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SUMMARY

Systematic characterization of cancer genomes has
revealed a staggering number of diverse aberrations
that differ among individuals, such that the functional
importance and physiological impact of most tumor
genetic alterations remain poorly defined. We devel-
oped a computational framework that integrates
chromosomal copy number and gene expression
data for detecting aberrations that promote cancer
progression. We demonstrate the utility of this
framework using a melanoma data set. Our analysis
correctly identified known drivers of melanoma and
predicted multiple tumor dependencies. Two depen-
dencies, TBC1D16 and RAB27A, confirmed empiri-
cally, suggest that abnormal regulation of protein
trafficking contributes to proliferation in melanoma.
Together, these results demonstrate the ability of
integrative Bayesian approaches to identify candi-
date drivers with biological, and possibly thera-
peutic, importance in cancer.
INTRODUCTION

Large-scale initiatives to map chromosomal aberrations, muta-

tions, and gene expression have revealed a highly complex

assortment of genetic and transcriptional changes within indi-

vidual tumors. For example, copy number aberrations (CNAs)

occur frequently in cancer due to genomic instability. Genomic

data have been collected for thousands of tumors at high reso-

lution using array comparative genomic hybridization (aCGH)

(Pinkel et al., 1998), high-density single-nucleotide polymor-

phism (SNP) microarrays (Beroukhim et al., 2010; Lin et al.,

2008), and massively parallel sequencing (Pleasance et al.,

2010). Although multiple new genes have been implicated in

cancer through sequencing and CNA analysis (Garraway et al.,

2005), these studies have also revealed enormous diversity in

genomic aberrations in tumors among individuals. Each tumor

is unique and typically harbors a large number of genetic lesions,
C

of which only a few drive proliferation and metastasis. Thus,

identifying driver mutations (genetic changes that promote

cancer progression) and distinguishing them from passengers

(those with no selective advantage) has emerged as a major

challenge in the genomic characterization of cancer.

The most widely used approaches are based on the frequency

that an aberration occurs: if a mutation provides a fitness advan-

tage in a given tumor type, its persistencewill be favored, and it is

likely to be found in multiple tumors. For example, GISTIC iden-

tifies regions of the genome that are aberrant more often than

would be expected by chance and has been used to analyze

a number of cancers (Beroukhim et al., 2007, 2009; Lin et al.,

2008). However, there are limitations to analytical approaches

based on CNA data alone: CNA regions are typically large and

contain many genes, most of which are passengers that are

indistinguishable in copy number from the drivers. CNA data

have statistical power to detect only the most frequently recur-

ring drivers above the large number of unrelated chromosomal

aberrations that are typical in cancer. Finally, these approaches

rarely elucidate the functional importance or physiological

impact of the genetic alteration on the tumor. These limitations

highlight the need for new approaches that can integrate addi-

tional data to identify drivers of cancer. Gene expression is

readily available for many tumors, but how best to combine it

with information on CNA is not obvious.

We postulate that driver mutations coincide with a ‘‘genomic

footprint’’ in the form of a gene expression signature. We devel-

oped an algorithm that integrates chromosomal copy number

and gene expression data to find these signatures and identify

likely driver genes located in regions that are amplified or deleted

in tumors. Each potential driver gene is altered in some, but not

all, tumors and, when altered, is considered likely to play

a contributing role in tumorigenesis. Unique to our approach,

each driver is associated with a gene module, which is assumed

to be altered by the driver. We sometimes gain insight into the

likely role of a candidate driver based on the annotation of the

genes in the associated module. We demonstrate the utility of

our method using a data set (Lin et al., 2008) that includes paired

measurements of gene expression and copy number from 62

melanoma samples. Our analysis correctly identified known

drivers of melanoma and connected them to many of their
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Figure 1. Modeling Assumptions

For all heat maps, each row represents a gene and each column represents a tumor sample.

(A) The same chromosome in different tumors; orange represents amplified regions. The box shows regions amplified in multiple tumors.

(B) An idealized signature in which the target genes are upregulated (red) when the DNA encoding the driver is amplified (orange).

(C) A driver may be overexpressed due to amplification of the DNA encoding it or due to the action of other factors. The target genes correlate with driver gene

expression (middle row), rather than driver copy number (top row).

(D) Data representing amplified region on chromosome 17. Heat maps of expression for 10 of 24 genes that passed initial expression filtering (Extended Exper-

imental Procedures).

