first of all if the number falls into a select set of special classes—U.S.
zip codes, phone numbers, etc.—which are usually read as strings of digits; and then expands
the numbers into number names (1,956becomesone thousand nine hundred fifty six) or other
appropriate ways of reading the number (1956becomesnineteen fifty six).

The main problem with the LDC tools, as with the text normalization methods used in
TTS systems, is that they are quite domain specific: they are specialized to work on business
news text, and do not reliably work outside this domain. For instance, only about 3% of
the abbreviations found in our classified ad corpus (Section4) are found in the LDC tools
abbreviation list.

2.3. Text retrieval applications

NSWs cause problems in text retrieval for the obvious reason that they can contribute to a
loss in recall. To take a simple example, consider a search over a large text database for texts
relating to the Dow Jones Industrial Average. If the user queries using such terms asDow
Jonesthen only texts that have that substring will be retrieved. In particular, if there is a
text that only refers to the Dow Jones with the letter sequenceDJIA, that text would not be
retrieved.

Rowe and Laitinen(1995) describe a semiautomatic procedure for guessing the expansion
of novel abbreviations in text. Their method depends upon dictionaries of known full words,
and dictionaries of known abbreviations and their expansions. Novel abbreviations are dealt
with by applying abbreviation rules to known full words in the text being considered. These
abbreviation rules include deletion of vowels or truncation of the righthand portion of the
word. This procedure will generate a set of candidate expansions for the abbreviation, which
are then verified by a user.

The “generate-and-test” procedure and the restriction of candidate expansions to in-domain
text is similar to the unsupervised method for abbreviation expansion that we describe below
in Section7, though it differs critically in that the method we describe makes use of n-gram
language modeling, which to some degree automates the step of user verification in Rowe
and Laitinen’s method.

2.4. Sense-disambiguation techniques

Sense disambiguation techniques developed to handle ambiguous words likecrane(a bird,
vs. a piece of construction equipment) can be applied to the general problem of homograph
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disambiguation in TTS systems (e.g.bass“type of fish”, rhyming withlass; vs.bass“musical
range”, homophonous withbase).

As we noted above, many NSWs are homographs, some cases being rather particular,
and others more systematic. A particular case isIV, which may be variouslyfour (Article
IV), the fourth(Henry IV), fourth (Henry the IV), or I. V. (IV drip). More systematic cases
include dates inmonth/dayor month/yearformat (e.g. 1/2, for January the second), which
are systematically ambiguous with fractions (one half); and three or four digit numbers which
are systematically ambiguous between dates and ordinary number names (in 1901, 1901
tons).

Yarowsky (1996) demonstrated good performance on disambiguating such cases using
decision-listbased techniques, which had previously been developed for more general sense-
disambiguation problems. Once again though, such techniques do presume that you know
beforehand the individual cases that must be handled.

2.5. Problems with previous approaches

Nearly all of the previous approaches to the problem of handling non-standard words presume
that one has a prior notion of which particular cases must be handled. Unfortunately this is
often impractical, especially when one is moving to a new text domain. Even within well-
studied domains—such as newswire text—one often finds novel examples of NSWs. For
instance the following abbreviations for the termlandfill occurred in a 1989Associated Press
newswire story:

Machis BrosLf ( S Marble Top Rd ) , Kensington, Ga.
Bennington Municipal SanitaryLfl , Bennington, Vt.
Hidden ValleyLndfl ( Thun Field ), Pierce County, Wash.

These examples cannot even remotely be considered to be “standard”, and it is therefore
unreasonable to expect that the designer of a text normalization system would have thought
to add them to the list of known abbreviations.

In some domains, such as real estate classified ads, the set of novel examples that one will
encounter is even richer. Consider the example below taken from theNew York Timesreal
estate ads for January 12, 1999:

2400’ REALLY! HI CEILS, 18’ KIT,
MBR/Riv vu, mds, clsts galore! $915K.

Here we findCEILS(ceilings), KIT (kitchen), MBR (master bedroom), Riv vu(river view),
mds(maids (room)(?)) andclsts(closets), none of which are standard abbreviations, at least
not in general written English.

Over and above the limitations of predefining which NSWs will be handled, there is the
more general problem that we do not have a clear idea of what types of NSWs exist, and
thereforeneedto be covered: there is no generally known taxonomy of non-standard words
for English, or any other language, though there have been many taxonomies of particular
subclasses (Cannon, 1989; Römer, 1994).

3. A taxonomy of NSWs

After examining a variety of data from the corpora described in Section4, we developed
a taxonomy of non-standard words (NSWs), summarized in TableI, to cover the different
types of non-standard words that we observed. The different categories were chosen to reflect
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TABLE I. Taxonomy of non-standard words used in hand-tagging and in the text normalization
models

EXPN abbreviation adv, N.Y, mph, gov’t
alpha LSEQ letter sequence CIA, D.C, CDs

ASWD read as word CAT, proper names
MSPL misspelling geogaphy

NUM number (cardinal) 12, 45, 1/2, 0·6
NORD number (ordinal) May 7, 3rd, Bill Gates III
NTEL telephone (or part of) 212 555-4523
NDIG number as digits Room 101

N NIDE identifier 747, 386, I5, pc110, 3A
U NADDR number as street address5000 Pennsylvania, 4523 Forbes
M NZIP zip code or PO Box 91020
B NTIME a (compound) time 3·20, 11:45
E NDATE a (compound) date 2/2/99, 14/03/87(or US)03/14/87
R NYER year(s) 1998, 80s, 1900s, 2003
S MONEY money (US or other) $3·45, HK$300, Y20,000,$200K

BMONEY money tr/m/billions $3·45 billion
PRCT percentage 75%, 3·4%

SPLT mixed or “split” WS99, x220, 2-car
(see also SLNT and PUNC examples)

SLNT not spoken, word boundary or emphasis character:
M word boundary M.bath, KENT*RLTY,really
I PUNC not spoken, non-standard punctuation: “***” in
S phrase boundary $99,9K***Whites, “. . . ” in DECIDE. . . Year
C FNSP funny spelling slloooooww, sh*t

URL url, pathname or email http://apj.co.uk, /usr/local, phj@tpt.com
NONE should be ignored ascii art, formatting junk

anticipated differences in algorithms for transforming (or expanding) tokens to a sequence of
words, where a “token” is a sequence of characters separated by white space (see Section6.2
for more on defining tokens).

Four different categories are defined for tokens that included only alphabetic characters:
expand to full word or word sequence (EXPN), say as a letter sequence (LSEQ), say as a
standard word (ASWD) and misspelling (MSPL). TheASWD category includes both standard
words that are simply out of the vocabulary of the dictionary used for NSW detection and
acronyms that are said as a word rather than a letter sequence (e.g.NATO). TheEXPN category
is used for expanding abbreviations such asfplc for fireplace, but not used for expansions
of acronyms/abbreviations to their full name, unless it would be more natural to say the
full expansion in that genre. For example,IBM is typically labeled asLSEQ (vs. EXPN for
International Business Machines), while NY is labeled asEXPN (New York). Similarly,won’t
is not labeled as an expansion, butgov’t should be. Of these four categories, the problem
of expanding theEXPN class of tokens is of most interest in our work, since pronouncing
ordinary words and detecting misspellings has been handled in other work.

Several categories are defined for tokens involving numbers. We identified four main ways
to read numbers: as a cardinal (e.g. quantities), an ordinal (e.g. dates), a string of digits (e.g.
phone numbers), or pairs of digits (e.g. years). However, for ease of labeling and because
some categories can optionally be spoken in different ways (e.g. a street address can be read
as digits or pairs), we defined categories for the most frequent types of numbers encountered.
We chose not to have a separate category for Roman numerals, but instead to label them
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according to how they are read, i.e. as a cardinal (NUM, as inWorld War II) or an ordinal
(NORD, as inLouis XIV or Louis the XIV). For the most part, once a category is given, the
expansion of numbers into a word sequence can be implemented with a straightforward set of
rules. The one complicated case is money, where$2 billion is spoken astwo billion dollars,
so thedollarsmoves beyond the next token. Allowing words to move across token boundaries
complicates the architecture and is only necessary for this special case, so we define a special
tag to handle these cases (BMONEY).

Sometimes a token must be split to identify the pronunciation of its subparts, e.g.WinNT
consists of an abbreviationWin for Windowsand the partNT to be pronounced as a letter
sequence. To handle such cases, we introduce theSPLT tag at the token level, and then use
the other tags to label sub-token components. In some instances, the split tokens include
characters that are not to be explicitly spoken. These are mapped to one of two categories—
PUNC or SLNT—depending on whether or not the characters are judged to be a non-standard
marking of punctuation that would correspond to a prosodic phrase break. Both tags can also
be used for isolated character sequences (i.e. not in a split). ThePUNC class was not in the
original taxonomy, but was introduced later after experience with labeling suggested it would
be reliable and useful.

Three additional categories were included to handle phenomena in electronic mail: funny
spellings of words (presumed intentional, as opposed to a misspelling), web and email ad-
dresses, andNONE to handle ascii art and formatting characters. The categoryNONE is as-
sumed to include phenomena that would not be spoken and is mapped to silence for the
purpose of generating a word sequence, but it also includes tokens that either should not be
rendered, or where it is at least acceptable not to render them, such as the quoting charac-
ter “>” and smiley faces “:)” in email, computer error messages, and stock tables in news
reports.

Although not included in the table below, an additionalOTHER tag was allowed for rare
cases where the labelers could not figure out what the appropriate tag should be. TheOTHER

category was not used in the word prediction models.
Our taxonomy of NSW tags was principally designed before we took on the actual task

of investigating automatic recognition of these distinctions. However the design did take into
account the fact that we intended the distinctions to be detected automatically and that the
distinctions, once made, would aid the rendering of these into standard words. As noted
above, we added thePUNC tag relatively late in the process once it became clear that this tag
would be useful. (Section6.2discusses the issue of actual detection of NSWs.) We defined the
taxonomy both to represent the categories we observed and the ones we believed would most
easily be automatically identified. However we admit that there are a number of borderline
cases where an NSW may fall into more than one category: for instanceCDsmight be viewed
as either an LSEQ or a SPLT.

4. Corpora

4.1. Domain descriptions

In order to ensure generalizability of the tag taxonomy and algorithms developed here, we
chose to work with four very different data sources, described below.

NANTC: The North American News Text Corpus (NANTC) is a standard corpus available
from the Linguistic Data Consortium (LDC). The corpus includes data from several sources
(New York Times, Wall Street Journal, Los Angeles Times, and two Reuters services). We
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TABLE II. Size of different corpora and number of de-
tected non-standard word tokens

Corpus NANTC classifieds pc110 RFR

total # tokens 4·3 m 415 k 264 k 209 k
# NSWs 377 k 180 k 72 k 46 k
% NSW 8·8 43·4 27·3 22·0

used a small random sample from these five sources taken from the 1994–1997 period. This
corpus was chosen because it represents clean well-edited text data of the form often used
in existing text analysis tools. Such data is already used for training language models in
speech recognition and for training existing TTS systems. Although the percentage of NSWs
is relatively small, we include this to allow easier comparison of our results with existing text
analysis techniques.

Classifieds:A corpus of classified ads was collected for this work by the LDC. It contains
real estate ads from three sources (Boston Globe, Washington Post, and the FindItOnline
Classified Network). These were collected during the first half of 1999. This corpus was cho-
sen because of the high frequency of NSWs, particularlyEXPN tokens, which pose especially
difficult problems for text normalization.

pc110: The pc110 corpus was collected from a public mailing list on the IBM pc110
palmtop computer (pc110@ro.nu). It consists of daily digests from the list from 1998–1999.
Messages are usually quite technical though still in a chatty email style. It contains many
abbreviations, misspellings, unusual capitalization and lots of machine and part identifiers.
Unlike general newsgroups, however, it has very few off-topic articles. No significant clean-
ing up of the data has been done except automatic detection of mail headers, so it is very
noisy compared to NANTC. It was selected to represent email, but from a forum that allows
us to publicly distribute it.

RFR: The RFR corpus includes recipes from the rec.food.recipes electronic newsgroup.
Although the submissions are via electronic mail, the data is relatively clean because the list
is carefully moderated. This means that there is little of the discussion and quoting that is
typical of many email lists (including the pc110 corpus), although there is a large number
of URL and email addresses. The data was collected during the first half of 1999. It was
chosen because it represents a non-technical but very specialized style of text that was easy
to collect.

In total there are about 5·5 million tokens in the databases, with a breakdown as shown
in TableII . The number of non-standard words given in the table is based on the automatic
detection algorithm described in Section6.2, which does miss some tokens, and does not
separately count the sub-components of aSPLT token. The results and evaluation used in the
remainder of this paper are based on these automatically detected NSWs as opposed to the
actual NSWs in the data; discussion of the accuracy of our automatic detection can also be
found in Section6.2.

