
To appear in the ACL 2006 Workshop on Information Extraction Beyond the Document

Learning Domain-Specific Information Extraction Patterns from the Web

Siddharth Patwardhan and Ellen Riloff
School of Computing

University of Utah
Salt Lake City, UT 84112

{sidd,riloff}@cs.utah.edu

Abstract
Many information extraction (IE) systems
rely on manually annotated training data
to learn patterns or rules for extracting in-
formation about events. Manually anno-
tating data is expensive, however, and a
new data set must be annotated for each
domain. So most IE training sets are rel-
atively small. Consequently, IE patterns
learned from annotated training sets of-
ten have limited coverage. In this paper,
we explore the idea of using the Web to
automatically identify domain-specific IE
patterns that were not seen in the training
data. We use IE patterns learned from the
MUC-4 training set as anchors to identify
domain-specific web pages and then learn
new IE patterns from them. We compute
the semantic affinity of each new pattern
to automatically infer the type of informa-
tion that it will extract. Experiments on
the MUC-4 test set show that these new IE
patterns improved recall with only a small
precision loss.

1 Introduction

Information Extraction (IE) is the task of identi-
fying event descriptions in natural language text
and extracting information related to those events.
Many IE systems use extraction patterns or rules
to identify the relevant information (Soderland et
al., 1995; Riloff, 1996; Califf and Mooney, 1999;
Soderland, 1999; Yangarber et al., 2000). Most of
these systems use annotated training data to learn
pattern matching rules based on lexical, syntactic,
and/or semantic information. The learned patterns
are then used to locate relevant information in new
texts.

IE systems typically focus on information about
events that are relevant to a specific domain, such
as terrorism (Sundheim, 1992; Soderland et al.,
1995; Riloff, 1996; Chieu et al., 2003), man-
agement succession (Sundheim, 1995; Yangarber
et al., 2000), or job announcements (Califf and
Mooney, 1999; Freitag and McCallum, 2000).
Supervised learning systems for IE depend on
domain-specific training data, which consists of
texts associated with the domain that have been
manually annotated with event information.

The need for domain-specific training data has
several disadvantages. Because of the manual la-
bor involved in annotating a corpus, and because a
new corpus must be annotated for each domain,
most annotated IE corpora are relatively small.
Language is so expressive that it is practically
impossible for the patterns learned from a rela-
tively small training set to cover all the different
ways of describing events. Consequently, the IE
patterns learned from manually annotated train-
ing sets typically represent only a subset of the IE
patterns that could be useful for the task. Many
recent approaches in natural language processing
(Yarowsky, 1995; Collins and Singer, 1999; Riloff
and Jones, 1999; Nigam et al., 2000; Wiebe and
Riloff, 2005) have recognized the need to use
unannotated data to improve performance.

While the Web provides a vast repository of
unannotated texts, it is non-trivial to identify texts
that belong to a particular domain. The difficulty
is that web pages are not specifically annotated
with tags categorizing their content. Nevertheless,
in this paper we look to the Web as a vast dynamic
resource for domain-specific IE learning. Our ap-
proach exploits an existing set of IE patterns that
were learned from annotated training data to auto-
matically identify new, domain-specific texts from



the Web. These web pages are then used for ad-
ditional IE training, yielding a new set of domain-
specific IE patterns. Experiments on the MUC-4
test set show that the new IE patterns improve cov-
erage for the domain.

This paper is organized as follows. Section 2
presents the MUC-4 IE task and data that we use in
our experiments. Section 3 describes how we cre-
ate a baseline IE system from the MUC-4 training
data. Section 4 describes the collection and pre-
processing of potentially relevant web pages. Sec-
tion 5 then explains how we use the IE patterns
learned from the MUC-4 training set as anchors to
learn new IE patterns from the web pages. We also
compute the semantic affinity of each new pattern
to automatically infer the type of information that
it will extract. Section 6 shows experimental re-
sults for two types of extractions, victims and tar-
gets, on the MUC-4 test set. Finally, Section 7
compares our approach to related research, and
Section 8 concludes with ideas for future work.