Samples are ordered according to amplification status of the region (orange, amplified; blue, deleted). These genes are identical in their amplification status, and

though gene expression is correlated with amplification status to some degree, the expression of each gene is unique. It is these differences that facilitate the

identification of the driver. See also Extended Experimental Procedures, Figure S1, and Table S1.
targets and biological functions. In addition, it predicted novel

melanoma tumor dependencies, two of which, TBC1D16 and

RAB27A, were confirmed experimentally. Both of these genes

are involved in the regulation of vesicular trafficking, which high-

lights this process as important for proliferation in melanoma.

RESULTS

The Genomic Signature of a Driver
We define a ‘‘driver mutation’’ to be a genetic alteration that

provides the tumor cell with a growth advantage during carcino-

genesis or tumor progression (Stratton et al., 2009). We

reasoned that driver mutations might leave a genomic ‘‘foot-

print’’ that can assist in distinguishing between driver and

passenger mutations based on the following assumptions: (1)

a driver mutation should occur in multiple tumors more often

than would be expected by chance (Figure 1A); (2) a driver

mutation may be associated (correlated) with the expression of

a group of genes that form a ‘‘module’’ (Figure 1B); (3) copy

number aberrations often influence the expression of genes in

the module via changes in expression of the driver (Figure 1C).

Driver mutations are frequently associated with the abnormal

regulation of processes such as proliferation, differentiation,

motility, and invasion. Given that many cancer phenotypes are

reflected in coordinated differences in the expression of multiple

genes (a module) (Golub et al., 1999; Segal et al., 2004), a driver
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mutation might be associated with a characteristic gene expres-

sion signature or other phenotypic output representing a group

of genes whose expression is modulated by the driver. In addi-

tion, CNAs do not typically alter the coding sequence of the

driver and so are expected to influence cellular phenotype via

changes in the driver’s expression. In consequence, changes

in expression of the driver are important, so approaches that

measure association between the expression of a candidate

driver (as opposed to its copy number) and that of the genes in

the corresponding module are likely to promote the identification

of drivers.

Gene expression is particularly useful for identifying candidate

drivers within large amplified or deleted regions of a chromo-

some: whereas genes located in a region of genomic copy

gain/loss are indistinguishable in copy number, expression

permits the ranking of genes based on howwell they correspond

with the phenotype (Figure 1D). CNA data aids in determining the

direction of influence, which cannot be derived based on corre-

lation in gene expression alone (Figure 3A). This permits an unbi-

ased approach for identifying candidate drivers from any func-

tional family, beyond transcription factors or signaling proteins.

A Bayesian Network-Based Algorithm
to Identify Driver Genes
We developed a computational algorithm, copy number and

expression in cancer (CONEXIC), that integrates matched copy



Figure 2. The Highest-Scoring Modulators Identi-

fied by CONEXIC

Gene names are color coded based on the role of the gene

in cancer. Ten genes have been previously identified as

oncogenes or tumor suppressors (blue); of these, two in

melanoma (brown). Column 3 represents chromosomal

location, orange represents amplification, and blue repre-

sents deletion. These genes were identified within regions

containing multiple genes, and the number of genes in

each aberrant region is listed in column 4. Column 5 lists

the p value for modulator validation in independent data

(for a full list, see Table S2 and Figure S3C). p values are

shown for the Johansson data set unless the modulator

was missing from this data set, and then p value from

the Hoek data set is shown. See also Extended Experi-

mental Procedures, Table S2, and Figure S3.
number (amplifications and deletions) and gene expression

data from tumor samples to identify driver mutations and

the processes that they influence. CONEXIC is inspired by

Module Networks (Segal et al., 2003) but has been augmented

by a number of critical modifications that make it suitable for

identifying drivers (see Extended Experimental Procedures avail-

able online). CONEXIC uses a score-guided search to identify

the combination of modulators that best explains the behavior

of a gene expression module across tumor samples and

searches for those with the highest score within the amplified

or deleted regions (Extended Experimental Procedures and

Figure S1).

The resulting output is a ranked list of high-scoring modulators

that both correlate with differences in gene expression modules

across samples and are located in amplified or deleted regions in

a significant number of these samples. The fact that the modula-

tors are amplified or deleted indicates that they are likely to

control the expression of the genes in the corresponding

modules (see Figure 3). Because the modulators are amplified

or deleted in a significant number of tumors, it is reasonable to

assume that expression of the modulator (altered by copy

number) contributes a fitness advantage to the tumor. Therefore,

the modulators likely include genes whose alteration provides

a fitness advantage to the tumor.