Each database was split into train and test sets with approximately one third for test and
two thirds for training. Splits were done on a per-file basis (every third file was added to the
test set) and, although there are distinct sources for parts of the news and classifieds data (i.e.
different newspapers), we did not take account of this. Therefore, files from each newspaper
appeared in both train and test (except in a few cases). In addition, we held out 10% of
the training set for development testing, which includes results reported in Section6. The
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TABLE III. Distribution of frequent alphabetic tags of
NSWs in the four corpora. The first three rows are per-
centages among alphabetic tokens, while the last row is

the overall percentage of alphabetics in all tokens

Domains
NANTC classifieds pc110 RFR

ASWD 83·49 28·64 64·60 72·36
LSEQ 09·10 03·00 22·60 02·11
EXPN 07·41 68·36 12·80 25·53
All Alphas 54·52 38·65 40·31 31·75

TABLE IV. Distribution of frequent number tags in the
four corpora

Domains
NANTC classifieds pc110 RFR

NUM 66·11 58·26 43·77 97·90
NYER 19·06 00·70 00·51 00·27
NORD 09·37 03·37 04·45 00·11
NIDE 02·24 05·83 37·41 00·47
NTEL 01·25 25·92 01·32 00·02
NTIME 01·21 03·28 04·16 01·12
NZIP 00·22 00·29 00·17 00·04
NDATE 00·20 00·13 01·33 00·05
NDIG 00·16 00·00 02·16 00·01
NADDR 00·13 02·20 00·15 00 00

Total Nums 73 005 24 193 7818 18 1950

evaluation test set was only used to test overall system performance, and no error analysis
was carried out on those results. The development test data was not folded back into the
training set for designing the final evaluation models.

As should be clear from the partial distribution given in TablesIII , IV, these corpora are
very different in nature. For the main three alphabetic labels, there are a large percentage of
ASWD tokens in all domains, which are primarily out-of-vocabulary words. These include
names of people and places in news, names of streets and towns in the classified ads, and
unusual ingredients in recipes. In addition, the classified ads have a large number ofEXPN

abbreviation tokens, as expected; the pc110 domain has a large percentage of letter sequences
because of the technical jargon (e.g.PCMCIA); and the recipes have a large number ofEXPN

tokens corresponding to measurement abbreviations. Looking at the distributions of numbers,
it is not surprising to see that years are frequent in the news domain, telephone numbers are
frequent in classified ads, identifiers are frequent in the pc110 corpus (equipment IDs), and
the main use of numbers in recipes is to indicate quantities.

4.2. Initial processing of corpora

In each case, the raw data was converted to a simple XML based markup format. The NANTC
data from the LDC already has some SGML based tags, and these were partially augmented
(in particular, explicit closing paragraphs were added) in a fully automatic way and extra-
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neous characters that interfere with such markup were quoted (that is, “&” and “<”). For
all the other corpora, paragraph boundaries were marked at blank lines. For the pc110 and
RFR, which came from electronic mail and usenet data, article headers were marked up and
ignored in later processing. Where the article content contains quoted headers (effectively
only in pc110), this data remained as part of the training data. After markup, only those to-
kens appearing within paragraphs were considered for analysis; all other tokens were ignored
(primarily mail headers and NANTC story headers and footers).

Once in a standard XML form, we automatically extracted tokens that were NSWs by first
breaking up the text into whitespace-separated tokens. Then, leading and trailing standard
punctuation is removed and saved as features of the token. Tokens are identified as a pos-
sible NSW whenever they were not included in a standard on-line dictionary (98K words,
CMU dictionary version 0·4 (CMU, 1998)) or were on a list of exceptions. Exceptions in-
clude words likeI, which is in the dictionary but can sometimes be non-standard (the Roman
numeral). This process is expedient for labeling, but not perfect, since some abbreviations
overlap with standard words (e.g. “so” forsouth). Thus, common abbreviations are also in-
cluded in the exception list, but there are still some non-standard words that are not labeled,
as described in more detail later.

Each token identified as an NSW was given the tagW with an attributeNSW and value as
given by the labelers. When the NSW tag value isEXPN, an additional attributePRON is given
whose value is a string of space-separated words representing its expansion. Additionally,
where a token was identified as being split, the split tokens were marked with aWS tag within a
W marking the whole unsplit token. Whitespace is preserved in the marked up files containing
the additional NSW tags (and possibly pronunciations) without losing any information from
the original text. An example of marked-up XML text is given in Figure1.

4.3. Tagging conventions

The labeling task involved looking at an NSW token within a short context (four words
on either side) and identifying one of the possible labels for that token. Note that labeling
involved (primarily) identifying what words would correspond to the token if the text were
read and indicating this symbolically via the tags. Labelers were instructed to type in the
expansion explicitly only for tokens where the expansion was unclear or ambiguous, such as
sunnyfor sun(vs.Sunday). Expansions that are frequent for a particular corpus, such as BA
and LR in the classified ads, are expanded automatically unless explicitly expanded by the
labeler due to a non-standard usage (e.g. notbathroomor living room, respectively).

To speed up the tagging task, labelers were presented only with candidate non-standard
words that had been identified using a simple dictionary check. Standard words that were pre-
sented as candidate NSWs were simply labeledASWD. These cases include words that were
not in the specific dictionary used, e.g. names, places, and unusual ingredients in recipes.
Also to speed up labeling, the intermediatetag SCOREwas introduced for tokens such as
5–7, which are later automatically re-labeled asSPLT and split into a “NUM to NUM” se-
quence. (The “-” is anEXPN that expands to the wordto.)

The labelers used a tagging tool that presents each token on a new line surrounded by its
context. A guess at the label is given at the start and the labeler must either accept the guess
or provide an alternative. The tagging instruction manual, including examples, is available
online (Blacket al., 2000).
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<DOC>

<TEXT>

<P>

AAA INVESTMENTS SO SHORE,<W NSW="SPLT"><WS NSW="NUM"> 40</WS>

<WS NSW="EXPN" PRON="plus">+</WS></W> modern

<W NSW="EXPN" PRON="brick"> brk</W><W NSW="EXPN" PRON="apartments">apts</W>

on<W NSW="SPLT"><WS NSW="NUM"> 4</WS><WS NSW="EXPN" PRON="plus">+</WS></W> acres,

<W N SW="EXPN" PRON="individual"> indiv</W><W NSW="EXPN" PRON="heating"> ht.</W>

Income<W NSW= "MONEY"> $400K.</W> Ask<W NSW="MONEY"> $2,975,000</W>

<W NSW="SPLT"><WS NSW="EXPN" PRON="with"> w/</WS><WS NSW="MONEY">$750K</WS></W>

down. ROBERT<W NSW="LSEQ">L.</W> TENNEY REALTY<W NSW="PUNC"> (</W>

<W NSW="NTEL">617</W><W NSW="PUNC">)</W><W NSW="NTEL"> 472-0629472-0630</W>

</P>

</TEXT>

</DOC>

<DOC>

<TEXT>

<P>

AAA INVESTMENTS<W NSW="EXPN" PRON="north west"> N.W.</W> OF BOSTON,

<W NSW="NUM"> 17</W> <W NSW="EXPN" PRON="modern"> mod</W> brick

<W NSW="EXPN" PRON="apartments"> apts,</W> new<W NSW="EXPN" PRON="roof"> rf</W>

<W NSW="EXPN" PRON="and">&amp;</W> boiler,<W NSW="EXPN" PRO N="included"> inc</W>

<W NSW="MONEY"> $126K,</W> ask<W NSW="MONEY"> $815K</W><W NSW="SPLT" >

<WS NSW="EXPN" PRON="with"> w/</WS><WS NSW="MONEY">$200K</WS></W> down

</P>

</TEXT>

</DOC>

Figure 1. A sample of XML-markup of NSWs.

4.4. Inter-labeler reliability measures

A portion of the data was marked by multiple labelers to assess transcriber reliability. The
level of agreement between the different labelers for the categories described above was
measured using the kappa statistic, which is the ratio

κ =
Po − Pc

1− Pc
,

wherePo is the percent agreement measured between labelers andPc is the agreement that
would be predicted by chance. Assuming that allN coders label allD data points with one
of C classes, the specific formulas for computing these quantities for the multi-class, multi-
labeler case are

Pc =
1

N(N − 1)

N∑
i=1

N∑
j=1,6=i

Pi j
c ,

where

Pi j
c =

C∑
k=1

pi (k)p j (k)

is the chance agreement for codersi and j (pi (k) is the chance of labeleri assigning classk,
i.e. the relative frequency of classk for that labeler), and

Po =

∑D
l=1

∑C
k=1 nkl(nkl − 1)

DN(N − 1)
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wherenkl is the number of coders that labeled datuml with classk. The kappa score is com-
puted using publicly available software developed byFlammia(1998). The kappa statistic is
widely used for evaluating labeler consistency (Hirschberg & Nakatani, 1996; Carlettaet al.,
1997; Jurafskyet al., 1997; Flammia, 1998), and it is generally agreed that a kappa score of
greater than 0·7 indicates good agreement.

We measured inter-labeler agreement on two subsets of data for a set of 25 NSW tags,
including the 23 tags in TableI, the OTHER tag and the intermediateSCORE tag. In both
cases, the NSW typeSPLT was regarded as a separate category by itself, so if a tokenA was
split by the labeler as[A→ a0 a1 a2], the categories fora0, a1 anda2 were not taken into
account. ForD = 2268 NSW tokens from the news data andN = 3 labelers, the agreement
wasκ = 0·81. ForD = 622 NSW tokens from the classified ads andN = 9 labelers, the
agreement wasκ = 0·84. Both results indicate good reliability.

In looking at the data to understand the disagreements that are there, we find that the main
problems are labeling errors and lack of specific examples in the labeling guide, rather than
real ambiguities. Labeling errors include unnoticed misspellings (labeledASWD), simple typ-
ing errors, and labeler misspellings in expansions. The main problem with unclear guidelines
was for the use of the split command, and labeling unspoken tokens withNONE vs. SLNT.
For future use, the labeling guidelines have been expanded to address these problems. For the
data we used, the amount of noise that these errors introduce is relatively small. However, it
is significant, given that the accuracy level of our algorithms is relatively high (at least in the
supervised learning cases). For that reason, there was some effort made to detect and correct
errors, particularly simple errors where correction could be automated (e.g. missing splits).

4.5. Generating “truth” for training and automatic evaluation

In order to evaluate our performance, it was necessary to generate “truth” in the sense of the
words that would be said given “perfect” knowledge. This “perfect” knowledge consists of
the hand labeled NSW tags (and the expansions in the case ofEXPNs). The truth was gener-
ated for each marked up XML file in each corpus. For the purposes of the results presented
here, only one value for truth was given even though there may in reality be more than one
reasonable way to say a token. For synthesis, only one value is sufficient, but for language
modeling we would ideally produce lattices with probabilities for choices. Since generation
of alternatives requires some labeled data of this form and hand-marking alternatives was
difficult and expensive, the use of lattices was left for future work.

The labeled data has two sources of noise: missed detection of NSWs in the initial process-
ing of the data, and human labeling errors. Although a number of passes over the database
have been made to correct systematic errors, we know errors still exist. The amount of noise
in the data is small and would normally not be an issue, but our models have very low error
rates compared to, say, speech recognition. Our error rates can be as small as 0·3%, and so
even a labelling error rate of a few percent will affect our measurement of error rate.

Two methods have been used to estimate the amount of noise in the labeling. First, we
estimated the missed detection rate for NSWs associated with the dictionary look-up algo-
rithm by hand-marking all words in a small subset of each corpus. Missed detection rates
ranged from 3% for the RFR corpus to 9% for the PC110 corpus. (A more detailed analy-
sis is included in Section8.4.) Second, we can count the number of detected NSWs that are
problematic for the algorithmic expanders, i.e. when a given token with a given label does not
match the expected form of that type, such as when a token markedNYER actually consists of
a range of years 1990–95. Although we have been quite liberal in accepting such labelings,
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TABLE V. Occurrence of detectably noisy tokens (DNTs) in
different corpora

Corpus NANTC classifieds pc110 RFR

total # tokens 4·3 m 415 k 264 k 209 k
# NSWs 377 k 180 k 72 k 46 k
% NSW 8·8 43·4 27·3 22·0
# of DNTs 1546 4583 922 134
% DNTs of tokens 0·03 0·96 0·32 0·06
% DNTs of NSWs 0·41 2·55 1·28 0·29

there are still a number of cases that the algorithmic expanders cannot deal with. For each
database, we counted the number of tokens for which some part is detectably not expanded
properly in generating “truth”. We called the tokens for which our algorithmic expanders
could not provide expansion,detectably noisy tokens, (DNT). These are a small subset of
the identified NSWs including both the few NSWs in classes for which the expander could
not expand the token plus all tokens in classes for which we did not provided any expander,
namely, misspellings (MSPL), funny spelling (FNSP) and others (OTHERS). The DNTs were
not hand corrected and thus they constitute noise in the data, but the percentage of DNTs is
quite small relative to the missed detections.

This known amount of noise in our data does put an upper limit on the accuracy of our
evaluation of the results.

Note that most, but not all, human labeling errors are detected in the algorithmic expan-
sion. In addition, there is variability in the data associated with having multiple labelers
forced to make a single choice in a case when there are different allowable alternatives. We
wish to judge how good our generated words are with respect to human acceptability of the
expansion, both due to noise in the data and where there exist valid alternatives. For this
reason, some human ratings are included in assessing overall system performance, as will be
described in Section8.4.