2 The MUC-4 IE Task and Data

The focus of our research is on the MUC-4 infor-
mation extraction task (Sundheim, 1992), which is
to extract information about terrorist events. The
MUC-4 corpus contains 1700 stories, mainly news
articles related to Latin American terrorism, and
associated answer key templates containing the in-
formation that should be extracted from each story.

We focused our efforts on two of the MUC-4
string slots, which require textual extractions: hu-
man targets (victims) and physical targets. The
MUC-4 data has proven to be an especially dif-
ficult IE task for a variety of reasons, including
the fact that the texts are entirely in upper case,
roughly 50% of the texts are irrelevant (i.e., they
do not describe a relevant terrorist event), and
many of the stories that are relevant describe mul-
tiple terrorist events that need to be teased apart.
The best results reported across all string slots
in MUC-4 were in the 50%-70% range for re-
call and precision (Sundheim, 1992), with most
of the MUC-4 systems relying on heavily hand-
engineered components. Chieu et al. (2003) re-
cently developed a fully automatic template gen-
erator for the MUC-4 IE task. Their best system
produced recall scores of 41%-44% with precision
scores of 49%-51% on the TST3 and TST4 test
sets.

3 Learning IE Patterns from a Fixed
Training Set

As our baseline system, we created an IE
system for the MUC-4 terrorism domain us-
ing the AutoSlog-TS extraction pattern learn-
ing system (Riloff, 1996; Riloff and Phillips,
2004), which is freely available for research use.
AutoSlog-TS is a weakly supervised learner that
requires two sets of texts for training: texts that
are relevant to the domain and texts that are irrel-
evant to the domain. The MUC-4 data includes
relevance judgments (implicit in the answer keys),
which we used to partition our training set into rel-
evant and irrelevant subsets.

AutoSlog-TS’ learning process has two phases.
In the first phase, syntactic patterns are applied
to the training corpus in an exhaustive fashion,
so that extraction patterns are generated for (lit-
erally) every lexical instantiation of the patterns
that appears in the corpus. For example, the syn-
tactic pattern “<subj> PassVP” would generate
extraction patterns for all verbs that appear in the
corpus in a passive voice construction. The sub-
ject of the verb will be extracted. In the terrorism
domain, some of these extraction patterns might
be: “<subj> PassVP(murdered)” and “<subj>
PassVP(bombed).” These would match sentences
such as: “the mayor was murdered”, and “the em-
bassy and hotel were bombed”. Figure 1 shows
the 17 types of extraction patterns that AutoSlog-
TS currently generates. PassVP refers to passive
voice verb phrases (VPs), ActVP refers to active
voice VPs, InfVP refers to infinitive VPs, and
AuxVP refers to VPs where the main verb is a
form of “to be” or “to have”. Subjects (subj), di-
rect objects (dobj), PP objects (np), and posses-
sives can be extracted by the patterns.

In the second phase, AutoSlog-TS applies all
of the generated extraction patterns to the training
corpus and gathers statistics for how often each
pattern occurs in relevant versus irrelevant texts.
The extraction patterns are subsequently ranked
based on their association with the domain, and
then a person manually reviews the patterns, de-
ciding which ones to keep1 and assigning thematic
roles to them. We manually defined selectional
restrictions for each slot type (victim and target)

1Typically, many patterns are strongly associated with the
domain but will not extract information that is relevant to the
IE task. For example, in this work we only care about patterns
that will extract victims and targets. Patterns that extract other
types of information are not of interest.



Pattern Type Example Pattern
<subj> PassVP <victim> was murdered
<subj> ActVP <perp> murdered
<subj> ActVP Dobj <weapon> caused damage
<subj> ActInfVP <perp> tried to kill
<subj> PassInfVP <weapon> was intended to kill
<subj> AuxVP Dobj <victim> was casualty
<subj> AuxVP Adj <victim> is dead
ActVP <dobj> bombed <target>
InfVP <dobj> to kill <victim>

ActInfVP <dobj> planned to bomb <target>
PassInfVP <dobj> was planned to kill <victim>

Subj AuxVP <dobj> fatality is <victim>

NP Prep <np> attack against <target>
ActVP Prep <np> killed with <weapon>

PassVP Prep <np> was killed with <weapon>

InfVP Prep <np> to destroy with <weapon>

<possessive> NP <victim>’s murder

Figure 1: AutoSlog-TS’ pattern types and sample
IE patterns

and then automatically added these to each pattern
when the role was assigned.