Identifying Candidate Driver Genes in Melanoma
We applied the CONEXIC algorithm to paired gene expression

and CNA data from 62 cultured (long- and short-term) mela-
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nomas (Lin et al., 2008). A list of candidate

drivers was generated using copy number data

available for 101 melanoma samples by

applying a modified version (Sanchez-Garcia

et al., 2010) of GISTIC (Beroukhim et al., 2007)

(see Table S1). Next, we integrated copy

number and gene expression data (available

for 62 tumors) to identify the most likely drivers

(Extended Experimental Procedures). Statistical

power is gained by integrating all data and by

combining statistical tests on thousands of

genes to support the selected modulators.

This resulted in the identification of 64 modula-
tors that explain the behavior of 7869 genes. We consider the

top 30 scoringmodulators, presented in Figure 2, as likely drivers

(see Table S2 for the complete list).

Many Modulators Are Involved in Pathways Related
to Melanoma
The top 30 modulators (likely drivers) include 10 known

oncogenes and tumor suppressors (Figure 2). In many cases,

CONEXIC chose the cancer-related gene out of a large aberrant

region containing many genes. For example, DIXDC1, a gene

known to be involved in the induction of colon cancer (Wang

et al., 2009b), was selected among 17 genes in an aberrant

region (Figure S2). CCNB2, a cell-cycle regulator, was selected

from a large amplified region containing 33 genes. The modula-

tors span diverse functional classes, including signal trans-

ducers (TRAF3), transcription factors (KLF6), translation factors

(EIF5), and genes involved in vesicular trafficking (RAB27A).

Performing a comprehensive literature search for all genes

is tedious and time consuming, so we developed an automated

procedure, literature vector analysis (LitVAn), which searches

for overrepresented terms in papers associated with genes

in a gene set. LitVAn uses a manually curated database (NCBI

Gene) to connect genes with terms from the complete text of

more than 70,000 published scientific articles (Extended Exper-

imental Procedures). LitVAN found a number of overrepresented

terms (Figure S3E) among the top 30 modulators, including

‘‘PI3K’’ and ‘‘MAPK,’’ which are known to be activated in mela-

noma; ‘‘cyclin,’’ representing proliferation, which is common in
17, December 10, 2010 ª2010 Elsevier Inc. 1007



all cancers; and ‘‘RAB.’’ Rabs regulate vesicular trafficking, a

process not previously implicated in melanoma.

The Association between a Modulator and the Genes
in a Module
Beyond generating a list of likely drivers (modulators), the

CONEXIC output includes groups of genes that are associated

with each modulator (modules). We tested how reproducible

the modulators and their associated modules are using gene

expression data from two other melanoma cohorts with 45

(Hoek et al., 2006) and 63 (Johansson et al., 2007) samples

(see Extended Experimental Procedures and Figure S3). We

found that 51 of 64 (80%) of the selected modulators are

conserved across data sets in a statistically significant manner.

Modules (statistically associated genes) are likely enriched with

genes whose expression is biologically affected by the modu-

lator (Figure 3). In consequence, the processes and pathways

represented by genes in a module can help us to gain insight

into how an aberration in the modulator might alter the cellular

physiology and contribute to the malignant phenotype.

Annotation of data-derived sets of genes is typically carried out

basedongene set enrichment usingGeneOntology (GO) annota-

tion.Although this approach is useful, therearemodules forwhich

GOannotationdoes not capture the knownbiology. For example,

the ‘‘TNFmodule’’ is enrichedwith theGO terms ‘‘developmental

process’’ and ‘‘cell differentiation’’ (q value = 0.0014 and 0.004,

respectively). We used LitVAn to carry out a systematic literature

search and found 11 of 20 genes in the module related to the

TNF pathway, inflammation, or both (Figure 3C and Table S3),

although only two of these genes were annotated for these

processes in GO. TRAF3, the modulator chosen by CONEXIC, is

known to regulate the NF-kB pathway (Vallabhapurapu et al.,

2008), a major downstream target of TNF. Although TRAF3 has

not been previously implicated in melanoma, the importance of

the NF-kB pathway in melanoma is well supported (Chin et al.,

2006).

A Known Driver, MITF, Is Correctly Associated
with Target Genes
CONEXIC identified microphthalmia-associated transcription

factor (MITF) as the highest-scoring modulator. MITF is a master

regulator of melanocyte development, function, and survival

(Levy et al., 2006; Steingrı́msson et al., 2004), and the overex-

pression of MITF is known to have an adverse effect on patient

survival (Garraway et al., 2005).

