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Abstract

Both human and automatic processing of speech require mezog
ing more than just the words. We describe a state-of-theyat
tem for automatic detection of “metadata” (information beg the
words) in both broadcast news and spontaneous telephomereon
sations, developed as part of the DARPA EARS Rich Transoript
program. System tasks include sentence boundary detgefitien
word detection, and detection/correction of disfluenciesachieve
best performance, we combine information from differeipiety of
language models (based on words, part-of-speech clasgkaua
tomatically induced classes) with information from a prtisalas-
sifier. The prosodic classifier employs bagging and enseayble
proaches to better estimate posterior probabilities. Véecamfu-
sion networks to improve robustness to speech recogniti@nse
Most recently, we have investigated a maximum entropy amtro
for the sentence boundary detection task, yielding a gaém our
standard HMM approach. We report results for these teclesiqn
the official NIST Rich Transcription metadata tasks.

1. Introduction

Although speech recognition technology has improved Sigitly

in recent decades, current speech systems still outputlysienp
“stream of words”. Unlike written text, this unannotated rdio
stream leaves out useful information about punctuationdisiti-
encies. Such structural information is important for hurmead-
ability of speech transcripts [1]. Itis also crucial to appy down-
stream natural language processing techniques, whiclygically
based on the assumption of fluent, punctuated, and formatted
put. Recovering structural information in speech has tracoine
the goal of a growing number of studies in computational cpee
processing [2, 3, 4, 5, 6, 7].

To this end, the metadata extraction (MDE) re-
search effort within the DARPA EARS program (see
http://www.darpa.mil/ipto/programs/ears/) aims to ehrispeech
recognition output by adding automatically tagged infatioraon
the location of sentence boundaries, speech disfluencidsther
phenomena. In this paper we focus on metadata encodindgustuc
at the word level, and will not touch on speaker change detect
and labeling, which are also part of the broader MDE effort.

In this paper, we describe the ICSI-SRI-UW metadata extrac-
tion system, which yielded the best performance on most MDE
tasks in the most recent NIST 2003 Fall MDE evaluation. Weint
duce the MDE tasks and scoring approach in this section.iddect
2 describes our basic system, including the knowledge sewand
modeling techniques employed. Section 3 shows the ressilig u
confusion networks for the Stletection task. Section 4 describes

1SU stands for sentence-like units; see LDC's annotatiodediuies [8]
for the definition of an SU.
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our recent investigation of the maximum entropy modelingde-
tecting SUs. Conclusions appear in Section 5.

1.1. MDE Tasks

The Rich Transcription structural MDE framework includesif
tasks.

e “Sentence unit” (SU) detection aims to find the end point
of an SU. SUs correspond to either complete or incomplete
sentences.

e “Edit word” detection aims to find all words within the
reparandum region of a speech repair, or the word region
that when deleted yields a “fluent” version of the utterance.

e “Filler word” detection aims to identify words used as filled
pauses (FP) or discourse markers (DM).

e “Interruption point” (IP) detection aims to find the inter-
word location at which point fluent speech becomes disflu-
ent.

The following example shows a transcript with metadata
marked: ‘/’ for SU boundaries< >’ for fillers, ‘[ | for edit words,
and “* for IPs.

and < uh > < you know > wash your cl ot hes
wherever you are / and [ you ] * you really
get used to the outdoors /

Each task is evaluated separately. Systems are evaluated on
both reference (human) transcriptions and the output of wan a
tomatic speech recognition system. Scoring tools firstnatfge
reference and hypothesis words, then map metadata evemnts, a
then calculate the errors. For the edit and filler word deiact
the errors are the average number of misclassified refer@nce
kens per reference edit or filler word token. For SU and IP de-
tection, the errors are the number of misclassified poinissgd
and falsely detected points) per reference SU or IP. Whewogrec
nition output words do not align perfectly with those in refe
ence transcripts, an alignment that minimizes the wordr eate
is used and then the hypothesized metadata events are miapped
the reference metadata events. Further description iddaun
http://www.nist.gov/speech/tests/rt/rt2003/fall/.

1.2. MDE Corpora

Evaluation is performed on two corpora that differ in spaglstyle:
conversational telephone speech (CTS) and broadcast s (
Training and test data are those used in the DARPA Rich Trgmsc
tion Fall 2003 evaluatioh. The CTS data set contains roughly 40

2We used both the development set and the evaluation set testhset
in this paper, in order to increase the test set size to makeeults more
meaningful.



hours of speech for training and 6 hours (72 conversatiandpét-
ing. The BN data contains about 20 hours for training and 3sou
(6 shows) for testing. Training and test data are annotatéd w
metadata events by LDC, using guidelines detailed in [8].