On our training set, AutoSlog-TS generated
40,553 distinct extraction patterns. A person man-
ually reviewed all of the extraction patterns that
had a score ≥ 0.951 and frequency ≥ 3. This
score corresponds to AutoSlog-TS’ RlogF metric,
described in (Riloff, 1996). The lowest ranked pat-
terns that passed our thresholds had at least 3 rel-
evant extractions out of 5 total extractions. In all,
2,808 patterns passed the thresholds. The reviewer
ultimately decided that 396 of the patterns were
useful for the MUC-4 IE task, of which 291 were
useful for extracting victims and targets.

4 Data Collection

In this research, our goal is to automatically learn
IE patterns from a large, domain-independent text
collection, such as the Web. The billions of freely
available documents on the World Wide Web and
its ever-growing size make the Web a potential
source of data for many corpus-based natural lan-
guage processing tasks. Indeed, many researchers
have recently tapped the Web as a data-source
for improving performance on NLP tasks (e.g.,
Resnik (1999), Ravichandran and Hovy (2002),
Keller and Lapata (2003)). Despite these suc-
cesses, numerous problems exist with collecting
data from the Web, such as web pages contain-
ing information that is not free text, including ad-
vertisements, embedded scripts, tables, captions,
etc. Also, the documents cover many genres, and
it is not easy to identify documents of a particular
genre or domain. Additionally, most of the doc-

uments are in HTML, and some amount of pro-
cessing is required to extract the free text. In the
following subsections we describe the process of
collecting a corpus of terrorism-related CNN news
articles from the Web.

4.1 Collecting Domain-Specific Texts

Our goal was to automatically identify and collect
a set of documents that are similar in domain to the
MUC-4 terrorism text collection. To create such
a corpus, we used hand-crafted queries given to
a search engine. The queries to the search engine
were manually created to try to ensure that the ma-
jority of the documents returned by the search en-
gine would be terrorism-related. Each query con-
sisted of two parts: (1) the name of a terrorist or-
ganization, and (2) a word or phrase describing a
terrorist action (such as bombed, kidnapped, etc.).
The following lists of 5 terrorist organizations and
16 terrorist actions were used to create search en-
gine queries:

Terrorist organizations: Al Qaeda,
ELN, FARC, HAMAS, IRA

Terrorist actions: assassinated, assas-
sination, blew up, bombed, bombing,
bombs, explosion, hijacked, hijacking,
injured, kidnapped, kidnapping, killed,
murder, suicide bomber, wounded.

We created a total of 80 different queries repre-
senting each possible combination of a terrorist or-
ganization and a terrorist action.

We used the Google2 search engine with the
help of the freely available Google API3 to lo-
cate the texts on the Web. To ensure that we re-
trieved only CNN news articles, we restricted the
search to the domain “cnn.com” by adding the
“site:” option to each of the queries. We also
restricted the search to English language docu-
ments by initializing the API with the lang en
option. We deleted documents whose URLs con-
tained the word “transcript” because most of these
were transcriptions of CNN’s TV shows and were
stylistically very different from written text. We
ran the 80 queries twice, once in December 2005
and once in April 2005, which produced 3,496
documents and 3,309 documents, respectively.
After removing duplicate articles, we were left

2http://www.google.com
3http://www.google.com/apis



with a total of 6,182 potentially relevant terrorism
articles.

4.2 Processing the Texts

The downloaded documents were all HTML doc-
uments containing HTML tags and JavaScript in-
termingled with the news text. The CNN web-
pages typically also contained advertisements, text
for navigating the website, headlines and links to
other stories. All of these things could be problem-
atic for our information extraction system, which
was designed to process narrative text using a shal-
low parser. Thus, simply deleting all HTML tags
on the page would not have given us natural lan-
guage sentences. Instead, we took advantage of
the uniformity of the CNN web pages to “clean”
them and extract just the sentences corresponding
to the news story.