To test theassociationbetweenmodulator andmodule,weob-

tained an experimentally derived list of MITF targets (Hoek et al.,

2008b) and asked whether the modules identified by CONEXIC

associate MITF with its known targets. The MITF-associated

modules contained 45 of 80 previously identified targets

(p value<1.5310�45) supporting amatchbetween the transcrip-

tion factor (TF) and its known targets. However, a few targets

(TBC1D16, ZFP106, and RAB27A) are both associated with

MITF and are themselves modulators of additional modules.

CONEXIC limits each gene to a single module, so association

with an MITF target would preclude association with MITF. If we

permit indirect association to MITF through the modules of

these additional modulators, CONEXIC correctly identifies 76 of
1008 Cell 143, 1005–1017, December 10, 2010 ª2010 Elsevier Inc.
the 80 targets identified by Hoek et al. (p value < 1.5 3 10�78).

Similar target sets are not available for any other modulator,

precluding a more rigorous evaluation of our other predictions.

MITF Expression Correlates with Targets Better
Than Copy Number
Expression of MITF correlates with the expression of its targets

better than MITF copy number, though both correlations are

statistically significant (p value of 0.0001 versus 0.04; Figures 4A

and 4B). This relationship is unidirectional: MITF is significantly

overexpressed when its DNA is amplified (p value 0.0004), but

overexpressed MITF does not always correspond with MITF

amplification. We find that MITF is less correlated with its copy

number (rank 294th) than most other genes in aberrant regions

(see Table S1C), and more than half of the tumors that overex-

pressMITFdonot haveaCNAthat spans theMITFgene.Compar-

ison ofMITF target expression between sampleswith andwithout

MITF amplification did not show an effect of DNA amplification on

expression of the targets (Extended Experimental Procedures).

MITF Correctly Annotated with Its Known Role
in Melanoma
We used GO gene set enrichment to identify the biological

processes and pathways represented in each module associ-

ated with MITF. The module containing the genes most signifi-

cantly upregulated by MITF (Figure 4B and Figure S4A) is signif-

icantly enriched for the terms ‘‘melanosome’’ and ‘‘pigment

granule’’ (q value = 4.86e�6 for each). It includes targets involved

in proliferation such as CDK2, consistent with the observation

that MITF can promote proliferation via lineage-specific regula-

tion of CDK2 (Du et al., 2004). The module containing genes

most strongly inhibited by MITF (Figure 4B and Figure S4B)

has a metastatic signature strongly associated with invasion,

angiogenesis, the extracellular matrix, and NF-kB signaling.

These modules and their annotation suggest that MITF serves

as a developmental switch between two types of melanoma, in

which high MITF expression promotes proliferation and low

MITF expression promotes invasion. Thus, our automated,

computationally derived findings dissect a complex response

and accurately recapitulate the known literature, including the

experimental characterization of MITF (Hoek et al., 2008a).

LitVAN annotated additional modulators with their known role

(e.g., CCNB2 with cell cycle and mitosis; data not shown). The

detailed match between the CONEXIC output and empirically

derived knowledge of the role of knownmodulators in melanoma

provides confidence in CONEXIC’s predictions for modulators

that are not well characterized.

Identification of TBC1D16 as a Tumor Dependency
in Melanoma
The second highest-scoring modulator identified by CONEXIC

is TBC1D16, a Rab GTPase-activating protein of unknown

biological function. Rabs are small monomeric GTPases

involved in membrane transport and trafficking. TBC1D16 is

well conserved, and although its targets are not known, a close

paralog, TBC1D15, regulates RAB7A (also selected as a modu-

lator; Figure 2) (Itoh et al., 2006). We used a module associated

with TBC1D16 to infer its potential role in melanoma (Figure 5A)
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Figure 3. Associating Modulators to Genes

(A) Three scenarios could explain a correlation between a candidate driver (gene A) and its target (gene B): A could influence B, B could influence A, or both could

be regulated by a common third mechanism (Pearl, 2000). The availability of both gene expression and chromosomal copy number data allows us to establish the

likely direction of influence. If the expression of gene A is correlated with its DNA copy number and the copy number is altered in a large number of tumors, it is

likely that the copy number alteration results in a change in expression of A in these tumors. So the model in which A influences the expression of B and other

correlated genes is the most likely. In this way, examination of both copy number and gene expression in a single integrated computational framework facilitates

identification of candidate drivers.

