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Abstract

This paper describes a transformation-based learn-
ing approach to disfluency detection in speech tran-
scripts using primarily lexical features. Our method
produces comparable results to two other systems
that make heavy use of prosodic features, thus
demonstrating that reasonable performance can be
achieved without extensive prosodic cues. In addi-
tion, we show that it is possible to facilitate the iden-
tification of less frequently disfluent discourse mark-
ers by taking speaker style into account.

1 Introduction

Disfluencies in human speech are widespread and cause
problems for both downstream processing and human
readability of speech transcripts. Recent human studies
(Jones et al., 2003) have examined the effect of disfluen-
cies on the readability of speech transcripts. These results
suggest that the “cleaning” of text by removing disfluent
words can increase the speed at which readers can process
text. Recent work on detecting edits for use in parsing
of speech transcripts (Core and Schubert, 1999), (Char-
niak and Johnson, 2001) has shown an improvement in
the parser error rate by modeling disfluencies.

Many researchers investigating disfluency detection
have focused on the use of prosodic cues, as opposed to
lexical features (Nakatani and Hirschberg, 1994). There
are different approaches to detecting disfluencies. In one
approach, one can first try to locate evidence of a gen-
eral disfluency, e.g., using prosodic features or language
model discontinuations. These locations are called inter-
ruption points (IPs). Following this, it is generally suffi-
cient to look in the nearby vicinity of the IP to find the dis-
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fluent words. The most successful approaches so far com-
bine the detection of IPs using prosodic features and lan-
guage modeling techniques (Liu et al., 2003), (Shriberg
et al., 2001), (Stolcke et al., 1998).

Our work is based on the premise that the vast ma-
jority of disfluencies can be detected using primarily
lexical features—specifically the words themselves and
part-of-speech (POS) labels—without the use of exten-
sive prosodic cues. Lexical modeling of disfluencies with
only minimal acoustic cues has been shown to be suc-
cessful in the past using strongly statistical techniques
(Heeman and Allen, 1999). We shall discuss our algo-
rithm and compare it to two other algorithms that make
extensive use of acoustic features. Our algorithm per-
forms comparably on most of the tasks assigned and in
some cases outperforms systems that used both prosodic
and lexical features.

We discuss the task definition in Section 2. In Section
3 we describe our Transformation-Based Learning (TBL)
algorithm and its associated features. Section 4 presents
results for our system and two other systems that make
heavy use of prosodic features to detect disfluencies. We
then discuss the errors made by our system, in Section 5,
and discuss our conclusions and future work in Section 6.

2 EARS Disfluency Annotation

One of the major goals of the DARPA program for
Effective, Affordable, Reusable Speech-to-Text (EARS)
(Wayne, 2003) is to provide a rich transcription of speech
recognition output, including speaker identification, sen-
tence boundary detection and the annotation of disfluen-
cies in the transcript (This collection of additional fea-
tures is also known as Metadata). One result of this pro-
gram has been production of an annotation specification
for disfluencies in speech transcripts and the transcription
of sizable amounts of speech data, both from conversa-
tional telephone speech and broadcast news, according to
this specification (Strassel, 2003).



The task of disfluency detection is to distinguish flu-
ent from disfluent words. The EARS MDE (MetaData
Extraction) program addresses two types of disfluencies:
(i) edits—words that were not intended to be said and
that are normally replaced with the intended words, such
as repeats, restarts, and revisions; and (ii) fillers—words
with no meaning that are used as discourse markers and
pauses, such as “you know” and “um”.

3 The Algorithm

We set out to solve the task of disfluency detection using
primarily lexical features in a system we call System A.
This section describes our algorithm, including the set of
features we use to identify disfluencies.

The training data for the system are time aligned refer-
ence speech transcripts, with speaker identification, sen-
tence boundaries, edits, fillers and interruption points an-
notated. The input for evaluation is a transcript, either
a reference transcript or a speech recognizer output tran-
script. Some of the evaluation data may be marked with
sentence boundaries and speaker identification. The task
is to identify which words in the transcript are fillers, ed-
its, or fluent. The evaluation data was held out, and not
available for tuning system parameters.

The input to System A is a transcript of either con-
versational telephone speech (CTS) or broadcast news
speech (BNEWS). In all experiments, the system was
trained on reference transcripts, but was tested on both
reference and speech output transcripts.

We use a Transformation-Based Learning (TBL)
(Brill, 1995) algorithm to induce rules from the training
data. TBL is a technique for learning a set of rules that
transform an initial hypothesis for the purpose of reduc-
ing the error rate of the hypothesis. The set of possi-
ble rules is found by expanding rule templates, which are
given as an input. The algorithm greedily selects the rule
that reduces the error rate the most, applies it to the data,
and then searches for the next rule. The algorithm halts
when there are no more rules that can reduce the error
rate by more than the threshold. The output of the system
is an ordered set of rules, which can then be applied to
the test data to annotate it for disfluencies.