2. Basdline System and Performance
2.1. Previous Framework

Boundary detection problems may be viewed as classifictaiks.

In the training data, SU boundaries and IPs are marked bytanno
tors using both the information in the transcription andrdeorded
speech. For testing, given a word sequence (human tratisorgy
speech recognition outpuly; W- ... W, and the speech signal,
we use various knowledge sources (e.g., prosody and lerfcat
mation) to determine whether a given inter-word boundagukh
be a marked event (SU boundary or IP) or a nonevent.

Our boundary classifier has three components: the prosody
model, the hidden event language model (LM), and variowestr
gies for combining these models [9]. The prosody model isoa-pr
abilistic classifier that estimates the conditional pralitgbof a
boundary class at each word boundary, given features assdci
with that boundary. The features reflect prosodic pattancéiid-
ing duration, fundamental frequency (F0), energy and palge
chose a decision tree classifier to implement the prosodyemod

A hidden event LM [10] models the joint distribution of bound
ary types and words. For a sequei¥e E1 W» E, ... W,,, where
the metadata events; are included as pseudo-word tokens, the LM
models the joint probability of the word and event sequeistan-
dard N-gram modeling techniques can be applied to implethent
hidden event LM.

The most successful integration approach from our past isork
based on a hidden Markov model (HMM) defined by the transition
probabilities given by the hidden event LM and observatianbp
abilities estimated by the prosodic model. Posterior podiias
P(E;|F;) estimated by the prosodic decision tree are converted to
likelihoods P(F;|E;) for this purpose. Thus the integrated HMM
models the joint distributior? (W, F, E) of word sequencé¥,
prosodic feature#”, and the hidden event sequendes Standard
algorithms are then applied to extract the most probablateype
at each inter-word locatiod; = argmaxy, P(E;|W, F), given
the word sequencl” and the prosodic featurds.

2.2. System Description

Based on the general approach described above, we enhdeced t
language modeling of the system with a part-of-speech (P@S3d
hidden event LM, a hidden event LM based on automatically in-
duced word classes, and a repetition detection LM [11]. PA@S t
are obtained from TnT taggers [12], trained using the Swsibeind
Treebank data and the broadcast news corpus. Automatioally
duced classes are obtained using the algorithm describE8]n
Additionally, we have a large Broadcast News recognizer higt t

is trained from a large text corpus [15]. These various higeleent
LMs are combined via linear interpolation.

For the prosody model, in order to address the imbalanced dat
problem (since there are many fewer metadata events than non
events at inter-word boundaries), we use a downsampleuirtgai
set. Additionally, we employ ensemble bagging to reducevéne
ance of the prosodic classifier. In this method, several dawmpled
training sets are generated, and each is resampled muitipés
and corresponding classifiers are combined via bagging [IHis
substantially improves the performance of the prosody ode

We build separate two-way classifiers for each task: SU vs. no
SU, edit IP vs. non-IP, FP vs. non-FP, DM vs. non-DM. During

testing, the prosody model and multiple LMs are combineddo o
tain the best hypothesis for each inter-word boundary. &omerd
detection, we use the IP hypotheses and work backwardsinipok
for words that match the word following the IP.

Since we use separate classifiers for each task, there aie pos
bly conflicts between different classifiers’ decisions aitraer-word
boundary. We reconcile the SU and edit IP decision conflict by
looking at the posterior probability of SU detection (whistmore
accurate than the IP classifier); when it is higher than agfieed
threshold, the SU hypothesis is preserved; otherwise thgpBth-
esis is used. Hypothesized IPs are also added at the begjiahin
filler words in a post-processing step.

2.3. System Performance

Table 1 shows system performance for all structural metadaks
on both BN and CTS, and using both reference transcripti@rjR
and speech recognition output (STT). STT output is obtafraa
the SRI recognizer [15], with a word error rate of 12.1% on Bid a
22.9% on CTS.

BN CTS
REF STT REF | STT
SU | 48.72| 55.37 | 31.51| 42.97
Edit | 51.37 | 100.39| 59.22 | 87.99
Filler | 9.22 | 52.45 | 18.07 | 47.97
IP 1751 | 74.47 | 27.13| 65.75

Table 1: System performance (error rate in %) for all thecstmal
MDE tasks on CTS and BN test sets.