(B) Modulator influence on a module can go beyond direct transcriptional cascades involving transcription factors or signaling proteins and their targets. Genetic

alteration of any gene (e.g., a metabolic enzyme) can alter cell physiology, which is sensed by the cell and subsequently leads to a transcriptional response

through a cascade of indirect influences and mechanisms. Whereas modules are typically enriched for genes influenced by the modulator, they also contain

genes that are coexpressed with the modulator (‘‘joint modulator’’). Both types are helpful for annotating the module and determining the functional role of

the modulator.

(C) The TNF module. The modulators include TRAF3 andMITF, wherein high TRAF3 and lowMITF are required for upregulation of the genes in the module. The

annotation for each gene is represented in a color-codedmatrix. Blue and orange squares represent literature-based annotation (see Table S3); green and brown

are from GO. LitVAN associated the genes in this module with TNF and the inflammatory response.

See also Figure S2 and Table S3.
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sion of the Genes in the Associated Module

(A) Each row represents the gene expression of 1 of 78

MITF targets identified by Hoek (Hoek et al., 2008b); the

tumor samples are split into two groups based on the

copy number of MITF (Welch t test p value = 0.04).

(B) The rows represent the same genes, in the same order

as in (A), but here, the tumor samples are split into a group

of samples that expressMITF at high (n = 46) or low levels

(n = 16) (Welch t test p value = 0.0001).

(C) Two modules associated with MITF, showing a

selected subset of genes. LitVAN annotation for the genes

in each module is shown below the heat map. The com-

plete modules with all genes are available in Figure S4.
and discovered that diverse biological processes are repre-

sented by genes in the module and that more than half are anno-

tated for processes such asmelanogenesis, vesicular trafficking,

and survival/proliferation (Table S4A). This suggests that

TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified

region that contains 23 other genes, including CBX4, which is

known to play a role in cancer (Satijn et al., 1997). Expression

of TBC1D16 is not highly correlated with TBC1D16 copy

number compared to other genes in the region (ranked 7th out

of 24) or to all candidate drivers (252th out of 428). Nevertheless,

TBC1D16 is the top-scoring gene in the region and the second

highest-scoring modulator, so it was selected for experimental

verification.

The module exhibits a dose-response relationship between

TBC1D16 expression and the expression of genes in the module

such that higher expression of TBC1D16 is correlatedwith higher

expression of genes in the module (correlation coefficient 0.76).
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We carried out western blotting and RT-PCR on

some of the short-term cultures (STCs) used to

generate the Lin data set and asked whether

the TBC1D16 transcript correlates with protein

levels. The results confirmed that the expression

of TBC1D16 corresponds well with the amount

of the 45 kD isoform of TBC1D16 (data not

shown). These results suggest that knockdown

of TBC1D16 expression in tumors that have

high levels of TBC1D16 will lead to a reduction

in proliferation.

TBC1D16 Is Required for Proliferation
To test whether TBC1D16 is required for prolif-

eration of melanoma cultures, we carried out

a knockdown experiment. We selected two

STCs with high levels of TBC1D16, WM1960

(16-fold higher expression than WM1346, DNA

not amplified) and WM1976 (34-fold higher

expression, amplified DNA) and control STCs,

WM262 and WM1346 that express TBC1D16

at a lower level. We used two shRNAs to knock

down TBC1D16 expression in each of the four

STCs and measured growth over 8 days

(Extended Experimental Procedures). RT-PCR
was used to confirm that the reduction in the amount of the

TBC1D16 transcript was similar for all of the STCs (Figure S5).

Knockdown of TBC1D16 expression reduced cell growth in

WM1960 and WM1976 to 16% and 40%, respectively, relative

to controls infected with GFP shRNA in the same STCs (Figures

5B–5D). This result is specific for cultures with high levels of

TBC1D16, as the controls, WM262 andWM1346, grow at similar

rates to cultures infected with shGFP (75%–90%). As predicted,

growth inhibition at day 8 is proportional to the amount of the

TBC1D16 transcript and is independent of TBC1D16 copy

number (Figures 5C and 5D). Taken together, these results

support CONEXIC’s prediction that TBC1D16 is required for

proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,

also known to be involved in vesicular trafficking (Figure 5A).
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(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
RAB27A functions with RAB7A to control melanosome transport

and secretion. RAB7A localizes to early melanosomes, whereas

RAB27A is found in mature melanosomes (Jordens et al., 2006).

CONEXIC selected both RAB27A and RAB7A as modulators.

RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of

the gene is not highly correlated with RAB27A copy number

compared to other candidate drivers (323th out of 428). Never-

theless, CONEXIC identified it as the top-scoring modulator out

of the 33 genes in this region and ranked it 8th out of 64 modu-

lators, and it was therefore selected for empirical assessment.

To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect

of shRNA knockdown of the RAB27A transcript on proliferation.

We chose two STCs in which the gene is highly expressed

WM1385 (28-fold higher expression compared with A375, DNA
C

amplified) and WM1960 (38-fold higher expression, DNA not

amplified) and two controls that express RAB27A at a lower level

(A375 and WM1930). Western blots show that expression of

RAB27A correlates with expression of the cognate gene in these

cultures (data not shown).

Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-

cantly in the STCs that overexpress RAB27A (18% or 35% in

WM1385 or WM1960 relative to the same cultures infected

with GFP shRNA).RAB27A shRNA had less impact (growth rates

of 65%–80%) in the control STCs that have low RAB27A (Figures

6A and 6B). Growth inhibition at 6 days is correlated with the

amount of the RAB27A transcript and is independent of

RAB27A copy number (Figures 6B and 6C). Taken together,

these results support CONEXIC’s prediction that RAB27A is

a tumor dependency in melanomas that overexpress RAB27A.
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Figure 6. RAB27A Is Necessary for Melanoma

Growth

(A) Representative growth curves for each of the four STCs

infected with RAB27A shRNA. Each curve represents

three technical replicates. RT-PCR was used to confirm

that the reduction in the amount of the RAB27A transcript

was similar in all of the STCs (Figure S6).

(B) Change in growth over time, relative to the number of

cells plated, averaged over all replicates. Knockdown of

RAB27A expression in cells that express this gene at

high levels reduces proliferation. Data averaged over three

biological replicates 3 three technical replicates for each

STC. See Figure S6 and Table S5 for all data.

(C) Growth inhibition at 6 days is dependent on the amount

of the RAB27A transcript and is independent of RAB27A

copy number.
RAB27A Affects the Expression of Genes
in Associated Modules
To test whetherRAB27A affects the expression of genes in asso-

ciated modules, as predicted by CONEXIC, we carried out

microarray profiling after knockdown of RAB27A in the test

STCs (WM1385 and WM1960). We compared the expression

profile after RAB27A knockdown to a control profile generated

by infecting the same STC with GFP shRNA. We used gene set

enrichment analysis (GSEA) (Subramanian et al., 2005) to test

whether each of the three modules associated with RAB27A

are enriched with genes that are differentially expressed (DEG)

after knockdown (see Extended Experimental Procedures). We

found that all three RAB27A-associated modules are signifi-

cantly enriched for genes affected by RAB27A (p values < 10�5

for all three modules; see Figure 7C) and that these modules

responded in the direction predicted by CONEXIC.

These results support our computational prediction that the

expression of RAB27A affects the expression of the genes in

the associated modules. We note that RAB27A functions as a

vesicular trafficking protein, suggesting that it influences gene

expression through an unknown and likely indirect mechanism.
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We used LitVAN to identify the biological

processes and pathways represented among

the DEGs. Cell cycle-related terms are signifi-

cant among the downregulated genes, which

might be expected given the reduced growth

afterRAB27A knockdown. In addition, we found

that genes annotated for the ERK pathway

are upregulated (including MYC, FOSL1, and

DUSP6). We usedGSEA tomeasure enrichment

of an experimentally derived set of genes that

respond to MEK inhibition in melanoma (Pratilas

et al., 2009). The resulting p value < 4.7 3 10�5

suggests that ERK signaling is altered after

RAB27A knockdown in these STCs.

TBC1D16 Influences the Expression
of Genes in Associated Modules
We carried out microarray profiling after knock-

down of TBC1D16 to evaluate whether expres-
sion of TBC1D16 affects the expression of genes in the four

modules associated with it. We used two shRNAs to knock

down TBC1D16 in the test STCs (WM1960 and WM1976) and

compared the gene expression to controls infected with GFP

shRNA (in the same STCs). GSEA analysis established that all

four modules are significantly enriched for genes affected by

differences in TBC1D16 expression (p values < 10�5, 0.0002,

0.008, and 0.009, respectively; see Figure 7). Two modules

responded to TBC1D16 knockdown in the direction predicted

by CONEXIC. In addition, GSEA analysis ranked genes in

the TBC1D16 module (Module 25) highest out of 177 (based

on the GSEA p value), demonstrating that the genes in this

module are the most highly differentially expressed genes in

the data set.