5. Theoretical models

We pose the problem of predicting the expanded form of non-standard words as one of finding
the most likely word sequencew = w1, w2, . . . , wn given the observed token sequenceo =
o1,o2, . . . ,om. The observed token sequence corresponds to the input text which has NSWs
marked and split where necessary. The output word sequence corresponds to the desired
words to be spoken. Mathematically, the objective is:

ŵ = argmax
w

p(w|o) (1)

= argmax
w

[∑
t

p(w, t|o)

]
(2)

≈ argmax
w

max
t

p(w, t|o) (3)

wheret = t1, t2, . . . , tm is the sequence of token tags. In Equation (3), we make the assump-
tion that for a particular output word (or word sequence) and a particular observed token,
there is usually only one tag that would be appropriate. Thus, most of the probability mass
in the joint word-tag conditional distribution is associated with a single tag. In other words,
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while there may be multiple tags for a particular observation, there is only one tag that would
correspond to the specific word (or word sequence) realization of that observation. This as-
sumption is useful for simplifying the decoding problem, but it is also quite reasonable for
most of the cases we are interested in.

The assumption of high probability mass on particular combinations of tags and word
sequences also makes it possible to segment the word string into anm-length sequence
w = w1,w2 . . .wm, where the sequence notationwi is used to indicate thatoi may be ex-
panded to multiple words. In other words, for cases where single tokens in the observation
space (after splitting) map to multiple words in the output space (e.g.wbfplcmaps towood
burning fireplace), we represent the multiple word sequence as a single “word”. This align-
ment simplifies training for the models representing dependence between words and tags,
and it need not complicate the language model, since the probability of a “multi-word” is
simply the product of conditional probabilities of the individual words in the sequence.

The basic problem posed in Equation (3) can in principle be solved using two different
approaches, which we will refer to as the source–channel model (or noisy channel model)
and the direct model, as described respectively in the two sections to follow.

5.1. Source–channel model

The source–channel model is analogous to the approach used widely in speech recognition.
That is, we view the desired word sequencew as being generated by some source with proba-
bility p(w), and transmitted through a noisy channel which randomly transforms the intended
words to the observed character sequenceo according to the sequence of channel models
p(t|w) and p(o|t,w). Mathematically, this corresponds to:

ŵ ≈ argmax
w

max
t

p(w, t|o) = argmax
w

max
t

p(o, t,w) (4)

= argmax
w

max
t

p(o|t,w)p(t|w)p(w) (5)

where we have decomposed the overall probability distribution into three components: a
language modelp(w) (as in speech recognition), a tag modelp(t|w), and a tag-dependent
observation modelp(o|t,w). Assumptions behind the implementation of the different models
are described below.

Language model. The language modelp(w) serves the same function as in speech recog-
nition, so it is natural to borrow speech recognition techniques for modeling and estima-
tion here: in our particular implementation we use trigram language models with modified
Kneser–Ney smoothing (Kneser & Ney, 1995; Chen & Goodman, 1999).

Tag model. In the source–channel framework, we represent one tag per word, and assume
that tags depend only on the current word:

p(t|w) =
m∏

i=1

p(ti |wi ). (6)

Given the parallel tag and “word” sequences, the tag model can be trained using standard
n-gram back-off techniques. However, one might want to introduce an intermediate stage of
back-off depending on the word class, i.e.

p(ti |wi )→ p(ti |c(wi ))→ p(ti )
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where the word class might be defined in terms of part-of-speech (or semantic class) label,
word length, or word frequency in the target domain.

Observation model. For purposes of simplifying the discussion, assume that the hypoth-
esized word sequence can be reliably “parsed” so that there is a one-to-one mapping between
observation tokensoi and wordswi . Next, we assume that the observed realization of a word
will be conditionally independent from word to word, given the tag and possibly statistics
about the domain. Thus the observation model becomes:

p(o|t,w) =
m∏

i=1

p(oi |ti ,wi ),

and the key problem is to findp(oi |ti ,wi ). For cases where the pair(ti ,wi ) are observed fre-
quently, maximum likelihood estimates or simple rules are probably sufficient. For infrequent
words, or word-tag pairs, we need to use general word properties, in which case decision trees
will prove useful.

5.2. Direct model

An alternative to the source–channel model is to represent the posterior probability of words
given observations directly; hence, this approach is often referred to as the direct model.
While the work reported here does not implement a full direct model, it does use components
and the approach is of interest for future work, so we describe it briefly below.

With the direct model, the overall objective (including the tags) is:

ŵ ≈ argmax
w

max
t

p(w, t|o) (7)

= argmax
w

max
t

p(w|t,o)p(t|o). (8)

In this approach, there are two main component models: the tag sequence model and the
tag-dependent word sequence model, both of which are conditionally dependent on the ob-
served token sequence. Using the direct modeling framework has the advantage that it is
practical to use the full observation sequence for prediction, as opposed to only the local
observation in the source–channel model. However, the disadvantage is the potentially large
parameter space, because of the large number of factors that get incorporated into the models,
particularly the word-sequence model. To simplify this problem, one can use decision tree
and maximum entropy techniques, as well as the standard Markov assumptions on the word
sequence.

Tag prediction model. In the tag sequence model, we will start by assuming that tags are
conditionally independent of all but the most recent tag given the observation sequences, and
then use a decision tree (T[·]) to simplify the prediction space:

p(t|o) =
m∏

i=1

p(ti |ti−1,o) =
m∏

i=1

p(ti |T[ti−1,o]). (9)

In fact, it may be sufficient to simply condition on the observation space and not the previous
tag, which simplifies the search and makes it possible to separately explore tag predictors
designed for subclasses of NSWs such as the numbers (NDIG, NUM, NORD, NIDE, etc.).
Examples of some questions that may be useful in the decision tree include whether the
token is mixed case, has numbers and/or non-alphanumeric characters, is in an abbreviation
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list, etc. Unlike in the source–channel case, it is straightforward to evaluate this tag sequence
model apart from other components of the system, since we have tag-labeled test data.

Word sequence model.The second model component is the word sequence model:

p(w|t,o) =
m∏

i=1

p(wi |wi−1, ti ,o). (10)

The probabilityp(wi |wi−1, ti ,o) is impractical to estimate using standard language model-
ing techniques based on smoothed relative frequency estimates, because of the large size of
the conditioning space. However, it is well suited to using maximum entropy techniques as a
way of combining separately estimated statistics forp(wi |wi−1), p(wi |ti ) andp(wi |oi ) in an
exponential model. In addition, the exponential model offers a framework for easily incorpo-
rating triggers and/or other predictors based on long distance statisticss(o) as inp(wi |s(o)).

6. System description

In this section we turn to a description of the system developed here, including the overall
architecture and the details of the particular modules.

6.1. Architectural overview

The system used in these experiments implements a subset of the ideas described in the
theoretical discussion in the previous section. The architecture of the system is diagrammed
in Figure2 and includes:

(1) Tokenization and NSW detection;
(2) Detection and splitting of compound (SPLT) tokens, which gives the observation se-

quenceo= {o1, . . . ,on};
(3) Prediction of the best tag sequencet∗, wheret∗ = argmaxt p(t|T[o]), using a decision

treeT ;
(4) Expansion of tokens to possible word sequences given the tag labels, which results in

a word lattice with each branch in the lattice annotated withp(oi , ti |wi ); and
(5) Search for the best path in the lattice according to

w∗ = argmax
w

p(o, t∗|w)p(w),

which incorporates an n-gram language model.

Each of the modules will be described in detail below, but a few things should be noted here,
given the preceding discussion. The implementation is largely consistent with the source–
channel approach, and could easily be generalized to use a lattice at the tag level with the
most probable tags according to the decision tree. Note that, in using the tag decision tree,
we have also borrowed from the direct model. The primary motivation for mixing models
here is to reduce the decoding cost of the source–channel model. This is not a problem the-
oretically, so long as the tag prediction model is used to prune the search space and not to
annotate the tag branch probabilities (which should instead be marked withp(ti |wi )). In
effect, the joint maximization overt andw in Equations (3) and (5) is approximated by sep-
arate maximizations overt andw to cut computation and storage costs, with the posterior
distribution used fort to reduce pruning errors.
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Split Tokens

Splitter
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Word Lattices

Best Words

Language Model
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Tokenizer

Text

pls wash your WS99 coff.

Tag
Expanders

ASWD
NUM
EXPN

Tagged Tokens

please wash your W S ninety nine coffee
  cup with n grams

cup w/n-grams :)

Figure 2. Overall architecture of the text normalization system, with a hypothetical
input sentencepls wash your WS99 coff. cup w/n-grams :-).

Since there are multiple system components that make use of decision trees, weighted
finite-state transducers, and n-gram models, these techniques are reviewed here briefly. De-
cision trees (Breiman, Friedman, Olshen & Stone, 1984; Quinlan, 1993) are used for tag
prediction and for abbreviation probability models in the case of unsupervised training (de-
scribed in Section7). The decision trees use CART-style training, which involves iteratively
partitioning the training data according to the binary questions that minimize the entropy
of the leaf node distributions. The trees are grown to maximize accuracy over held-out data
from the whole training set. Weighted finite-state transducers (WFSTs) are used in the splitter
(one implementation) and in the expansion module (see, e.g.Mohri, Pereira & Riley, 1997).
Finally, n-gram sequence models (Jelinek, 1997) are used for improving discrimination of
the different alphabetic tag types (letter language model) as well as for disambiguating po-
tential expansions (word language model). Standard n-gram training techniques are used, as
surveyed inChen and Goodman(1999).

The following subsections describe in detail each of the modules introduced above and
diagrammed in Figure2. All results reported in this section are on the development test set
and, with the exception of the NSW detection and splitting modules, reflect results from
supervised domain-dependent training.
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TABLE VI. Precision and recall rates for detecting NSWs, as measured in a
hand-corrected subset of the training data

Domain Detection Precision/Recall
dependent? algorithm NANTC classifieds pc110 RFR
No non-lexical 55/79 96/79 80/65 76/82
No + sct+ abbrevs 44/93 95/91 70/90 73/96
Yes ++ abbrevs 39/93 92/92 60/91 46/97

6.2. Tokenization and NSW detection1

The text is first broken up into whitespace-separated tokens, and leading and trailing standard
punctuation is removed and saved as features of the token. Initially, tokens were marked as
an NSW using only the simple dictionary criterion, i.e. if the token was not in the dictionary,
it was marked as an NSW. However, in analysis of a small sample of fully hand-marked data,
we found that the detection rate for NSWs was not sufficiently high, as shown in the recall
figures of the first row of TableVI . Therefore, the data was reprocessed by marking any single
character token (sct), tokens with punctuation (e.g.I.B.M.) and common abbreviations (that
were in the lexicon) as an NSW. This significantly improved the detection rate with some loss
in precision, as shown in the second row of TableVI . Since falsely detected NSWs can be
tagged withASWD, the lower precision was not deemed to be a problem. Finally, we revised
the tagging once more to add NSW tags for common abbreviations that also correspond to
standard words (e.g.sun, Jan), as well as a few domain-specific abbreviations (e.g.kit and
named). Again, recall was improved at the cost of reduced precision; see the third row of
TableVI . In the interest of generating “truth” with as little noise as possible, we used the
version with the highest recall rate.

6.3. Splitter

After the tokenizer resolves the original input text into whitespace separated tokens and
marks NSWs, the NSWs are passed on to the splitter where they are further broken down
into subtokens. The problem of expanding single non-standard words is exacerbated by the
various phenomena which result in the effective deletion of whitespace between certain to-
kens. This deletion process has several avenues of expression: some are unintentional, as
is the case for typographical and scanographical errors; and others, intentional, as is often
true in the classifieds domain. In the latter case, in printed media, one often saves money by
omitting spaces where possible.

Furthermore, “truth” as expressed by the hand-labeled data indicates that a significant
portion of the “non-standard” tokens in each corpus should be split. As shown by TableVII ,
the precise number varies by corpus, from less than 4·4% of NSW tokens in NANTC, to
approximately 16·8% of NSW tokens in the classified ads. This means that, in the classifieds
domain where NSWs account for 43·4% of all tokens, 7·29% of all tokens should be split.

In most text, there will be several forces at work which result in aggregate tokens, hence
necessitating a splitter. Some examples from the various corpora will help to illustrate the
problem at hand. Consider the examples in TableVIII . Each example demonstrates a different
class of tokens which require splitting. From left to right, we have a letter sequence with a

1Since this section is rather short, we forego the division into a “Method” and “Evaluation” subsection that we use
in subsequent sections.
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TABLE VII. Percent of NSW tokens in
the training set that are labeled with

SPLT

NANTC classifieds pc110 RFR
4·36 16·77 14·80 7·00

TABLE VIII. Examples of tokens to split

NANTC classifieds pc110 RFR
Token RVing 4BR xjack 11/2
Realization RV ing four bedrooms X jack one and a half

morphemic affix; a concatenation of a number and an abbreviation; a brand name; and an
ambiguous numeric token, which must be split to remove ambiguity.

In the following sections, we discuss the algorithms and approaches we developed for
splitting, and we present an evaluation of the splitter’s performance.

6.3.1. Method

Many of the character sequences we would like to emit as single tokens contain within them
cues that would ordinarily cause those sequences to be split. For example, while commas,
hyphens, and slashes usually indicate subtoken boundaries, they should not be so construed
when appearing in numbers, telephone numbers, and dates, respectively. We will refer to
these problematic single-token character sequences asgroups.