We allow one of three tags to be assigned to each word:
edit, filler or fluent. Since only 15% of the words in con-
versational speech are disfluent, we begin with the initial
hypothesis that all the words in the corpus are fluent. The
system then learns rules to relabel words as edits or fillers
in order to reduce the number of errors. The rules are it-
eratively applied to the data from left to right.

3.1 Feature Set

The rules learned by the system are conditioned on sev-
eral features of each of the words including the lexeme
(the word itself), a POS tag for the word, whether the

word is followed by a silence and whether the word is a
high frequency word. That is, whether the word is more
frequent for this speaker than in the rest of the corpus.
The last feature (high frequency of the word) is useful for
identifying when words that are usually fluent—but are
sometimes disfluent (such as “like”)—are more likely to
be disfluencies, with the intuition being that if a speaker
is using the word “like” very frequently, then it is likely
that the word is being used as a filler. The word “like”
for example was only a disfluency 22% of the time it oc-
curred. So a rule that always tags “like” as a disfluency
would hurt rather than help the system.2

3.2 Rule Templates

The system was given a set of 33 rule templates, which
were used to generate the set of possible rules. Not all
rule templates generated rules that were chosen by the
system. Below is a representative subset of rule templates
chosen by the system. Change the label of:

1. word X from L1 to L2.
2. word sequence X Y to L1.
3. left side of simple repeat to L1.
4. word with POS X from L1 to L2 if followed by word with

POS Y.
5. word from L1 to L2 if followed by words X Y.
6. word X with POS Y from L1 to L2.
7. A to L1 in the pattern A POS X B A, where A and B can

be any words.
8. left side of repeat with POS X in the middle to L1.
9. word with POS X from L1 to L2 if followed by silence

and followed by word with POS Y.

10. word X that is a high frequency word for the speaker from
L1 to L2.

4 Results

All of the results in this section are from training and eval-
uation on data produced by the Linguistic Data Consor-
tium (LDC) for the EARS Metadata community. There
were 491,543 tokens in the CTS training set and 189,766
tokens in the BNEWS training set. The CTS evaluation
set contained 33,670 tokens and the BNEWS evaluation
set contained 14,544 tokens.

We compare our System A to two other systems that
were designed for the same task, System B and System
C. System C was only applied to conversational speech,
so there are no results for it on broadcast news transcripts.
Our system was also given the same speech recognition
output as System C for the conversational speech condi-
tion, whereas System B used transcripts produced by a
different speech recognition system.

2We use a POS tagger (Ratnaparkhi, 1996) trained on
switchboard data with the additional tags of FP (filled pause)
and FRAG (word fragment).



System B used both prosodic cues and lexical informa-
tion to detect disfluencies. The prosodic cues were mod-
eled by a decision tree classifier, whereas the lexical in-
formation was modeled using a 4-gram language model,
separately trained for both CTS and BNEWS.

System C first inserts IPs into the text using a decision-
tree classifier based on both prosodic and lexical features
and then uses TBL. In addition to POS, System C’s fea-
ture set also includes whether the word is commonly used
as a filler, edit, back-channel word, or is part of a short re-
peat. Turn and segment boundary flags were also used by
the system. Whereas System A only attempted to learn
three labels (filler, edit and fluent), System C attempted
to learn many subtypes of disfluencies, which were not
distinguished in the evaluation.

4.1 Lexeme Error Rate

We use Lexeme Error Rate (LER) as a measure of recog-
nition effectiveness. This measure is the same as the tra-
ditional word-error rate used in speech recognition, ex-
cept that filled pauses and fragments are not optionally
deletable. The LERs of the speech transcripts used by the
three systems were all fairly similar (about 25% for CTS
and 12% for BNEWS).

4.2 Top Rules Learned

A total of 106 rules were learned by the system for CTS—
the top 10 rules learned are:

1. Label all fluent filled pauses as fillers.
2. Label the left side of a simple repeat as an edit.
3. Label “you know” as a filler.
4. Label fluent “well”s with a UH part-of-speech as a filler.
5. Label fluent fragments as edits.
6. Label “I mean” as a filler.
7. Label the left side of a simple repeat separated by a filled

pause as an edit.
8. Label the left side of a simple repeat separated by a frag-

ment as an edit.
9. Label edit filled pauses as fillers.

10. Label edit fragments at end of sentence as fluent.

Of the errors that system was able to fix in the CTS train-
ing data, the top 5 rules were responsible for correcting
86%, the top ten rules, for 94% and the top twenty, for
96%.