As shown, performance degrades dramatically in the face of
recognition errors for all the tasks. Note, however, thatdbgrada-
tion on the SU detection task is less than on other tasks jvduiold
be due to several reasons. For one thing, the prosody mohieh w
is more robust to recognition errors, was found to be eslheet
fective for the SU task. Also, the language model for SUs tsaso
dependent on just a few key words or patterns as in the cadkeof fi
word detection or disfluencies (which are cued by repeatedsyo
For edit disfluencies and IPs the reference condition pesvigord
fragments, which constitute very reliable cues, but arepietaly
absent in automatic recognition output. Finally, SU evdwatge a
higher frequency than the other metadata events, therekingna
model estimation relatively more robust for this task.

2.4. Contributionsof Knowledge Sources

Table 2 presents the contributions from different comptséor
SU detection for the two corpora. We focus here and in alhfent
sections on only the SU task, due to space constraints. ThaskU
is a good choice, because unlike the disfluency tasks, SUsaen
frequent in both CTS and BN data.

As shown, performance improves as knowledge sources are
added. A better prosody model using ensemble bagging 6dses
ens-bag’ in the table) generates better posterior prababibiven
the prosodic features, and thus combines better with LMs) tts-
ing a single downsampled training set (‘prosody-ds’ in thigle).
Class-based LMs (POS and automatically induced classesidpr
some additional gain when combined with the word-based Lig}, p
sumably by addressing the sparse data problem and by capturi
some amount of syntactic or semantic information. Also egmia
from the table is the finding that word recognition errorsrdelg
the LMs relatively more than they degrade the prosody mddsi.
ing recognized rather than true words is more of a problenCfid®



BN CTS 4.1. Maxent Model Description

REF | STT | REF | STT ) ) )
word LM 68.16 | 72.54 | 4056 | 51.85 The maxent model for SU boundary detection assigns a posteri
word LM + prosody-ds| 53.61 | 59.69 | 35.05 | 45.30 probability for SU boundary at each inter-word boundaryggithe
word LM + features associated with each boundary. The maxent estifirats
prosody-ens-bag 50.03| 56.17 | 32.71 | 43.71 a model that satisfies all feature expectation values difieen the
prosody-ens-bag 7594 72.09 | 61.23 | 64.35 training data, while being maximally smooth (i.e., havingximum
word = POST class LM : : : : entropy). This model has the following exponential form:
+ prosody-ens-bag | 48.72 | 55.37 | 31.51| 42.97 1
p(ylz) = Z(x)ewp(z Xifi(z,y)) @
Table 2: Contributions of components for SU detection fothbo i

CTS and BN tasks, REF and STT conditions. Results are shown in

error rate (%). whereZ(z) = > ezp(>; Xifi(z,y)), fi(z,y) is the indicator

function for feature, y is the metadata event type, andepresents

the context associated with the sample.

than for BN; this is most likely attributable to the word errates Maxent modeling has been employed in many natural language
on CTS, which are about twice as high as for BN recognition. processing tasks [18]. For a language processing taskedterés

are generally easy to define, and mostly characterize thextoof

an event. The power of the maxent approach stems from the fact

3. Confusion Networks that multiple features can apply to the same event, withauing

The significant degradation in performance on MDE tasks wisen to model explicitly the joint occurrence of such features.
ing the best recognizer hypothesis (versus the true wordtyates For SU detection we utilize both textual features and festur
an approach that can integrate information from multiplediuy- derived from the prosody model.

potheses. Multiple word hypotheses are valuable because tiva
top recognizer output is optimized to reduce word error, @terna-
tive hypotheses may together reinforce alternative (moceirate)
predictions of metadata events. We focus on CTS becauss of it

Word: We use various combinations of word contexts to repre-
sent word features. The features include different lengths
of N-gram and different positional information for a loca-
tion 7, .9., <w;>, <wi+1>, <Wi, Wit1>, <Wi—1,W;>,

relatively higher WER.

In recent work, we have examined the use of confusion net- Wiz, Wit wi>, ANA<WS, Wig1, Wit 2>
works [16] to leverage multiple recognizer hypotheses édjmting POS: POS tags are the same as used for the HMM approach. Fea-
SUs. For each hypothesized word sequence, an HMM is used to tures capturing POS information are similar to those used fo
estimate the posterior probability of an SU at each word Haon words.

The hypotheses are combined using confusion networks &r-det
mine the overall most likely event at each boundary [17].

Table 3 shows SU error rates for a system that includes bagged
trees and an interpolated class LM. The system combineslmgpo

ses from a pruned n-best list that utilizes the top 90% of ¢ceg- used for word and POS tags. This type of feature is used only

nizer hypotheses (by posterior mass) in order to limit tieessing on the BN task because of the poor chunking performance on
time required. System performance on the single best hgpisth CTS.

from this pruned list is given for comparison.