We used a tool called HTMLParser4 to parse
the HTML code, and then deleted all nodes in the
HTML parse trees corresponding to tables, com-
ments, and embedded scripts (such as JavaScript
or VBScript). The system automatically extracted
news text starting from the headline (embedded
in an H1 HTML element) and inferred the end of
the article text using a set of textual clues such as
“Feedback:”, “Copyright 2005”, “contributed to
this report”, etc. In case of any ambiguity, all of
the text on the web page was extracted.

The size of the text documents ranged from 0
bytes to 255 kilobytes. The empty documents
were due to dead links that the search engine had
indexed at an earlier time, but which no longer ex-
isted. Some extremely small documents also re-
sulted from web pages that had virtually no free
text on them, so only a few words remained af-
ter the HTML had been stripped. Consequently,
we removed all documents less than 10 bytes in
size. Upon inspection, we found that many of the
largest documents were political articles, such as
political party platforms and transcriptions of po-
litical speeches, which contained only brief refer-
ences to terrorist events. To prevent the large doc-
uments from skewing the corpus, we also deleted
all documents over 10 kilobytes in size. At the end
of this process we were left with a CNN terrorism
news corpus of 5,618 documents, each with an av-
erage size of about 648 words. In the rest of the
paper we will refer to these texts as “the CNN ter-
rorism web pages”.

4http://htmlparser.sourceforge.net

5 Learning Domain-Specific IE Patterns
from Web Pages

Having created a large domain-specific corpus
from the Web, we are faced with the problem
of identifying the useful extraction patterns from
these new texts. Our basic approach is to use the
patterns learned from the fixed training set as seed
patterns to identify sentences in the CNN terror-
ism web pages that describe a terrorist event. We
hypothesized that extraction patterns occurring in
the same sentence as a seed pattern are likely to be
associated with terrorism.

Our process for learning new domain-specific
IE patterns has two phases, which are described in
the following sections. Section 5.1 describes how
we produce a ranked list of candidate extraction
patterns from the CNN terrorism web pages. Sec-
tion 5.2 explains how we filter these patterns based
on the semantic affinity of their extractions, which
is a measure of the tendency of the pattern to ex-
tract entities of a desired semantic category.

5.1 Identifying Candidate Patterns

The first goal was to identify extraction patterns
that were relevant to our domain: terrorist events.
We began by exhaustively generating every pos-
sible extraction pattern that occurred in our CNN
terrorism web pages. We applied the AutoSlog-TS
system (Riloff, 1996) to the web pages to automat-
ically generate all lexical instantiations of patterns
in the corpus. Collectively, the resulting patterns
were capable of extracting every noun phrase in
the CNN collection. In all, 147,712 unique extrac-
tion patterns were created as a result of this pro-
cess.

Next, we computed the statistical correlation
of each extraction pattern with the seed patterns
based on the frequency of their occurrence in the
same sentence. IE patterns that never occurred
in the same sentence as a seed pattern were dis-
carded. We used Pointwise Mutual Information
(PMI) (Manning and Schütze, 1999; Banerjee and
Pedersen, 2003) as the measure of statistical corre-
lation. Intuitively, an extraction pattern that occurs
more often than chance in the same sentence as a
seed pattern will have a high PMI score.

The 147,712 extraction patterns acquired from
the CNN terrorism web pages were then ranked
by their PMI correlation to the seed patterns. Ta-
ble 1 lists the most highly ranked patterns. Many
of these patterns do seem to be related to terrorism,



<subj> killed sgt <subj> destroyed factories
<subj> burned flag explode after <np>

sympathizers of <np> <subj> killed heir
<subj> kills bystanders <subj> shattered roof
rescued within <np> fled behind <np>

Table 1: Examples of candidate patterns that are
highly correlated with the terrorism seed patterns

but many of them are not useful to our IE task (for
this paper, identifying the victims and physical tar-
gets of a terrorist attack). For example, the pattern
“explode after <np>” will not extract victims or
physical targets, while the pattern “sympathizers
of <np>” may extract people but they would not
be the victims of an attack. In the next section, we
explain how we filter and re-rank these candidate
patterns to identify the ones that are directly useful
to our IE task.