Given the presence of groups, we use two passes in our approach to splitting tokens. In the
first pass we search the input for groups and bracket those we find. This bracketing serves
two purposes. First, the presence of brackets around a group causes the second pass of the
splitter to consider the group indivisible. Second, the begin- and end-bracket markers them-
selves induce split points at their respective locations. In this way we attempt to keep groups
coherent and independent from the surrounding text.

In the second pass, we hypothesize split points without regard to any underlying structure
in the text except for the bracketed groups. In contrast to the first pass, which requires a
plethora of rules to cover a correspondingly numerous set of special cases, the second pass
is relatively straightforward: a mere four to six rules sufficed to hypothesize split points. In
particular, the most productive split points were the following: at transitions from lower to
upper case; after the penultimate upper-case character in transitions from upper to lower case;
at transitions from digits to alphabetic characters; and at punctuation.

We developed a rule-based approach to hypothesizing the subparts of aggregate tokens,
which was implemented in the Perl text processing language for use in the overall system
described here. The rules can also be implemented using weighted finite-state transducers.

6.3.2. Splitter evaluation

We evaluated the splitter in two stages. The first, “coarse-grained” stage yields a measurement
of how well the splitter decideswhetherthe given token should be split; these measurements
are reported in terms of precision and recall. The second, “fine-grained” stage yields a mea-
surement of how well the splitter decideswhereto split a given token, where accuracy is at
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TABLE IX. Results for the splitter. Precision and recall
indicate accuracy of detecting NSW token to be split,
and the “correct” figures indicate accuracy of split loca-
tion for the subset of knownSPLT tokens and all tokens,

respectively

NANTC classifieds pc110 RFR
Recall 98·89 94·96 87·66 98·88
Precision 74·41 87·32 81·68 89·51
Split correct 92·54 85·99 74·11 89·54
Total correct 98·45 95·19 92·97 98·40

the token level, i.e. a “split” is correct only if all generated subtokens exactly match those
in truth. These measurements are reported in terms of “split correct” and “total correct”; the
former considers only those tokens which are known to be split (analogous to recall), while
the latter considers all NSW tokens regardless (analogous to precision).

The results of both of these stages are found in TableIX. In the above table, the rela-
tively poor precision in each domain is quite striking. It is, however, in many cases an overly
pessimistic measure of the system’s quality. While the results indicate that the splitter does
over-generate splits, there are some mitigating factors. First, it is often the case that a hyphen
used in a delimiting context, as in12:00-3:00and$975K-$1,595,000, is not correctly used
by the human labelers to split the token. In many cases, the splitter is more reasonable than
the human specified form (or at least more consistent). Further over-generative errors are not
problematic because it is unclear whether the split form would be pronounced differently
from the “correct” form, as is the case with many tokens (such as hyphenated words) whose
internal punctuation was the impetus for the split.

6.4. A tag classifier for non-standard words

The purpose of the NSW classifier is to categorize a token from the output of the splitter
into any one of the predefined NSW types, e.g.NUM, MONEY, ASWD, EXPN, LSEQ, NYER

etc. This predicted category is then used as an input for the tag expander that determines the
expansion of the token to words.

6.4.1. Method: overall tag classifier

The role of the NSW classifier is to assign a tag to each NSW token. This overall classifier is
implemented by a decision tree. The decision tree makes use of a number of features for the
classification.

We use 136 features in training the decision tree which can be separated into two classes:

(1) Simple domain-independent features.
These look at properties of the individual token, and require no domain-specific in-
formation to calculate. These are features about the character content (all alphabetic,
numeric, or mixture), vowel/consonant content, casing (all upper, or lower, or mixed),
and if it contains some specific punctuation symbols (slash, dot or dash). These features
are provided for the current token and tokens within a window of two before and two
after.

(2) Domain-dependent features.
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As the range of alphabetic tokens changes over the different domains, we also cal-
culate a set of features that are based on domain-specific information. These features
constitute a subclassifier for alphabetic tokens. Features from this subclassifier are used
within the overall classification tree. This sub-classifier is discussed in detail in the fol-
lowing section.

6.4.2. Method: sub-classifier for alphabetic tokens

Alphabetic tokens are those that consist of strings of alphabetic characters with optional
periods between characters. They also consist of those tokens with both alphabetic characters
and characters such as apostrophes (’or‘) and slashes (/). These alphabetic tokens can be
classified into three main categories:

(1) ASWD: the tokens to be treated as words, e.g. NATO, Kinshasa.
(2) LSEQ: the tokens which are to be treated as sequences of letters, e.g. I.B.M, USA.
(3) EXPN: the tokens that have to be expanded using the abbreviation expander, e.g. km,

blvd.

Tokens hand-tagged asMSPL, FNSP and OTHER may also fall into the class of alphabetic
tokens, but they are rare in our data and so we do not attempt to explicitly model them.

The alphabetic token classifier problem can be given a statistical formulation as follows.
The probability of assigning NSW tagt to observed stringo can be estimated using the
familiar Bayes approach as:

p(t |o) =
pt (o|t)p(t)

p(o)
wheret ∈ {ASWD, LSEQ, EXPN}. The terms of this equation are derived as follows:

(1) The probabilityp(o|t) can be described by a trigram letter language model (LLM) for
predicting observations of a particular tagt .

pt (o|t) =
N∏

i=1

p(l i |l i−1, l i−2)

whereo = (l1, l2, . . . , l N) is the observed string made up ofN characters. Such letter
language models have been used earlier for applications such as text compression (Bell,
Cleary & Witten, 1990) and estimation of language entropy (Brown, Pietra, Pietra, Lai
& Mercer, 1992). The language model used is the most widely adopted n-gram (in our
case trigram) formulation (Jelinek, 1997).

(2) The probabilityp(t) is the prior probability of observing the NSW tagt in the text.
(3) The probability of the observed text or the normalization factor is given by

p(o) =
∑

t

p(o|t)p(t).

This model assigns higher probabilityp(o) to shorter tokens in comparison to longer
ones. However, the probabilitiesp(t |o) which are compared always correspond to the
same token, compensating for the length factor.

The sub-classifier for alphabetic tokens outputs the following letter language model based
features for the full decision tree which performs the overall classification:

(1) p(t |o), t ∈ {ASWD, LSEQ, EXPN};
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TABLE X. Examples of alphabetic tokens with LLM features and correct tag

Token p(ASWD|o) p(LSEQ|o) p(EXPN|o) pmax tmax diff Correct
mb 0·0001 0·0038 0·9962 0·9962 EXPN 0·9924 EXPN
Grt 0·0024 0·0000 0·9976 0·9976 EXPN 0·9952 EXPN
NBA 0·0017 0·9983 0·0000 0·9983 LSEQ 0·9966 LSEQ
Cust 0·5456 0·0000 0·4544 0·5456 ASWD 0·0912 EXPN

TABLE XI. Accuracy of the three-way LLM classifier com-
pared to a baseline of choosing the most probable class (su-

pervised training paradigm)

Domain NANTC classifieds pc110 RFR
Baseline 83·90 80·53 63·77 69·98
LLM Classifier 95·72 98·74 92·27 97·92

(2) pmax= maxt p(t |o) (maximum probability of an alphabetic category);
(3) tmax= argmaxt p(t |o) (most probable alphabetic tag);
(4) diff = Difference between highest and second highest probabilitiesp(t |o).

Some examples of tokens with the six LLM features are displayed in the TableX.
In supervised training of the letter language model, the alphabetic tokens for each of the tag

categories [ASWD, LSEQ or EXPN] are partitioned into separate sets, one for each domain. If
there are multiple examples of a particular token in a set (e.g. multiple instances ofkit labeled
asEXPN), then all instances are used in training the LLM for that tag type. A trigram LLM is
trained for each case using the modified Kneser–Ney smoothing (Kneser & Ney, 1995; Chen
& Goodman, 1999).

6.4.3. Evaluation of the LLM and overall tag classifier

To obtain an estimate of the sub-classifier accuracy, an intermediate token error rate can be
calculated on alphabetic tokens. The (supervised) domain-dependent alphabetic LLM classi-
fier is compared to a baseline where all alphabetic tokens are labeled with the most frequent
tag for that domain, which isASWD in the NANTC, pc110 and RFR domains andEXPN in
the classifieds domain. The accuracy of the classifier in these experiments is presented in
TableXI .

The decision tree for the overall classifier was built with and without LLM features in
order to judge the effect of these extra features on the overall accuracy. The corresponding
accuracies are presented in TableXII , showing that there is a small gain in performance due
to the LLM, with the exception of the RFR corpus. It is possible that the RFR LLM suffered
from sparse training problems, since that corpus was smallest and had the fewest alphabetic
tokens. However, the result seems surprising given the high accuracy reported in TableXI .

The domain-dependent LLM that has been trained on each on the three alphabetic tag
categories, was used to compute perplexity of the test data. These perplexity values are given
in TableXIII .
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TABLE XII. Overall NSW tag classifier accuracy (super-
vised training paradigm)

NANTC classifieds pc110 RFR
no LLM features 97·7 92·7 90·9 97·3
all LLM features 98·1 93·5 91·8 96·8

TABLE XIII. Perplexity of the domain-dependent LLM
on alphabetic NSW tokens

Tag Category NANTC Classifieds pc110 RFR
ASWD 22·7 19·0 16·9 13·9
LSEQ 86·9 56·0 62·6 50·3
EXPN 28·7 14·4 31·8 25·6

6.5. Word expansions

As discussed in Section6.1, our system implementation involves choosing between possible
expansions of tokens according to

w∗ = argmax
w

p(o, t∗|w)p(w),

wheret∗ is the most likely tag sequence and the lexical model has the form

p(o, t∗|w) =
m∏

i=1

p(oi , t
∗

i |wi ).

Given a hypothesized tagt∗i , the word expansion module provides the set of possible ex-
pansions{wi } and the associated conditional probability of the observed tokenp(oi , t∗i |wi ).
For the cases where the expansion is algorithmic, described in Section6.5.1, a single obser-
vation is generated and the observation probability is trivial. For theEXPN case, discussed
in Section6.5.2, there is genuine ambiguity and the observation probability is an important
component.

6.5.1. Method: algorithmic expansions

For most of the tags, the expansion to a word sequence is algorithmic. That is, although there
may possibly be some choices in the pronunciation (i.e.one hundred onevs. one hundred
and one), the expansion algorithm is not dependent on the domain or context. In this work,
the labelers were not asked to choose a specific pronunciation for efficiency reasons, so it was
not possible to estimate observation distributions and a single choice is made. As mentioned
earlier, for many domains and especially for text-to-speech synthesis applications, such an
approach is quite reasonable.

Even within these algorithmic expanders, some are more trivial that others. The tagged
tokens are treated as follows:

NONE: expands to no words.
SLNT: expands to no words.
PUNC: expands to itself.
ASWD: expands to itself.
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LSEQ: expands to a string of words, one for each letter.
NUM: expands to string of words representing the cardinal number. This covers integer, dec-

imal and Roman forms.
NORD: expands to string of words representing the ordinal number. The token may be simply

numeric, numeric appended withth, st or rd, or it may also be Roman.
NDIG: expands to string of words, one for each digit.
NYER: expands to words as in a pronunciation of a year. That is, each pair of digits is pro-

nounced asNUM except where the last two are00, where the group of four are pro-
nounced as a whole.

NADDR: expands as words using the same (digit pairs) algorithm as forNYER.
NZIP: expands as string of digits, with deletion of dashes within the token.
NTEL: expands as string of digits with deletion of punctuation.
NIDE: expands as string of letters and digit pairs (as inNYER).
MONEY: expands to string of words to say the number and currency; deals with various

currencies.
BMONEY: expands to string of words to say the number; deals with various currencies. The

pronunciation for the following token (if it ismillion, billion, or trillion ) is included
within the expansion of this token, before the money identifier. Thus tokens which are
preceded by aBMONEY token (million, billion or trillion ) and areASWD expand to
nothing.

NDATE: expands as a number sequence.
NTIME: expands as a number sequence withhours, minutesandsecondsas appropriate.
PRCT: pronounced as a number with the ‘%’ sign removed and the wordpercentappended.
URL: written as is with no expansion; not addressed in this work.
OTHER: written as is with no expansion.
MSPL: written as is with no expansion: spelling correction is outside the scope of this work.
FNSP: again written as is, since there is no record of the “proper” word. In fact, there often

is not a proper word as in tokens likeHmmmmandArghhhh.

6.5.2. Method: theEXPN model

If one has an appropriately tagged training corpus for a particular domain, one can compile
a list of abbreviations from that corpus. This is equivalent, of course, to the traditional ap-
proach used in TTS systems or the LDC text-conditioning tools, of hand-constructing a list
of abbreviations for a particular domain. The main difference is that we also estimate the
probability p(o|w) = p(o, t |w), given the distributions of words and their abbreviations in
the training data. (The equality is because an abbreviated observation can have only theEXPN

tag.) In our case, the maximum likelihood estimate (i.e. relative frequency) is used. Note that
since we know the word and its abbreviation(s), we do not need to separately estimatep(t |w)
(the probability that a word will be abbreviated in any form) andp(o|t,w) (the probability of
a particular abbreviation given that we know the word and that it will be abbreviated). Rather
we can estimate their product directly.