Chunk: Chunks are obtained from a TBL chunker trained on the
Wall Street Journal corpus [19]. Each word has an associated
chunk tag, such as the beginning of an NP, inside a VP, etc.
We use the same combination of contexts for chunk tags as

Class: We also use similar features coming from autométical
induced classes.

Single Best| Single Best (pruned)] Confusion Nets
43.62 44.29 43.11 Turn: Since speaker changes are very indicative of SU baigwla
we use this binary feature indicating speaker change.

Table 3: SU error rates (%) for 1-best recognition versustméu-

sion network approach for CTS with WER 22.9% Prosody: To keep the prosodic classifier as a separate mamel ¢
. 0.

ponent, and since the maxent classifier is most conveniently
used with binary features, we encode the posterior proba-
bilities from the prosodic decision tree into several bynar
features through thresholding. Equation (1) shows that the
presence of each feature in a maxent model has a monotonic
effect on the final probability (raising or lowering it by arco
stant factor). It is therefore best to define binary feateres
coding the decision tree posterior probabilities a cumu-
lative fashion;p > 0.1,p > 0.3,p > 0.5,p > 0.7, p > 0.9,

with heuristically chosen thresholds. This representaiso

. . also more robust to the mismatch between the posterior prob-
4. Maximum Entropy Modeling ability in training and test sets, since small changes in the
posterior value affect at most one feature.

Combining predictions from multiple hypotheses reducesrer
rates relative to 1-best predictions. Gains compared agtie sin-
gle best system are smaller than against the pruned singfiehee
cause only a portion of the hypotheses are used in the |Btteduc-
ing hypotheses for the entire n-best list may lead to furtjadéms. In
ongoing work we are moving from n-best confusion networka to
lattice framework, allowing us to consider a much largerdifipsis
space.

A weakness of the HMM-based model combination approach de-

scribed earlier is that it assumes independence of lexitagram) LM: It is convenient to include posterior event probabdti
and prosodic features given the metadata events. We haeddies from additional LMs (obtained using the HMM framework),
begun to explore maximum entropy (maxent) models as amaker rather than encoding the LM information as a large number
tive approach to feature integration. Here we report on mari of features in training. This is especially attractive fovi&

entropy modeling for the SU detection task. trained from text-only sources, such as the large Broadcast



News recognizer LM. The LM posterior probabilities are en-
coded as binary features similar to the decision tree pester
ors.

To date, we have not fully investigated compound featuras th
combine different knowledge sources and are able to modehth
teraction between them explicitly. We included only a lieditset
of such features, such as the combination of the decisiersthg-
pothesis and POS contexts.

(1]

(2]
4.2. SU ResultsUsing M axent

Table 4 shows SU detection results using maxent and HMM ap-
proaches individually, as well as their combination. Thmbmma-
tion is carried out by a simple interpolation of posteriaiani the
two models. We observe that on the REF condition, for both BN
and CTS, maxent achieves slightly better performance thdMH
and worse results on the STT condition. Maxent better mdtiels
overlapping textual information. However, the prosodifoima-
tion is incorporated only through the rough thresholdihgréfore,
prosody information is not completely preserved and is tHuded

in the maxent approach. Because of the different errors imatiee

two approaches, the combination of maxent and HMM yields the
best performance for all the test conditions.

(3]

(4]

(5]

HMM | Maxent | Combination
BN | REF | 48.72 | 48.61 46.79 [7]
STT | 55.37 | 56.51 54.35
CTS | REF | 3151 | 30.66 29.30
STT | 42.97 | 43.02 41.88 [8]

Table 4: SU detection results (error rate in %) using maxedt a
HMM individually, and their combination.

(9]

5. Conclusions

We have described various knowledge sources and modeling ap
proaches for automatic detection of metadata events in ¢cmth
versational and broadcast news speech. Our HMM-basedsyste
achieved state-of-the-art results in a recent governmseoisored
evaluation. Prosodic model performance was greatly ingmov
by using sampling and ensemble techniques to make better use [12]
of inherently skewed data. Different class-based languagdels
yielded an additional gain beyond a word-based languagesimod
alone.

We have also explored new modeling techniques to try to ad-

(10]

(11]

(13]

dress two types of problems. To address the problem of etrorf [14]
speech recognition output, we have explored the use of pleilti
recognition outputs for finding locations of likely metaal@vents.

An approach based on confusion networks has shown improve- (15]

ments on CTS recognition output. To better account for featu
dependence across models, we have begun to investigatsomaxi
entropy modeling. This approach outperforms our previokivH
based integration on the reference condition of both BN an8.C
Furthermore, combining the system output from both the miaxe
and the HMM approach achieves the best performance actoss al
the test conditions.
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