5.2 Filtering Patterns based upon their
Semantic Affinity

Our next goal is to filter out the patterns that are
not useful for our IE task, and to automatically
assign the correct slot type (victim or target) to
the ones that are relevant. To automatically deter-
mine the mapping between extractions and slots,
we define a measure called semantic affinity. The
semantic affinity of an extraction pattern to a se-
mantic category is a measure of its tendency to
extract NPs belonging to that semantic category.
This measure serves two purposes:

(a) It allows us to filter out candidate patterns
that do not have a strong semantic affinity to
our categories of interest.

(b) It allows us to define a mapping between the
extractions of the candidate patterns and the
desired slot types.

We computed the semantic affinity of each can-
didate extraction pattern with respect to six seman-
tic categories: target, victim, perpetrator, organi-
zation, weapon and other. Targets and victims are
our categories of interest. Perpetrators, organiza-
tions, and weapons are common semantic classes
in this domain which could be “distractors”. The
other category is a catch-all to represent all other
semantic classes. To identify the semantic class of
each noun phrase, we used the Sundance package
(Riloff and Phillips, 2004), which is a freely avail-
able shallow parser that uses dictionaries to assign
semantic classes to words and phrases.

We counted the frequencies of the semantic cat-
egories extracted by each candidate pattern and
applied the RLogF measure used by AutoSlog-TS
(Riloff, 1996) to rank the patterns based on their
affinity for the target and victim semantic classes.
For example, the semantic affinity of an extraction
pattern for the target semantic class would be cal-
culated as:

affinitypattern =
ftarget

fall

· log2ftarget (1)

where ftarget is the number of target semantic
class extractions and fall = ftarget + fvictim +
fperp +forg +fweapon +fother. This is essentially
a probability P (target) weighted by the log of the
frequency.

We then used two criteria to remove patterns
that are not strongly associated with a desired se-
mantic category. If the semantic affinity of a pat-
tern for category C was (1) greater than a thresh-
old, and (2) greater than its affinity for the other
category, then the pattern was deemed to have a
semantic affinity for category C. Note that we
intentionally allow for a pattern to have an affin-
ity for more than one semantic category (except
for the catch-all other class) because this is fairly
common in practice. For example, the pattern “at-
tack on <np>” frequently extracts both targets
(e.g., “an attack on the U.S. embassy”) and vic-
tims (e.g., “an attack on the mayor of Bogota”).
Our hope is that such a pattern would receive a
high semantic affinity ranking for both categories.

Table 2 shows the top 10 high frequency
(freq ≥ 50) patterns that were judged to have a
strong semantic affinity for the target and victim
categories. There are clearly some incorrect en-
tries (e.g., “<subj> fired missiles” is more likely
to identify perpetrators than targets), but most of
the patterns are indeed good extractors for the de-
sired categories. For example, “fired into <np>”,
“went off in <np>”, and “car bomb near <np>”
are all good patterns for identifying targets of a
terrorist attack. In general, the semantic affinity
measure seemed to do a reasonably good job of
filtering patterns that are not relevant to our task,
and identifying patterns that are useful for extract-
ing victims and targets.

6 Experiments and Results

Our goal has been to use IE patterns learned from
a fixed, domain-specific training set to automat-
ically learn additional IE patterns from a large,



Target Patterns Victim Patterns
<subj> fired missiles wounded in <np>

missiles at <np> <subj> was identified
bomb near <np> wounding <dobj>
fired into <np> <subj> wounding
died on <np> identified <dobj>
went off in <np> <subj> identified
car bomb near <np> including <dobj>
exploded outside <np> <subj> ahmed
gunmen on <np> <subj> lying
killed near <np> <subj> including