In this work, we do not attempt to expand cases where the observationo has never been
observed in the training corpus, but in principle that could be handled by the generative model
described in Section7. Evaluation of these techniques is given in Section8. In our data the
only examples ofEXPN tokens for which the expanded form did not appear in the training
set wereetc andMrs, which we can reasonably assume as being standard. However in the
classified ads, which contain much more productive abbreviations, new data from a different
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(geographical) area is very likely to containEXPNs for which we have not previously seen
their full expansion.

6.6. Language modeling

In many cases, the best choice between different expansions can be determined by local
lexical context. For example, whenSt. is preceded by a name it is typicallystreet, and when
it is followed by a name it is typicallysaint. Since n-gram language models are good at
representing local context, they are potentially very useful for disambiguation. In particular,
since an n-gram language model is easily trained from data, it can pick up dependencies that
a human writing rules might not notice.

6.6.1. Method

As mentioned earlier, we used trigram language models constructed with modified Kneser–
Ney smoothing. In terms of perplexity, modified Kneser–Ney smoothing has been found to
consistently outperform all other popular n-gram smoothing methods (Chen & Goodman,
1999). Language models were trained separately for each of the four domains. The vocab-
ulary for each n-gram model was constructed by collecting every token that occurred in the
corresponding training set. Some tokens (particularly non-alphabetic NSWs) are mapped to
a tag label, in which case the tag label is added to the vocabulary and treated like any other
token in the vocabulary. This is to make the language model less sparse for the cases where
knowing the identity of the token rather than the tag will not help much in disambiguation.
For example, a number might be mapped toNYER or NUM rather than expanded to the asso-
ciated word sequence. In effect, this gives us a partially class-based language model. It also
means that the actual implementation is slightly different than the architecture described in
Section6.1, in that the algorithmic expansions actually come after the lattice scoring, though
this is not a requirement of the class-based language model.

Note that, because of the use of hand-labeled NSW tags and expansions, the language mod-
els were constructed on substantially smaller data sets than used in many speech recognition
systems. Because of the sparse data issue, the language models constructed were unable to
discriminate abbreviation expansions as well as they might have. A more extensive use of
class-based language modeling techniques might be useful in future work, which would help
with cases such as theSt.example above.

6.6.2. Evaluation of expansion with LM disambiguation

Testing was done on the classified ads data only, under two conditions:

(1) without the language model, in which case we pick the expansion for an abbreviation
that maximizesp(wi |oi ) separately for eachi ; and

(2) with the language model, in which case we pick the expansion that maximizes
p(o|w)p(w).

Performance is evaluated only on the trueEXPNs.
The error rates were 4·8% and 6·7%, respectively with and without the language model.

The relatively low error rates mean that the training corpus is covering most of the cases that
one encounters in the test corpus, though about 5% of the cases in the test corpus are still
unseen. The relatively small difference between the with-language-model and no-language-
model cases reflects the fact that most abbreviations are unambiguous in this domain, though
some (e.g.DR for driveor dining room) areambiguous.
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Interestingly, and informatively, most of the difference between the with and without lan-
guage model cases resulted from a bug in the database labeling involving a single NSW type:
the abbreviationSFwas tagged as meaningsouth facingin most instances, though a few cor-
rect taggings ofsquare foot/feetwere found. Without the language model the expansion with
the highest lexical prior—south facing—was chosen. With the language model, the correct
choice was preferred. Thus, the language model was correcting for annotator error.

7. Unsupervised training

The previous discussion has focussed on supervised methods for treating NSWs. As we have
seen, the distribution of NSWs is very different across the different corpora. As one might
expect, using a model trained on one domain for another gives significantly degraded perfor-
mance. Thus, model parameters are best estimated within the domain that one wishes to apply
the model to. This applies not only to alphabetic NSWs—abbreviations, letter sequences and
acronyms—but to NSWs of other classes too: a sequence like110 is much more likely to be
read asone tenin text from the pc110 newsgroup than it is in more general text. However,
the richest source of variability among NSWs across domains is found in alphabetic NSWs.
Classified ads, for example, contain many abbreviations—BR(bedroom), DR (dining room),
W + D (washer and dryer)—that are unique to this domain.

When one has a hand-built abbreviation list for a particular domain, one naturally can
achieve good coverage for that domain, but there are many different text domains, and it is
therefore simply impractical to expect that one will have a totally hand-constructed abbrevia-
tion list for every new domain that one encounters. The question naturally arises whether one
can bootstrap an expansion model and how well one can do with such a model. This is the
topic of this section. Since alphabetic NSWs pose the most challenging examples and make
up a large fraction of the total NSWs (ranging from 30% to 55%), we decided to focus on
these in investigating unsupervised training of NSW normalization models.

The treatment of alphabetic NSWs includes two aspects. The first is classification: we need
to know whether a given alphabetic NSW should be treated as a letter sequence (LSEQ), a
word (ASWD) or an abbreviation (EXPN). If it is one of the first two, then the reading is more
or less algorithmic, but if it is anEXPN, then we also need to predict how to expand it. We
treat each of these issues, classification and expansion, in the next two sections, followed by
a discussion of the expansion results and related work.

7.1. Unsupervised NSW tag classification

The alphabetic NSW sub-classifier first introduced in Section6.4.2can also be trained in an
unsupervised paradigm that does not require any labeled NSW data for the domain. Rather,
we use the unlabeled data in a given domain to extract possibleEXPN andLSEQ tokens by
using some simple heuristics. These heuristics allow us to come up with a list ofEXPN and
LSEQ tokens on a domain-dependent basis without the need for labeled NSW tokens. The
supposedLSEQ tokens are extracted by searching for tokens that are comprised of lower or
upper case characters alternating with periods. In addition, the knownLSEQ tokens from the
NANTC domain can be used to augment the domain-specific lists. The heuristics used to
construct theEXPN lists consist of selecting tokens with the following text patterns:

• Alphabetic tokens with no vowels.
• Tokens followed by a period, which are followed by a token starting with a lowercase

character. This heuristic is intended to capture abbreviations ending with a period and
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TABLE XIV. Accuracy of the three-way LLM classifier
(unsupervised training paradigm)

Domain NANTC classifieds pc110 RFR
Baseline 83·90 80·53 63·77 69·98
Unsupervised 92·98 87·90 68·90 92·06
Supervised 95·72 98·74 92·27 97·92

not followed by a sentence boundary. (Example:frplc. ba in which frplc is an abbrevi-
ation that has to be expanded.)
• Plural forms of the tokens falling in the previous category.

The two unsupervised lists serve as the training data for theLSEQ andEXPN letter language
models, respectively. As in the case of supervised LLM training, these two lists included
multiple instances of tokens when they occur more than once in the respective data sources.
Words in the CMU dictionary (CMU, 1998) with more than four characters are used as the
training data for theASWD letter language model. Once these lists have been compiled, letter
language models are built separately for each list as before.

We evaluated the unsupervised method on the four domains as before: NSW tokens from
the test data for each domain are extracted, and alphabetic tokens are filtered from these NSW
tokens for input to the classifier. The accuracy of the three-way NSW classifier on alphabetic
tokens in the unsupervised evaluation paradigm is presented in TableXIV , with the prior
baseline and supervised results included for reference. Significant improvements are made
in the RFR domain, but the gain is small for the pc110 domain. Note that the model for the
NANTC domain is not strictly unsupervised because of the knowledge used in building the
LSEQ training list.

7.2. Unsupervised treatment of abbreviations

For training an unsupervised abbreviation expansion model, we assume that one has an un-
tagged corpus from the domain of interest, plus a method, such as the one described in Sec-
tion 7.1, for deciding if a word should be expanded.

We also crucially assume that one’s untagged corpus gives evidence for the correct expan-
sion for each of the abbreviations in question. To see what we mean by this, consider a corpus
of classified ads in which we have the abbreviationskit andlivrm as in the example:

eat-in kit livrm dinrm 17x25 famrm

This is a sample from a highly abbreviated ad, but one may hope that elsewhere one can find
ads that are less highly abbreviated that contain examples such as:

. . . eat-in kitchen. . .

. . . living room. . .

The problem is to identify thatkit is a plausible abbreviation ofkitchenand thatlivrm is a
plausible abbreviation ofliving room. More precisely, one would like to estimate the proba-
bility p(o, t |w), where in this caseo is, say,kit, t is (by definition)EXPN, andw is kitchen:
in other words, the probability that one wants to abbreviate, e.g.kitchen, and that one would
do it askit.

Making a reasonable guess about a possible expansion of an abbreviation requires mod-
eling the abbreviation process. We present a decision-tree-based model of this process in
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Section7.2.1. The procedure for training and testing an unsupervised model is given in Sec-
tion 7.2.2, and then experimental results are described in Section7.2.3.

7.2.1. Method: a tree-based abbreviation model

By and large, abbreviations involve removal of letters, though there are some cases where one
finds (usually pronunciation-influenced) letter substitutions (e.g.lgstx for linguistics). There
are various obvious heuristics on how one may form abbreviations:

• Delete vowels and possibly sonorant consonants (hdwdfor hardwood).
• Delete all but the first syllable (ceil for ceiling).
• Delete all but the first letter (N for north).

However, it is in practice difficult to formulate a set of rules to handle abbreviation, much
less provide an estimate of how likely a given abbreviation is.

We therefore decided to train a decision tree model to predict whether or not a letter would
be deleted. The system was trained on 854 pairs of hand annotated abbreviations and their
expansions—taken from the classified ads, as this is the domain richest in productive dele-
tions. The alignments between the full form of the word and the abbreviated form in the train-
ing data were produced by composing the full form with a WFST that allows letters either
to delete at a cost, or to be mapped to themselves; the resulting transducer is then composed
with the abbreviated form, and the cheapest path selected. This will result in an alignment
where full-form letters match in a left to right fashion with the letters in the abbreviated form,
and are otherwise deleted.

The features chosen for training were as follows:

(1) The class of letter two to the left (−2), one to the left (−1), one to the right (+1) and
two to the right (+2) of the current letter, as well as the class of the current letter itself.
Class was here defined (somewhat solecistically) as obstruent, sonorant, vowel and “y”
(containing just the letter “y”).

(2) The boundary to the immediate left and right of the current letter: word-boundary,
morpheme-boundary or no boundary.

(3) The fate of the−2 letter and−1 letter: deleted or not deleted.
(4) The fate of the+1 letter and+2 letter: deleted or not deleted.

The last feature (which clearly depends upon knowing the future output) produced better
results: without this feature the tree performed at 85% (measured by cross-validation) and
with the feature it performed at 88% in predicting deletion. Note that the baseline for this
task (always predict deletion) is 54%.

Information about word-internal morpheme boundaries was obtained using a crude mor-
phological analyzer that allows a concatenation of one or two three-or-more-letter words
from the CMU dictionary (CMU, 1998), possibly followed by-s or -es.

The model implemented by the tree can be described formally as follows. Given an ob-
served abbreviationo of wordw, we assume that there is a unique mapping to ano′ the same
length asw, where deletions are marked asε. This uniqueness assumption is reasonable
since:

• We are only modeling deletions. It would be more complex if we modeled substitutions,
but we decided to simplify the model since the vast majority of abbreviations can be
handled by deletions only.
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• In cases where a letter in an abbreviation might in principle have been derived from
more than one full-form letter—e.g.excelfrom excellent, where there are two potential
sources for thel—we can for the sake of simplicity assume a “greedy” left-to-right
mapping.

Then the model can be given as

p(o|w) = p(o′|w) =
d∏

i=1

p(I i (o′)|T(o′1, . . . ,o
′

i−1, w))

whered is the length ofo′ andw, I i (o′) is the deletion indicator function (I i (o′) = 1 for
oi
′
= ε and 0 otherwise), andT is the decision tree that operates on features as already

described. The product can be viewed as a probability estimate as long asfuture values of
I i (o′) (e.g. the future fates described in4) are not used as features. If future values ofI i (o′)
are used, then the resulting product is not strictly a probability, but it does provide a useful
score for use in a minimum cost search.

The tree-based model was compiled into a weighted finite-state transducer (WFST) using
an algorithm related to that reported in (Sproat & Riley, 1996). In practice, it was found that
the model had too great a predilection to allow deletion of word-initial letters: this in part had
to do with errors in alignment in the training data, but was also affected by the small training
sample size and the fact that word-initial deletion of some letters is occasionally found (e.g.
xpwyfor expressway). We therefore arranged for the compiled transducer to disallow word-
initial deletions. We also had little data on added characters—e.g. “.”, “/”—which one finds
in abbreviations, usually as indications that one is dealing with an abbreviation (“.”), or that
there are some deleted characters (“/” as inw/ for with). In the WFST, we optionally allowed
a sequence of deleted characters to surface as one of these characters.

Of course, by restricting the abbreviation operation to deletions one is ruling out some ab-
breviations such associolxfor sociolinguistics, which involve letter substitutions, or the use
of non-alphabetic characters such as “+” for plus. A restricted set of the former transductions
(e.g. “cs” becoming “x”) could be added to the model. The latter kind is impossible to infer
anyway: one simply must depend upon a lexicon that tells you that one of the readings of
“+” is plus: this is unlikely to be amenable to purely unsupervised inference.