All systems were evaluated using rteval (Rich Tran-
scription Evaluation) version 2.3 (Kubala and Srivastava,
2003). Rteval aligns the system output to the annotated
reference transcripts in such a way as to minimize the lex-
eme error rate. The error rate is the number of disfluency
errors (insertions and deletions) divided by the number of
disfluent tokens in the reference transcript. Edit and filler
errors are calculated separately. The results of the evalu-
ation are shown in Table 1. Most of the small differences
in the CTS results were not found to be significantly dif-
ferent.

Data System Edit Err Filler Err
CTS Reference A 68.0% 18.1%

B 59.0% 18.2%
C 75.1% 23.2%

CTS Speech A 87.9% 48.8%
B 87.5% 46.9%
C 88.5% 51.0%

BNews Reference A 45.3% 6.5%
B 44.2% 7.9%

BNews Speech A 93.9% 57.2%
B 96.1% 50.4%

Table 1: Disfluency Detection Results

5 Error Analysis

It is clear from the discrepancies between the reference
and speech condition that a large portion of the errors (a
majority except in the case of edit detection for CTS) are
due to errors in the STT (Speech-To-Text). This is most
notable for fillers in broadcast news where the error rate
for our system increases from 6.5% to 57.2%. Such a
trend can be seen for the other systems, indicating that—
even with prosodic models—the other systems were not
more robust to the lexical errors.

All three systems produced comparable results on all
of the conditions, with the only large exception being edit
detection for CTS Reference, where System B had an er-
ror rate of 59% compared to our system’s error rate of
68%.3

The speech output condition suffers from several types
of errors due to errors in the transcript produced by the
speech transcription system. First, the system can output
the wrong word causing it to be misannotated. 27% of our
edit errors in CTS and 19% of our filler errors occurred
when the STT system misrecognized the word. If a filled
pause is hallucinated, the disfluency detection system will
always annotate it as a filler. Errors also occur (19% of
our edit and 12% of our filler error) when the recognizer
deletes a word that was an edit or a filler. Finally, errors
in the context words surrounding disfluencies can affect
disfluency detection as well.

One possible method to correct for the STT errors
would be to train our system on speech output from the
recognizer rather than on reference transcripts. Another
option would be to use a word recognition confidence
score from the recognizer as a feature in the TBL sys-
tem; these were not used. A more systematic analysis
of the errors caused by the recognizer and their effect on
disfluencies also needs to be performed.

System A has a much higher error for edits than fillers,
due, in large part, to the presence of long, difficult to

3This is possibly due to the prosodic model employed by
System B, though no significant gain was shown for the other
conditions.



detect edits. Consider the following word sequence: “[
and whenever they come out with a warning ] you know
they were coming out with a warning about trains ”. The
portion within square brackets is the edit to be detected.
The difficulty in finding such regions is that the edit itself
appears very fluent. One can identify these regions by
examining what comes after the edit and finding that is
highly similar in content to the edit region. Prosodic fea-
tures can be useful in identifying the interruption point
at which the edit ends, but the degree to which the edit
extends backwards from this point still needs to be iden-
tified. Long distance dependencies should reveal the edit
region, and it is possible that parsing or semantic analysis
of the text would be a useful technique to employ. In ad-
dition there are other cues such as the filler “you know”
after the edit which can be used to locate these edit re-
gions. Long edit regions (of length four or more) are re-
sponsible for 48% of the edit errors in the CTS reference
condition for our system.

6 Conclusions and Future Work

We have presented a TBL approach to detecting disfluen-
cies that uses primarily lexical features. Our system per-
formed comparably with other systems that relied on both
prosodic and lexical features. Our speaker style (high fre-
quency word) feature enabled us to detect rarer disfluen-
cies, although this was not a large factor in our perfor-
mance. It does appear to be a promising technique for
future research however.

The technique described here shows promise for ex-
tension to disfluency detection in other languages. Since
TBL is a weakly statistical technique, it does not require
a large training corpus and could be more rapidly applied
to new languages. Assuming the basic forms of disflu-
encies in other languages are similar to those in English,
very few modifications would be required.

The longer edits that the system currently misses may
be detectable using parsing, with the intuition that a
parser trained on fluent speech may perform poorly in the
presence of longer edits. Techniques using parse trees to
identify disfluencies have shown success in the past (Hin-
dle, 1983). The system could use portions of the parse
structure as features and could relabel entire subtrees of
the parse tree. Repeated words are another feature of the
longer edits, which we might leverage off of by perform-
ing a weighted alignment of the edit and the repair. Even-
tually it may prove that more elaborate acoustic cues will
be needed to identify these edits, at which point a model
of interruption points could be included as a feature in the
rules learned by the system.
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