Table 2: Top 10 high-frequency target and victim
patterns learned from the Web

domain-independent text collection, such as the
Web. Although many of the patterns learned
from the CNN terrorism web pages look like good
extractors, an open question was whether they
would actually be useful for the original IE task.
For example, some of the patterns learned from
the CNN web pages have to do with behead-
ings (e.g., “beheading of <np>” and “beheaded
<np>”), which are undeniably good victim ex-
tractors. But the MUC-4 corpus primarily con-
cerns Latin American terrorism that does not in-
volve beheading incidents. In general, the ques-
tion is whether IE patterns learned from a large, di-
verse text collection can be valuable for a specific
IE task above and beyond the patterns that were
learned from the domain-specific training set, or
whether the newly learned patterns will simply not
be applicable. To answer this question, we evalu-
ated the newly learned IE patterns on the MUC-4
test set.

The MUC-4 data set is divided into 1300 devel-
opment (DEV) texts, and four test sets of 100 texts
each (TST1, TST2, TST3, and TST4).5 All of
these texts have associated answer key templates.
We used 1500 texts (DEV+TST1+TST2) as our
training set, and 200 texts (TST3+TST4) as our
test set.

The IE process typically involves extracting
information from individual sentences and then
mapping that information into answer key tem-
plates, one template for each terrorist event de-
scribed in the story. The process of template gen-
eration requires discourse processing to determine
how many events took place and which facts cor-
respond to which event. Discourse processing and

5The DEV texts were used for development in MUC-3
and MUC-4. The TST1 and TST2 texts were used as test sets
for MUC-3 and then as development texts for MUC-4. The
TST3 and TST4 texts were used as the test sets for MUC-4.

template generation are not the focus of this paper.
Our research aims to produce a larger set of extrac-
tion patterns so that more information will be ex-
tracted from the sentences, before discourse anal-
ysis would begin. Consequently, we evaluate the
performance of our IE system at that stage: after
extracting information from sentences, but before
template generation takes place. This approach di-
rectly measures how well we are able to improve
the coverage of our extraction patterns for the do-
main.

6.1 Baseline Results on the MUC-4 IE Task

The AutoSlog-TS system described in Section 3
used the MUC-4 training set to learn 291 target
and victim IE patterns. These patterns produced
64% recall with 43% precision on the targets, and
50% recall with 52% precision on the victims.6

These numbers are not directly comparable to
the official MUC-4 scores, which evaluate tem-
plate generation, but our recall is in the same ball-
park. Our precision is lower, but this is to be ex-
pected because we do not perform discourse anal-
ysis.7 These 291 IE patterns represent our base-
line IE system that was created from the MUC-4
training data.

6.2 Evaluating the Newly Learned Patterns

We used all 396 terrorism extraction patterns
learned from the MUC-4 training set8 as seeds to
identify relevant text regions in the CNN terrorism
web pages. We then produced a ranked list of new
terrorism IE patterns using a semantic affinity cut-
off of 3.0. We selected the top N patterns from the
ranked list, with N ranging from 50 to 300, and
added these N patterns to the baseline system.

Table 3 lists the recall, precision and F-measure
for the increasingly larger pattern sets. For the tar-

6We used a head noun scoring scheme, where we scored
an extraction as correct if its head noun matched the head
noun in the answer key. This approach allows for different
leading modifiers in an NP as long as the head noun is the
same. For example, “armed men” will successfully match
“5 armed men”. We also discarded pronouns (they were not
scored at all) because our system does not perform corefer-
ence resolution.

7Among other things, discourse processing merges seem-
ingly disparate extractions based on coreference resolution
(e.g., “the guerrillas” may refer to the same people as “the
armed men”) and applies task-specific constraints (e.g., the
MUC-4 task definition has detailed rules about exactly what
types of people are considered to be terrorists).

8This included not only the 291 target and victim patterns,
but also 105 patterns associated with other types of terrorism
information.