7.2.2. Method: unsupervised training

The unsupervised abbreviation expansion model starts with an untagged corpus from which
we assume we can infer the set of ordinary (“clean”) words and the set of abbreviations. The
abbreviations can be identified, for example, using the classifier described in Section7.1, and
the set of ordinary words can be identified by matching to a dictionary.

The basic procedure for training then requires two components, described below:

Abbreviation model. We collect the set of potentialEXPNs. We also collect the set of
clean words and clean word pairs occurring in the corpus: note that abbreviations may ex-
pand to more than one word (cf.livrm for living room), and expansions into two words are
particularly common in some genres such as classified ads. Call the thus-derived lexicon of
EXPNs N SWand the lexicon of clean words and clean word pairsSW. Denote withA the
abbreviation model implemented as a WFST, as described in Section7.2.1. Then, the set of
possible abbreviations can be derived by composingSW with A and composing the result
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with N SW:

SW◦ A ◦ N SW (11)

where “◦” denotes the composition operation (see, e.g.Mohri et al., 1997). This will give a
transducer that maps between ordinary words or word pairs and potential abbreviations, but
of course for tagging raw text, we need a transducer that computes the inverse of this relation.
Thisexpandercan be trivially derived by inverting the transducer above:

expander= [SW◦ A ◦ N SW]−1. (12)

This expander can then be used to expand tokens classified asEXPNs.

Language model. In the ideal case, we train the language model on perfectly clean text
from the domain of interest, i.e. containing no abbreviations. This is of course possible if
we have hand-annotated data, since we know what the correct expansion of abbreviations
is. In the unsupervised case, by assumption, all we have is text containing some unknown
number of abbreviations, for which we do not know the expansion. Since the language model
is intended to be a model of the “clean” version of the text, we at least want to exclude
the abbreviations from the parameters of the language model by treating them as unknown
words: this we do by mapping all alphabetic tokens identified asEXPNs to the unknown word
tag (〈UNK〉).

Figure3 gives an example of what the language model is trained on in both supervised
and unsupervised situations. The first column represents the raw text. The second column
is the fully expanded text, such as we might get from hand annotation, and illustrates the
data that would be used in supervised training. The third column represents the text that the
language model would be trained on in the unsupervised case. As in the supervised case, we
ignore the expansion of non-alphabetic NSWs, but rather simply substitute for them their tag
(automatically predicted, in the unsupervised case). Thus40 is represented in all cases as
@NUM+PL (plural number). Again, this gives us a partially class-based language model.
(Note the tagging error associated with a missed NSW detection:SOshould be expanded to
southin column 2 but not in column 3.)

The language model used in all cases was a trigram language model using modified Kneser–
Ney smoothing (Kneser & Ney, 1995; Chen & Goodman, 1999), as in the supervised training
experiments.

While we use language models within a source–channel framework as is done in speech
recognition, there are several significant differences between language modeling for text nor-
malization and language modeling for speech recognition. The most notable difference is the
bootstrapping issue: the most useful language model for text normalization is presumably
one built on normalized text, which by assumption we do not possess. As shown next, we
can still get useful performance from language models built on unnormalized text, e.g. when
an abbreviation occurs in its expanded form in some portion of the text. However, if a word
is consistently abbreviated in text, a language model will not help determine its expansion
unless trained on text, such as hand-labeled text, that includes the expansion.

7.2.3. Experimental evaluation

All experiments described here were run on a portion of the classified ad corpus divided
into 307 735 tokens of training data, and 76 676 tokens of test data, taken from thetraining
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SO SO SO
SHORE SHORE SHORE
</s> </s> </s>
40 @NUM+PL @NUM+PL
+ @EXPN @EXPN
MODERN MODERN MODERN
BRK BRICK <UNK>
APTS APARTMENTS <UNK>
ON ON ON
</s> </s> </s>
4 @NUM+PL @NUM+PL
+ @EXPN @EXPN
ACRES ACRES ACRES

Figure 3. Sample text and annotation for unsupervised language model training:
column 1 shows the source tokens, column 2 shows the non-alphabetic tokens
replaced by an automatically generated NSW tag, and column 3 changes all alphabetic
tokens marked as NSWs to unknown words.

portion of the data.2 For these experiments only—not for the final evaluation discussed in
Section8—we used a simpler classifier than the one described in Section7.1. We simply
classified alphabetic tokens as “clean” if they were in the dictionary, and as potentialEXPNs
otherwise.

The error rates reported here correspond totoken error rates(see Section8.1) on the true
EXPNs. Since only automatically classified potentialEXPNs are considered for possible ex-
pansion, we find errors—reflected in the error rates reported here—where true alphabetic
EXPNs were missed because they were not classified asEXPNs. We also get “overgeneration”—
not reflected in the error rates—for tokens that were classified incorrectly asEXPNs; the latter
point is discussed at the end of this section.

Finally, note again that in these experiments we uniformly mapped characters to upper
case. This results in some loss of information. For example,w in the classified ads is usually
with, whereasW is usuallywest, something that our supervised list-based methods could take
advantage of. On the other hand, our unsupervised methods currently do not take advantage
of case information: we can predict that eitherwestor with could be abbreviated asw (or
W), but we currently have no basis for predicting a preference for upper case in one instance
and lower case in the other, since the language model ignores case distinctions. Hence, for
the sake of uniformity across training conditions, we ignore case for both supervised and
unsupervised methods. However, with more complex language models, it may be possible to
learn such preferences, as illustrated by the above example, where the preference is surely
related to the content-word/function-word distinction, plus the fact thatwest is frequently
capitalized.

Note that in the unsupervised experiments described below, language modeling may be
used in two possible ways. In all but experiment 4, the language model is used for disam-

2As a reviewer of this paper points out, it would be interesting to see how sensitive the performance reported here
is to training set size. Unfortunately we did not vary the size of the training data in our experiments, so we cannot
address that question here.
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biguating possible expansions in the test data. In experiments 4–6, the language model is
used on the training data to provide better expansion training data.

In order to interpret the experimental results for unsupervised training described next, it
is useful to recall that the performance of the algorithms based on supervised training were
at 6·7% error without the language model for disambiguation, and 4·8% with the language
model.

Finally note that in this section we report only token error rates: while different from
word error rates, the two are of course highly correlated, so it is sufficient for the purpose
of evaluating refinements of the unsupervised abbreviation methodology to concentrate on
token error rates.

Unsupervised method: experiment 1.In the first experiment we constructedSWout of:

• All singleton clean words.
• All clean 2-word sequences occurring in the data a minimum of three times.

The three-word minimum was felt to be a reasonable cutoff, since anything occurring fewer
than three times is probably unreliable anyway. The language model was built on the training
data as described above in Section7.2.2. During testing, automatically detectedEXPNs were
submitted to the expander ([SW ◦ A ◦ N SW]−1) and the various alternatives scored by the
language model. This first test had a token error rate of 33%.

Unsupervised method: experiment 2.It was observed that some of the errors introduced
in experiment 1 involved proposed expansions where the target was a rare word. For example,
SF was expanded asSURF, which occurred only twice in the training data. Thus, in the
second experiment, we tried removing low-frequency unigrams from the set of clean words.
SW then consisted of:

• All singleton clean words occurring more than ten times.
• All clean two-word sequences occurring in the data filtered with the above list.

Here, the error rate increased to 34·5%, clearly indicating that information was lost by the
filtering process.

Unsupervised method: experiment 3.In experiment 3, we returned to the method for
constructingSW from experiment 1, and added a third component, namely a short list of
arguably standard abbreviations:

aug (August); av (Avenue); blvd (Boulevard); ext (extension); ft (foot, feet); inc (in-
corporated); l (left); n (north); r (right); rd (road); st (street); w (west); w/ (with); x
(extension); sf (square foot, square feet); etc(etcetera); n.w (northwest)

Here the error rate reduced substantially, to 24%.
Since we are providing some hand annotation in this experiment, one may be inclined to

think of this as cheating. A more charitable interpretation is that this approach gives some
indication of how much of a reduction in error rate one can do if one is willing to do asmall
amount of handwork, something that is not unreasonable to expect.

Unsupervised method: experiment 4.In experiment 4, we had the same setup as exper-
iment 3, but returned to investigating purely automatic methods. GivenSW defined as for
experiment 3, we:
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• Reran theexpanderand thelanguage modelon thetraining data.
• Selected the most frequent expansion found for each potentialEXPN in the training data

as “truth”.
• Used these single items to predict the expansion of potentialEXPNs on the test data.

In this setup, there is clearly no need to use the language model during testing, since there is
only one expansion allowed for eachEXPN. Here again, the error rate was reduced substan-
tially, to 19·9%.

Unsupervised method: experiment 5.An obviously unfortunate property of experiment 4
is that any given abbreviation can only have one expansion, whereas we know that at least
someEXPNs are ambiguous. We tried allowing for such ambiguity by following the same
general procedure as in experiment 4, but this time selecting two alternatives if the second
most frequent alternative occurred at least half as many times as the most frequent alterna-
tive: the reason for this minimal count was to eliminate noise. In such cases, we retain both
alternatives, and weight them according to their frequency: more specifically, we take the
distribution from the training-data run to be truth, and we estimatep(o|w) = p(o, t |w) as
we would in the supervised case.

Unfortunately, this resulted in no reduction of error rate: 19·9%. However, it was decided
to retain the ability to allow for alternatives since it at least has the potential to do better than
a method that only allows one alternative.

Unsupervised method: experiment 6.In experiment 5, although we treated the guessed
expansions on the training data as truth, we still used the same language model on the test
data as had been trained on the original unexpanded training data. The problem with this
is that for some words we have very poor estimates of their true probability of occurrence
from their occurrence in the raw training data: this is because they are highly likely to be
abbreviated. Thus,bedroomis about twice as likely to occur abbreviated (usually asBR) in
the classified ads as it is to occur fully spelled out. Experiment 6 addresses this deficiency by
retraining the language model on the expanded training data. Once the language model was
retrained, we once again rescored the lattice of possible expansions for the training data, and
reestimatedp(o|w) = p(o, t |w) for up to two expansions for each abbreviation. This method
resulted in a modest reduction in error rate, to 19·5%.3

The results of each experiment are summarized in TableXV. Note that the best error
rate—19·5%—is roughly four times the error rate of the supervised method tested on the
same data.4

7.3. Discussion

The work discussed above has shown that if one is unable to tag a lot of data from a novel
domain, and if that domain provides enough “clean” text to allow one to make inferences
about possible expansions for abbreviations, and if one is willing to tolerate approximately

3One reviewer asks: “what would be the impact on token eror rate of using a language model trained on normalized
text”. Note that this experiment answers that question to some extent since although the “normalized” text in this
case is automatically inferred, and not the same as “truth”, it does show that there is certainly some sensitivity to
having a language model that is trained on text that is closer to unabbreviated text.
4The results reported here cannot be directly compared with the results in Section8: the current results are forEXPNs
only, whereas the results reported in Section8 pertain to performance of all the components. Furthermore, the test
set for evaluation in this section was different from that used in the evaluations in Section8.
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TABLE XV. Summary of experimental results on abbreviation
expansion

Experimental condition Token error rate (%)
Supervised no language model 06·7

with language model 04·8

Unsupervised Experiment 1 33·4
Experiment 2 34·5
Experiment 3 24·2
Experiment 4 19·9
Experiment 5 19·9
Experiment 6 19·5

four times the error rate of a supervised method, then it is possible to automatically infer
models that handle abbreviations.

A post-hoc analysis of the errors in experiment 6 leaves even more room for optimism:
fully half of the “errors” were either not errors at all because the hand-labeling was wrong, or
were acceptable alternatives. A common instance of the latter wasbathrather thanbathroom
as an expansion ofBA, which in the context of real estate descriptions is perfectly acceptable,
or even preferred. Thus, the true error rate may be closer to 10%.

One serious problem is “false positives”—cases where a token was expanded that should
not have been. These were not counted in the errors described above, but were nonetheless
quite substantial: in experiment 6, for instance, there were about 80% as many false positives
as counted errors. This of course relates to the reliability with which we can detect a potential
abbreviation.

The approach described here relates to a couple of other strands of research. One is au-
tomatic spelling correction, where the problem is to find the closest and contextually most
appropriate correctly spelled target word to a misspelled token. The typical approach is to
assume that the correct target is within some small edit distance of the misspelled token, and
then use some form of language modeling technique to select the correct one given the sur-
rounding words (see, e.g.Golding & Roth, 1999). There are three differences between the
present work and the previous work on spelling correction, however.

First of all, as has already been mentioned, spelling correction algorithms limit the target
words to those known clean words that are within a small edit distance of the token. In
contrast, we made no assumptions about how distant in terms of edit distance the abbreviation
could be from its target, since any such assumption would be impractical. Secondly, the target
correctly spelled word corresponding to a single misspelled token is itself assumed to be a
single token. For abbreviations, we must at least allow that a single abbreviation come from
potentially two original words. Thirdly, most work on spelling correction systems assume
you know that you are dealing with an error. Indeed, it is typical to evaluate such systems
by demonstrating performance on a few selected spelling errors. In contrast, one of the tasks
that we attempt to address in this work is detection of potential expansions, in addition to
prediction of their actual expansion.