The function of TBC1D16 is unknown, but it is predicted to be

involved in vesicular trafficking. In our knockdown analysis,

LitVAN annotated the upregulated genes with terms related to

vesicular trafficking. These include RAB3C, RAB7A, CHMP1B,

RAB18, SNX16, COPB1, and CAV1 (see Table S6A). However,

it is not clear how TBC1D16 affects gene expression or how

changes in expression affect vesicular trafficking.
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Figure 7. Results of Knockdown Microarrays for

RAB27A and TBC1D16

(A) To the left is one of the modules associated with

RAB27A, and to the right are data generated following

knockdown (KD) of RAB27A for the same genes in the

STCs indicated (pink and blue). The expression of genes

in the module goes down relative to shGFP, as predicted.

KD expression heat map shows Z scores (see Extended

Experimental Procedures) showing that these are some

of the most differentially expressed genes (DEGs) in the

genome.

(B) To the left is one of the modules associated with

TBC1D16, and to the right are data generated following

KD of TBC1D16 in the STCs indicated. The expression

of genes in the module goes up relative to shGFP, as

predicted. The test STCs (blue) and control STCs (pink)

respond differently, demonstrating the importance of

context (TBC1D16 overexpression status) in determining

the response.

(C) GSEA p value and ranking (relative to 177 CONEXIC

modules) forRAB27A- and TBC1D16-associatedmodules

(see Figure S7 for data). GSEA was calculated using the

median of four profiles (two cell lines 3 two hairpins) on

the test STCs. Significant p values indicate that knock-

down of RAB27A and TBC1D16 each affects the subset

of genes predicted by CONEXIC (note that 10�5 is the

smallest p value possible given that 100,000 permutations

are used). The color of the module name represents the

predicted direction of response to knockdown (red and

green represent up- and downregulated, respectively).

The arrow represents the observed response to knock-

down. The direction of response was correctly predicted

for two of four TBC1D16 modules and for all RAB27A

modules.

See also Figure S7 and Table S6.
DISCUSSION

We have demonstrated that combining tumor gene expression

and copy number data into a single framework increases our

ability to identify likely drivers in cancer and the processes

affected by them. Gene expression allows us to distinguish

between multiple genes in an amplified or deleted region

(many of which are indistinguishable based on copy number)
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and to identify those that are likely to be drivers.

The combination of data types allows us to iden-

tify regions that would be overlooked using

methods based on DNA copy number alone.

Expression of a Driver, Not Its Copy
Number, Drives Phenotype
The novelty of our method and the key to its

success is our modeling paradigm: the expres-

sion of a driver should correspond with the

expression of genes in an associated module.

Examination of MITF and its targets supports

our assumptions. Expression of MITF best

correlates with the expression of its targets,

but MITF overexpression does not always

correspond with MITF amplification. A change
in DNA copy number is only one of many ways that gene expres-

sion can be altered. For example,MITF expression can be upre-

gulated via signaling from the Ras/Raf (oncogenic BRAF occurs

frequently inmelanoma) (Wellbrock et al., 2008) and Frizzled/Wnt

pathways (Chin et al., 2006).

Most methods for identifying drivers within aberrant regions

focus on genes whose expression is well correlated with the

copy number of the cognate DNA (Lin et al., 2008; Turner
17, December 10, 2010 ª2010 Elsevier Inc. 1013



et al., 2010). The expression of many of the predicted drivers

that we identify is poorly correlated with their copy number, rela-

tive to other genes in the region and to all other candidate

drivers MITF (294th), TBC1D16 (252th) and RAB27A (323th)

(see Table S1C). We believe that the discrepancies between

CNA and expression arise because there are multiple ways to

up- or downregulate a gene. For example, TBC1D16 and

RAB27A were both identified as transcriptional targets of MITF

(Chiaverini et al., 2008; Hoek et al., 2008b) and are therefore

upregulated when MITF is overexpressed. Moreover, we postu-

late that many drivers are less correlated with their copy number

than passengers due to selective pressure; if there is a fitness

advantage to up- or downregulate expression, the tumor will

find a mechanism to do so.