Targets Victims
Precision Recall F-measure Precision Recall F-measure

baseline 0.425 0.642 0.511 0.498 0.517 0.507
50+baseline 0.420 0.642 0.508 0.498 0.517 0.507

100+baseline 0.419 0.650 0.510 0.496 0.521 0.508
150+baseline 0.415 0.650 0.507 0.480 0.521 0.500
200+baseline 0.412 0.667 0.509 0.478 0.521 0.499
250+baseline 0.401 0.691 0.507 0.478 0.521 0.499
300+baseline 0.394 0.691 0.502 0.471 0.542 0.504

Table 3: Performance of new IE patterns on MUC-4 test set

get slot, the recall increases from 64.2% to 69.1%
with a small drop in precision. The F-measure
drops by about 1% because recall and precision
are less balanced. But we gain more in recall
(+5%) than we lose in precision (-3%). For the
victim patterns, the recall increases from 51.7% to
54.2% with a similar small drop in precision. The
overall drop in the F-measure in this case is neg-
ligible. These results show that our approach for
learning IE patterns from a large, diverse text col-
lection (the Web) can indeed improve coverage on
a domain-specific IE task, with a small decrease in
precision.

7 Related Work

Unannotated texts have been used successfully for
a variety of NLP tasks, including named entity
recognition (Collins and Singer, 1999), subjectiv-
ity classification (Wiebe and Riloff, 2005), text
classification (Nigam et al., 2000), and word sense
disambiguation (Yarowsky, 1995). The Web has
become a popular choice as a resource for large
quantities of unannotated data. Many research
ideas have exploited the Web in unsupervised or
weakly supervised algorithms for natural language
processing (e.g., Resnik (1999), Ravichandran and
Hovy (2002), Keller and Lapata (2003)).

The use of unannotated data to improve in-
formation extraction is not new. Unannotated
texts have been used for weakly supervised train-
ing of IE systems (Riloff, 1996) and in boot-
strapping methods that begin with seed words
or patterns (Riloff and Jones, 1999; Yangarber
et al., 2000). However, those previous sys-
tems rely on pre-existing domain-specific cor-
pora. For example, EXDISCO (Yangarber et
al., 2000) used Wall Street Journal articles for
training. AutoSlog-TS (Riloff, 1996) and Meta-
bootstrapping (Riloff and Jones, 1999) used the

MUC-4 training texts. Meta-bootstrapping was
also trained on web pages, but the “domain” was
corporate relationships so domain-specific web
pages were easily identified simply by gathering
corporate web pages.

The KNOWITALL system (Popescu et al., 2004)
also uses unannotated web pages for information
extraction. However, this work is quite differ-
ent from ours because KNOWITALL focuses on
extracting domain-independent relationships with
the aim of extending an ontology. In contrast,
our work focuses on using the Web to augment
a domain-specific, event-oriented IE system with
new, automatically generated domain-specific IE
patterns acquired from the Web.

8 Conclusions and Future Work

We have shown that it is possible to learn new
extraction patterns for a domain-specific IE task
by automatically identifying domain-specific web
pages using seed patterns. Our approach produced
a 5% increase in recall for extracting targets and a
3% increase in recall for extracting victims of ter-
rorist events. Both increases in recall were at the
cost of a small loss in precision.

In future work, we plan to develop improved
ranking methods and more sophisticated seman-
tic affinity measures to further improve coverage
and minimize precision loss. Another possible av-
enue for future work is to embed this approach in a
bootstrapping mechanism so that the most reliable
new IE patterns can be used to collect additional
web pages, which can then be used to learn more
IE patterns in an iterative fashion. Also, while
most of this process is automated, some human in-
tervention is required to create the search queries
for the document collection process, and to gener-
ate the seed patterns. We plan to look into tech-
niques to automate these manual tasks as well.



Acknowledgments

This research was supported by NSF Grant IIS-
0208985 and the Institute for Scientific Comput-
ing Research and the Center for Applied Scientific
Computing within Lawrence Livermore National
Laboratory.

References
S. Banerjee and T. Pedersen. 2003. The Design, Im-

plementation, and Use of the Ngram Statistics Pack-
age. In Proceedings of the Fourth International
Conference on Intelligent Text Processing and Com-
putational Linguistics, pages 370–381, Mexico City,
Mexico, February.