We have already noted the similarity of the current work to that ofRowe and Laitinen
(1995), discussed in Section2.3. There is also a similarity between the current work and
work reported inTaghva and Gilbreth(1995) on using approximate string matching methods
to induce interpretations of acronyms or letter sequences from their full word expansions
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found somewhere in the immediate context of the given letter sequence. Thus, from a text
such astoday, leaders of the North Atlantic Treaty Organization (NATO) met in Brussels . . .,
one would inferNorth Atlantic Treaty Organizationas a possible interpretation ofNATO.
The present method, however, does not presume that the answer is in the immediate context,
or even particularly close by.

8. Overall system performance

This section compares the overall performance of the systems we built to that of pre-existing
systems that attempt the same task. Methods for evaluating text normalization systems have
not been well-established. Since we have hand-annotated data in each of our domains (which
we refer to as “truth”), a natural metric is to calculate a token or word error rate with respect
to this “truth”. We use this metric for most of our evaluations, as described in Sections8.2and
8.3. However, this type of evaluation falls short of the ideal in two main respects. First, there
are often multiple acceptable normalizations of a given piece of text, while our “truth” only
specifies a single alternative. (To create manually annotated data containing all acceptable
alternatives is terribly costly.) Second, the truth was generated in a semiautomatic fashion,
and the automatic processes used may have introduced systematic errors. As one example,
only NSWs that were automatically detected as such were manually annotated. However, it
was shown in Section6.2 that our detection algorithm is imperfect. Another example is that
common abbreviations such asBR in classified ads were expanded automatically. Thus, we
do not know for sure whether the correct expansion in each case isbedroom, bedrooms, or
something else entirely.

To address these issues, we also performed another type of evaluation. Instead of auto-
matically comparing system output to reference text, we manually judged the acceptability
of system output to estimate error rates. Due to the labor-intensive nature of this method, we
only performed a few evaluations of this type. These evaluations are described in Section8.4.

8.1. Measurement criteria

We chose two figures to measure the accuracy of our models.

Token error rate: the percentage of original unsplit tokens whose expansion to words does
not completely match the expansion to words in the truth.

Word error rate: the percentage of wrong words in an expansion (including insertions,
deletions, and substitutions) with respect to truth.

The first of these is a good measure because the number of original unsplit tokens is the same
for almost all of the models we present results for. The LDC text conditioning tools do not
preserve token boundaries over their expansions, so for the LDC tools we can only report
word error rates. Although some dynamic programming method could be used to reconstruct
the token boundaries, we did not do that since we believed that further errors could be intro-
duced that way. The word error rate, although highly correlated with token error rate, is not
so straightforward; if a model mistakenly identifies an abbreviation as a letter sequence, the
number of word errors will be greater than if it wrongly identifies it as anASWD.

While neither measure is ideal, looking at the erroneous tokens, we feel these figures ade-
quately represent the relative accuracies of these models.
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TABLE XVI. Performance relative to truth of
existing text analysis systems on the different

corpora

LDC tools Festival
TER WER TER WER

NANTC — 02·88 01·00 01·38
Classifieds — 30·81 30·09 33·48
pc110 — 22·36 14·37 32·62
RFR — 09·06 06·28 16·19

8.2. Baseline systems

One of the purposes of this work was to introduce the idea of measuring the accuracy of a
text analysis system. Thus, in order to place our own models in context, we have chosen two
publicly available pre-existing text analysis systems to show what the current state is.

The first is the LDC text conditioning tools, described previously in Section2.2. The sec-
ond system is Festival (Black et al., 1999), a publicly available text-to-speech synthesis sys-
tem. The text analysis part consists of both rule-driven and statistical prediction models for
number and homograph disambiguation. Festival was primarily trained and tested on news-
type data, though an email database was also used. Although we are using Festival as the
framework for building our new NSW models, this test is on the 1.4.0 release without any
benefits from new models produced in this project.

The performance relative to truth of the two systems on the different domains is given in
TableXVI . As the mechanism used to generate the truth that these systems are compared
against uses some of the same mechanisms that the Festival text analyser uses, there is prob-
ably a slight bias in these results that favors Festival. Looking closely at “errors” in the LDC
NANTC results, we estimate that a truer error rate would be close to 1·5, as many of the
“errors” are actually trivial: for instance, hyphenated words are sometimes not split by the
LDC tools although they are in our reference expansion. Also, given the results of the manual
evaluation, it seems that we cannot make any strong statement about the difference between
Festival and the LDC tools’ performance on NANTC. However, we feel that the above table
shows that these existing systems do reasonably on NANTC-type data and perform miser-
ably on any of the other domains. Note that these error rates are not directly comparable with
the manual evaluation results to be presented in Section8.4, both because of inaccuracies
in “truth” and because the manual evaluation allows any acceptable alternative to be correct
instead of just one.

8.3. Performance of the present NSW system

In this section, we present a series of experimental results that demonstrate the overall per-
formance of the full system and the relative contribution of the different components. First,
we give results for the full system using domain-dependent training, with experiments on
variations that remove the language models to investigate the relative contribution of these
parts. Next, we incrementally add oracles (i.e. truth) at different stages to better understand
performance of other components. Then, we describe results for domain-independent mod-
els, where the training and test data do not fall into the same domain. Finally, we look at
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TABLE XVII. Token and word error rates of text normalization systems with supervised training,
comparing the full system to versions without using the language model for disambiguation (No LM)

and/or without using the letter language model in the tag prediction tree (No LLM)

Festival Full system No LM No LLM No LM/LLM
TER WER TER WER TER WER TER WER TER WER

NANTC 01·00 01·38 0·39 0·82 0·39 0·81 0·38 00·78 0·38 00·78
Classifieds 30·09 33·48 7·00 9·71 6·82 9·70 7·55 10·39 7·41 10·42
pc110 14·37 32·62 3·66 9·25 3·63 9·25 3·93 10·90 3·90 10·90
RFR 06·28 16·19 0·94 2·07 0·93 2·06 0·88 02·07 0·88 02·07

domain-dependent but unsupervised models, which use data for a new domain without hand
labeling tags or expansions, again assessing variations with and without the language model.

8.3.1. Domain-dependent models

The full system using domain-dependent supervised training consists of the following parts:

• a domain-independent token splitter;
• a domain-dependent decision tree for predicting NSW tags, trained on the hand-labeled

tags and including letter language model based features for alphabetic NSWs;
• a domain-dependent WFST for expanding tokens classified asEXPN, built from hand-

labeled data and producing a list of potential expansions; and
• a domain-dependent language model that chooses between the different expansions,

again trained on hand-labeled tags and expansions.

The results over the different domains are given in TableXVII , showing that the full sys-
tem outperforms the comparison baselines (LDC tools and Festival, the latter given here for
comparison) on all domains, with error reductions of more than a factor of three in many
cases.

In addition, the table gives results for cases that exclude one or the other, or both, of the
two language models. Excluding the word language model implies using the most probable
expansion for a given token independent of context. The results show that the language model
does not impact performance except for the classifieds data, where the error rate actually
increases with the language model. Looking at the test data, we find that there are only a
few places where expansions have valid alternatives, and in those cases it is not clear how
a general n-gram language model would help disambiguate them. Removing the possibility
of choice guarantees that the less probable expansions will never get selected. Excluding
the letter language model implies using a tag prediction tree that was trained without those
features. Deleting the letter language model negatively impacts both the classifieds and pc110
domains, both of which have a much higher occurrence of domain-specific acronyms and
abbreviations. The RFR domain seems to have better performance without the LLM features,
but this may be due to the sparse LLM training data for that domain as noted earlier.

8.3.2. Adding truth through oracles

The next set of experiments show what happens when we give the model truth through an
oracle. This can only be realistically done in two places: the splitter and the NSW tagger.
When the hand-labeled token splits and NSW tags are both used, the only part left is the
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TABLE XVIII. Token and word error rates of text normalization sys-
tems based on supervised training, comparing the full system to ver-
sions with an oracle token split and tagger, where the oracle is the

hand-labeled data

Full Oracle
system Split Split & tag

TER WER TER WER TER WER
NANTC 0·39 0·82 0·20 0·44 0·03 0·06
Classifieds 7·00 9·71 5·40 6·35 3·15 4·24
pc110 3·66 9·25 2·58 4·61 0·49 0·75
RFR 0·94 2·07 0·59 1·11 0·16 0·24

TABLE XIX. Comparison of domain-dependent (DD) and domain-independent (DI) NSW systems
with Festival and with a domain-independent system augmented with expansions for the most fre-

quent abbreviations in that domain

Festival DD NSW DI NSW DI NSW / DD abbr
TER WER TER WER TER WER TER WER

classifieds 30·09 33·48 7·00 9·71 25·20 29·11 19·69 21·18
pc110 14·37 32·62 3·66 9·25 12·35 18·69 12·09 18·07
RFR 06·28 16·19 0·94 2·07 02·71 04·66 02·32 04·14

expander and the language model disambiguation. The results, summarized in TableXVIII ,
show that while a significant portion of the errors is due to the splitter, a much larger com-
ponent is due to tag prediction errors. The table also shows that the expansion step is still a
substantial part of the problem, particularly in the classifieds, which is the domain with the
most abbreviations.

8.3.3. Domain-independent models

The third set of experiments was carried out to find out how well we can build a domain-
independent model. At first, we considered building models based on three of our labeled
domains then testing on a fourth, but our initial experiments (based on the performance of
the decision trees built in this manner) was that the NANTC domain is about as generic as we
can get and it performs as well on the other domains as a combined model probably would.
The results are summarized in TableXIX , with Festival’s results for comparison. (Since the
results on the NANTC corpus would not be considered domain-independent in this case, they
are omitted.) In addition, we include results for a system that is partially domain dependent
in that it uses NANTC domain tag and language models, but forEXPNs it uses a list of the
most frequent abbreviations taken from the data. The rationale for this test is to find out
what would happen if one at least created a new list of domain-dependent expansions for the
model—something that is surely much less work than exhaustively labeling a large portion
of the data. Although the results for our NANTC model compare favorably with Festival’s
they are still somewhat poor, particularly for the classifieds and pc110 data. The addition of
a list of known abbreviations in the domain helps substantially for the classifieds domain, but
it probably still is not useful enough to consider using the output for any real task.
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TABLE XX. System performance using different strategies for su-
pervised and unsupervised training for domain-dependent NSW pro-
cessing of the classified data, compared to the domain-independent

result

Training LM disambiguation? TER WER
Domain independent Yes 25·20 29·11
Unsupervised No 12·64 13·50
Unsupervised Yes 12·50 13·40
Unsupervised+ abbrevs. Yes 10·58 13·51
Supervised Yes 07·00 09·71

8.3.4. Unsupervised models

The final set of experiments that we report here are on building domain-dependent models on
unlabeled data. That is, we assume there is some example data from the domain, but we do
not expect it to be labeled. We consider this scenario likely in the case of text conditioning
for building language models. So far, we have only done this for the classified domain. The
steps involved are:

(1) Use the NANTC model to generate tags for the training data in the new domain;
(2) Instead of taking the NANTC tree prediction as correct, for all alphabetic tokens we

take the best prediction based on the letter language model features built from unsuper-
vised data;

(3) We then build a new tag prediction tree based on these new labeled training tokens in
our unknown domain;

(4) With this new classifier we expand the data, this time generating words forASWD and
LSEQ. EXPN remains as a tag (as we do not know its expansion) and other tags are left
as tags as they are useful as class categories.

(5) A WFST built to automatically expand abbreviations, as described in Section7.2, is
then used to generate the expansions;

(6) We then expand the training data giving the most probable expansion;
(7) A language model is then built on the expanded data; and
(8) The final model runs by predicting a number of possible expansions and deciding be-

tween them using the language model.

Using the NANTC tag prediction tree as is on classifieds gives 67·44% tags correct on the
development test data, which increases to 86·72% tags correct when the alphabetic tokens
are reclassified according to the unsupervised letter language model and a new tree is built
(after step3).

The results in TableXX first show, for reference, the results of the domain-independent
model. The second and third rows correspond to domain-dependent unsupervised training,
using the most probable expansion vs. the language model for disambiguation, respectively.
The fourth row corresponds to a system that uses a list of domain-dependent expansions,
which assumes that a labeler has given the expansion, thoughEXPN tokens are automatically
detected in the same way as in the other unsupervised training conditions. This test shows
the potential gain if at least some time is taken to explicitly specify expansions. Finally, for
reference, the result of the fully domain-dependent supervised model is given.
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The striking fact about these results is that they are significantly better than (supervised)
domain-independent models applied to this domain. In other words, while one will certainly
do better on text such as classified ads if one is prepared to spend some time labeling data,
one can use the unsupervised methods described here on unlabeled data, and still achieve
much better performance than one would obtain if one were merely to use an “off-the-shelf”
text normalizer designed for “general” text.

Note, finally, that the most common type of mistake the unsupervised model makes is
failing to identify an easily pronounceable word as an abbreviation (e.g.kit for kitchen). This
type of mistake does not detract from understanding in spoken output, though it would be
problematic for a language model training application.

8.4. Manual evaluation

In this section, we discuss the methodology used in, and results of, manually evaluating the
performance of our system relative to other existing systems. Briefly, we examined the output
of a normalization system and manually judged the acceptability of the output to estimate
token error rates.