M. Califf and R. Mooney. 1999. Relational Learning
of Pattern-matching Rules for Information Extrac-
tion. In Proceedings of the Sixteenth National Con-
ference on Artificial Intelligence, pages 328–334,
Orlando, FL, July.

H. Chieu, H. Ng, and Y. Lee. 2003. Closing the
Gap: Learning-Based Information Extraction Rival-
ing Knowledge-Engineering Methods. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 216–223, Sap-
poro, Japan, July.

M. Collins and Y. Singer. 1999. Unsupervised Models
for Named Entity Classification. In Proceedings of
Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Cor-
pora, pages 100–110, College Park, MD, June.

D. Freitag and A. McCallum. 2000. Informa-
tion Extraction with HMM Structures Learned by
Stochastic Optimization. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelli-
gence, pages 584–589, Austin, TX, August.

F. Keller and M. Lapata. 2003. Using the Web to
Obtain Frequencies for Unseen Bigrams. Compu-
tational Linguistics, 29(3):459–484, September.

C. Manning and H. Schütze. 1999. Foundations of
Statistical Natural Language Processing. The MIT
Press, Cambridge, MA.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell.
2000. Text Classification from Labeled and Un-
labeled Documents using EM. Machine Learning,
39(2-3):103–134, May.

A. Popescu, A. Yates, and O. Etzioni. 2004. Class Ex-
traction from the World Wide Web. In Ion Muslea,
editor, Adaptive Text Extraction and Mining: Papers
from the 2004 AAAI Workshop, pages 68–73, San
Jose, CA, July.

D. Ravichandran and E. Hovy. 2002. Learning Surface
Text Patterns for a Question Answering System. In

Proceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics, pages 41–47,
Philadelphia, PA, July.

P. Resnik. 1999. Mining the Web for Bilingual Text.
In Proceedings of the 37th meeting of the Associa-
tion for Computational Linguistics, pages 527–534,
College Park, MD, June.

E. Riloff and R. Jones. 1999. Learning Dictionar-
ies for Information Extraction by Multi-Level Boot-
strapping. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence, pages 474–
479, Orlando, FL, July.

E. Riloff and W. Phillips. 2004. An Introduction to the
Sundance and AutoSlog Systems. Technical Report
UUCS-04-015, School of Computing, University of
Utah.

E. Riloff. 1996. Automatically Generating Extraction
Patterns from Untagged Text. In Proceedings of the
Thirteenth National Conference on Articial Intelli-
gence, pages 1044–1049, Portland, OR, August.

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert.
1995. CRYSTAL: Inducing a Conceptual Dictio-
nary. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, pages
1314–1319, Montreal, Canada, August.

S. Soderland. 1999. Learning Information Extraction
Rules for Semi-Structured and Free Text. Machine
Learning, 34(1-3):233–272, February.

B. Sundheim. 1992. Overview of the Fourth Message
Understanding Evaluation and Conference. In Pro-
ceedings of the Fourth Message Understanding Con-
ference (MUC-4), pages 3–21, McLean, VA, June.

B. Sundheim. 1995. Overview of the Results of
the MUC-6 Evaluation. In Proceedings of the
Sixth Message Understanding Conference (MUC-6),
pages 13–31, Columbia, MD, November.

J. Wiebe and E. Riloff. 2005. Creating Subjective
and Objective Sentence Classifiers from Unanno-
tated Texts. In Proceedings of the 6th International
Conference on Computational Linguistics and Intel-
ligent Text Processing, pages 486–497, Mexico City,
Mexico, February.

R. Yangarber, R. Grishman, P. Tapanainen, and S. Hut-
tunen. 2000. Automatic Acquisition of Domain
Knowledge for Information Extraction. In Proceed-
ings of the 18th International Conference on Com-
putational Linguistics, pages 940–946, Saarbrücken,
Germany, August.

D. Yarowsky. 1995. Unsupervised Word Sense Dis-
ambiguation Rivaling Supervised Methods. In Pro-
ceedings of the 33rd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 189–196,
Cambridge, MA, June.