8.4.1. Evaluation procedure

The basic procedure for the manual evaluation is as follows. We randomly sample a space-
separated token from the unnormalized version of our test set, as described in Section8.4.2.
The normalized text associated with that token and its neighbors are determined by a string
alignment procedure described in Section8.4.3. We then present that space-separated token
and surrounding tokens along with the normalized version of these tokens to the adjudicator,
who determines the acceptability of the normalization of the original token. Through repeated
sampling, we can estimate the token error rate of a normalization system.

The guidelines given to adjudicators for determining the acceptability of a normalized
token were, in brief, that words associated with the original raw token must be complete
and correct with no extra tokens present. In addition, the presence of punctuation must be
predicted correctly, but not the identity. For example, it is acceptable to substitute a sequence
of dashes for a single dash. This decision was motivated by the fact that the presence of
punctuation is useful for guiding speech synthesis and language model training, but that the
identity of punctuation is often less important.

8.4.2. Random sampling

To reduce the number of samples needed to achieve a certain accuracy in estimating error
rate, we did not sample tokens uniformly from the test set but instead used the technique of
importance sampling. Intuitively, by sampling more frequently from the tokens that are likely
to be errorful, we can emphasize the differences in performance between various systems. We
partition tokens into several categories, sample from each category depending on the error
rate and the frequency of the category, and scale the number of errors found in each category
appropriately to get an estimate of the overall error rate.

More precisely, we partitioned the (unnormalized) space-separated tokens in the test sets
into fourteen categories according to typographic information. Example categories include:
tokens containing only lower-case letters optionally followed by a comma; tokens containing
only lower-case letters followed by a period; tokens containing a digit; and tokens containing
a hyphen or slash. On training data, we manually evaluated the LDC tools on thirty tokens
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from each category in each of the four domains to get a rough estimate of the error rates we
would find. Using these estimates and the frequency of each token category in the training
data, we calculated the proportion of samples to take from each category in each domain to
minimize the standard error of our overall estimate of error rate. A simple analysis reveals
that the number of samples to take from a given category to satisfy this condition should be
proportional to f

√
E(1− E), where f is the frequency of the category andE is the error

rate on tokens in the category.
We selected a total of about 500 samples to evaluate each system in each domain, using the

above calculation to determine the number of samples taken from each category, but taking
a minimum of thirty samples from each category. For each sample token, we presented the
output of each of the evaluated systems in sequence but in random order. As each system is
evaluated on the same tokens and as the output of each system is presented to the adjudicator
in succession, paired significance tests can be meaningfully carried out.

8.4.3. Aligning raw and normalized text

As mentioned earlier, for each token to be judged we present that token and surrounding to-
kens as well as the normalized versions of these tokens to the adjudicator. To do this, we need
to know which raw tokens align with which normalized tokens, but this alignment informa-
tion cannot easily be recovered from all of the systems (and the hand labels) evaluated. This
alignment is not trivial because the tokens in normalized text can be substantially different
from the tokens in the raw text. For example, classified ads can be almost entirely composed
of abbreviations and numbers, so that normalized ads have very few tokens identical to those
in the original ad. In addition, the normalized version of a token may have a very different
length than the original; e.g. a single numeric token often expands to many words. Conse-
quently, we developed an algorithm to automatically align raw and normalized text, given a
large corpus of normalized text.

The alignment task can be viewed as a simple version of the bilingual word alignment
task faced in machine translation, and we use similar techniques as those used in bilingual
alignment (Brown et al., 1990). The bilingual word alignment task consists of determining
which words in a bilingual corpus are translations of each other, a bilingual corpus being two
corpora containing the same text but in different languages. Our task can be considered an in-
stance of this task, where instead of text in two different languages we have an unnormalized
text corpus and its normalized version. Our task is somewhat easier than the usual bilingual
alignment task because of the presence of a large number ofcognates, or tokens with the
same spelling in both languages, and because there is very little word-order rearrangement in
normalized text, unlike between distinct languages.

A first step is to construct a bilingual dictionary, or list of which words in one language
translate to which words in the other language. In our scenario, the dictionary is determined
by counts of how often token pairs co-occur in corresponding unnormalized and normalized
paragraphs. More precisely, we segment unnormalized text into tokens by keeping together
alphabetic characters and separating all other (non-space) characters into their own token.
(This has the advantage of letting us induce the expansions of numbers on a digit-by-digit
basis.) Normalized text is segmented into tokens using spaces. Then, we take all token pairs
that co-occur in aligned paragraphs significantly more often than one would expect given the
total number of paragraphs each occurs in to be “translations” of each other. We use aχ2

test with significance threshold of 10−50. While the translation lists have many extraneous
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3300+ sf 10 Rm,
three thousand three hundred PLUS SQUARE FOOT ten ROOM ,

5BR, 2BA, library, DR,
five bedroom , two bathroom , library , dining room

HW flrs, gas FP’s, 2C gar, yrd. Grt loc.
HARDWOOD FLOORS , gas FIREPLACES , two C gar , - - YARD

Figure 4. Examples of text alignment in the classifieds ads domain, where “-”
indicates a deletion in the normalized text.

TABLE XXI. Token error rates of various systems on various domains as estimated
through manual evaluation

NANTC Classifieds pc110 RFR
Festival 0·7%± 0·7% 34·5%± 1·8% 5·9%± 1·1% 4·2%± 1·0%
LDC 0·2%± 0·6% 32·4%± 1·8% 6·3%± 1·1% 3·0%± 1·0%
NSW system 0·4%± 0·7% 12·3%± 1·5% 3·4%± 1·0% 2·6%± 0·9%
Hand-label 0·3%± 0·6% 09·6%± 1·4% 2·2%± 0·9% 2·6%± 0·9%

entries, this does not affect performance unduly due to the highly constrained nature of the
task.

To calculate the alignment between the unnormalized and normalized versions of a para-
graph given a set of translation pairs, we use the dynamic programming algorithm for calcu-
lating word edit distance between two word sequences, with costs of 0 for identical tokens,
1 for substitutions between tokens that are “translations” of each other, 3 for insertions and
deletions, and 4 for other substitutions. These cost assignments are somewhat arbitrary, but
were found to yield adequate performance. As some paragraphs are extremely long and the
edit distance algorithm is quadratic in time and space, we used beam search to prevent ex-
cessive computation. Some example alignments from the classifieds domain are presented in
Figure4.

In the actual evaluation process, we present a total of about 120 characters of context
around the token to be judged and around the normalized token that we decide is aligned
with the original token. The alignment process has done its job adequately if the correctness
of the original token can be judged given the amount of context presented. We found that
less than 0.3% tokens were misaligned in each domain according to this criterion, which
includes cases that were not actually misaligned but simply corresponded to cases where a
token expanded to more than 120 characters when normalized. Thus, the alignment algorithm
implemented was entirely adequate for its purpose. When a token could not be judged from
120 characters of context, the whole surrounding paragraph is presented to the adjudicator.

8.4.4. Results

Using the methodology described above, we estimated the token error rate of three different
systems: the Linguistic Data Consortium normalization tools, the normalization tools pro-
vided with the Festival speech synthesis toolkit, and the full NSW system we developed using
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domain-dependent supervised training. We also evaluated the quality of the hand-tagged data
described in Section4. Performance was evaluated separately in each of the four domains
considered.

The results of this manual evaluation are presented in TableXXI . We used Student’st-test
for paired samples to test the statistical significance of performance differences found. All
performance differences in the table are significant at the 2% level except for the following:
in the news text domain,no differences are significant except for that between LDC and
Festival; in thepc110domain, the difference between LDC and Festival is not significant;
and in the recipes domain, the differences between LDC, the NSW system, and the hand-
labeled data are not significant.

For each domain, we see that the NSW system performs at least as well as the LDC and
Festival systems, and for some domains it performs substantially better. Furthermore, it is
not much worse than the hand-labeled data in each domain. While the token error rate of
the hand-labeled data is quite low in three of the domains, it is near 10% for the classifieds
domain. To achieve performance better than this level, the labeling of the classifieds data
must be improved. The NSW system is trained on hand-labeled data, and its performance is
limited by the quality of the training data used. All of the systems evaluated perform quite
well on the news text. To make further distinctions between the performance of different
systems on this domain would require a substantially larger sample set than was actually
used.

We perused the errors of the hand-labeled data in the four domains, and found that the
errors came from a variety of sources over the different domains. Examples of the more
common errors are:

• In the classified ads domain, punctuation was not correctly placed after abbreviations.
As mentioned earlier, this information is not provided by labelers.
• In the classifieds domain, many non-standard words were not correctly identified as

non-standard and were thus not presented to labelers, e.g.OH, SE, PH, ac.
• In the pc110domain, E-mail addresses and URL’s were not expanded correctly. The

labelers were not asked to provide this information, since it was not within the scope
of this study.
• In the recipes domain, the expansion of an abbreviation as plural or singular (e.g.3g)

is often incorrect. Again, the labelers were not asked to provide this information.

9. Discussion

The work reported here represents, we believe, a significant advance in the state of the art in
text normalization. We have provided not onlysupervisedmodels that perform well on four
distinct domains, but have also providedunsupervisedtechniques that allow one to build text
normalizers for a new domain given only that one has raw text from that domain.

Of equal importance is the fact that we have provided performance measures as a whole for
the various text-normalization approaches on the different domains. This contrasts with the
more normal practice of reporting error rates (if at all) on selected text-normalization prob-
lems, such as the problem of distinguishing ordinary numbers from dates. Such microscopic
evaluationsare important of course: it is certainly useful to have finer-grained information
on errors. However, in the absence of overall statistics, it is hard to put such finer-grained
measures in context.

One weak link in the work we have done here is language modeling. The trigram language
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model was critical only in the generation of unsupervised abbreviation lists: in the final runs
on the test data, language modeling did not afford a significant improvement. This result
may be surprising given that we know that some abbreviations are ambiguous, and their
ambiguity is typically resolvable from the immediate context. On the other hand, it is likely
that a trigram model based onwordsis too impoverished to provide much help in resolving
the many cases (e.g.St for Saint versusStreet) that are better cast in terms of features of
the context. Class-based language models and feature-based back-off mechanisms (Bikel,
Schwartz & Weischedel, 1999) offer possible solutions for the approach based on a source–
channel model. Alternatively, previous work such as that of Yarowsky (Yarowsky, 1996)
applying decision lists to particular instances of these problems suggests that direct models
might be an effective solution, which would likely require maximum entropy techniques. For
the unsupervised training paradigm, it may be that cache-based language models are useful.

As we have hinted at various places in the paper, the generation of a lattice of alternatives at
each stage of the processing rather than a single answer, would probably improve results. In
the system reported here, this was only done at the expansion stage feeding into the language
model. But one could imagine having lattices at even earlier stages: for example, the splitter
could return a lattice of possible splits, which could then be fed into the classifier, and so forth.
This would allow the classifier to influence the decisions made by the splitter, something
that is not possible in the system that we actually implemented. As a reviewer has noted,
TableXVIII clearly shows that the system is sensitive to classifier and splitter performance,
so a means to improve performance by incorporating classifier decisions into the splitter
would surely be helpful.

Our work has focused exclusively on English, and one important area to investigate is the
application of these and related techniques to languages besides English. We expect that
many of the techniques would carry over, mutatis mutandis, to other Western languages
(broadly construed). In particular the techniques for tokenization, NSW classification, ex-
pansion and language modeling should all carry over to many other languages, though of
course the training material and (in the case of hand-constructed portions such as number ex-
pansion) the rules will be language particular. Even the splitter (Section6.3), which clearly
has many English-particular characteristics, is expected to work with some changes, for other
languages that use scripts (such as Latin, Cyrillic or Greek) that distinguish capitalized from
non-capitalized letters, and use capitalization roughly as it is used in English.

Complexities will arise in languages like Russian where even seemingly innocuous abbre-
viations likekg can be read in various ways depending upon the case, number, gender and
other properties of words in the context; the best approaches to handle such cases currently in-
volve hand-constructed rules (Sproat, 1997). Some languages, such as Chinese, present addi-
tional problems, including the lack of space delimiters for words (see, e.g.Sproat, Shih, Gale
& Chang, 1996). (On the other hand, there seem to be an almost total lack of abbreviations,
in the technical sense used here, in Chinese; see, e.g.Sproat, 2000.) However, seeOlinsky
and Black(2000) for an extension of some of the work presented in this paper to Chinese.

The work reported here represents not an end, but a beginning: there is substantially more
work to be done in the area of text normalization. Towards this end some of the tools and the
databases created for this project are, as noted in Section1, publicly available, and this will
hopefully encourage others to improve upon the work we have done here.

The work reported in this paper was supported by the National Science Foundation under Grant
No. #IIS-9820687, and carried out at the 1999 Workshop on Language Engineering, Center for Lan-
guage and Speech Processing, Johns Hopkins University. We would like to thank Fred Jelinek and
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University of Edinburgh’s Centre for Speech Technology Research.

We would like to thank Kevin Walker, Chris Cieri and Alexandra Canavan of the Linguistic Data
Consortium for their work on obtaining our Classified Ad data. We also thank Michael Riley and David
Yarowsky for useful discussion.
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