TBC1D16 and RAB27A Are Required for Proliferation
We tested two drivers predicted by CONEXIC with knockdown

experiments and showed that tumors that express either

TBC1D16 or RAB27A at high levels are dependent on the corre-

sponding gene for growth. Our results demonstrate that these

dependencies are determined by expression of the gene (in

both cases), rather than DNA amplification status, further sup-

porting the assumptions underlying our approach. Thus, we

not only identify tumor dependencies, but also the tumors in

which these genes are crucial for proliferation. Identifying depen-

dencies that are critical for tumor survival is needed for drug-

targeted therapies; for example, FLT3 inhibitors in AML, which

have had successful phase II trials (Fischer et al., 2010). Our

approach is unbiased with respect to protein function and

does not incorporate prior knowledge, thus enabling the identifi-

cation of dependencies in genes involved with vesicular traf-

ficking. TBC1D16 and RAB27A validate the ability of our

approach to correctly identify tumor dependencies and the

genes that they affect.

Association between Modulator and Module
A key feature of our approach is that CONEXIC goes beyond

identifying drivers. By associating candidate drivers with gene

modules and annotating them using information from the litera-

ture, CONEXIC provides insight into the physiological roles of

drivers and associated genes. We used LitVAn to find biological

processes and pathways overrepresented in each module and

to associate drivers with functions, accurately identifying targets

of MITF and annotating the functions of known drivers (MITF,

CCBN2, and TRAF3).

The results of microarray profiling following knockdown

further support the association between modulator and module

and confirm our ability to identify genes affected by TBC1D16

and RAB27A. We successfully connected genes involved in

vesicular trafficking to their effects on gene expression, likely

through a cascade of indirect influences. In addition to profiling

the STCs that highly express each of these genes (test STCs),

we also profiled two lower-expressing STCs (control STCs),

in which the effect of knockdown is less detrimental to

growth. For TBC1D16, there is substantial overlap in the DEGs

in the test STCs (p value < 6.6 3 10�22), but not in the DEGs

between control and test STCs (p value > 0.76). This reflects

the complexity of the transformed state and demonstrates that
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genetic context has a fundamental impact on the effect of

a perturbation.

Genes Involved in Trafficking Are Important
in Melanoma
Of the top 30 drivers selected by CONEXIC, three genes

(TBC1D16, RAB27A, and RAB7A) are known to be involved in

vesicular trafficking (Itoh et al., 2006; Jordens et al., 2006). All of

these genes are amplified (DNA) and highly expressed (RNA) in

multiple melanomas. There is increasing evidence that genes

controlling trafficking play a role inmelanoma. Germline variation

inGolgiphosphoprotein 3 (GOLPH3), a gene involved in vesicular

trafficking, is associatedwithmultiple cancers (Scott et al., 2009).

Our data identify two novel dependencies that are encoded

in somatic CNAs, demonstrate the dependency of melanoma

on TBC1D16 and RAB27A expression for proliferation, and high-

light the potential role of vesicular trafficking in this malignancy.

The role of vesicular trafficking in melanoma has yet to be

characterized. Vesicular trafficking regulates many receptor

tyrosine kinases (RTKs) both spatially and temporally and thus

determines both the duration and intensity of signaling (Ying

et al., 2010). For example, RAB7A is involved in the regulation

of ERK signaling (Taub et al., 2007), and ERK is known to play

an important role in melanoma (Chin et al., 2006). Tight control

of ERK expression could potentially be important in melanocytes

because of its influence on MITF: ERK is required for the activa-

tion of MITF, but high levels of ERK lead to MITF degradation

(Wellbrock et al., 2008). It is possible that recurrent aberrations

in vesicular trafficking genes might involve control of ERK

signaling intensity. This is further supported by the upregulation

of an ERK signature (Pratilas et al., 2009) following RAB27A

knockdown in our data (p value < 4.7 3 10�5).

CONEXIC and Other Approaches
CONEXIC differs from other methods in a number of ways. First,

it uses the gene expression of a candidate driver, rather than its

copy number, as a proxy to report on the status of the gene, e.g.,

two tumors that overexpress a driver are treated equivalently

even if there is amplification in the DNA of only one of them.

Second, it associates a candidate driver with a module of genes

whose expression corresponds with that of the predicted driver,

which was critical for identification of TBC1D16 as a modulator.

Third, combining copy number and gene expression provides

greater sensitivity for identifying significantly aberrant regions

that would not be selected based on DNA alone; this was critical

for the identification of RAB27A.

Methods based on copy number data are limited to detecting

large regions containing multiple genes, such that the driver

cannot be readily identified among them. Recent efforts have

focused on integrating additional sources of information into

the analysis. Some methods use prior information, such as the

role of a gene in other cancers (Beroukhim et al., 2010). Others,

like CONEXIC, integrate gene expression data (Adler et al.,

2006), but the results of these methods fall short of CONEXIC’s.

We systematically compared CONEXIC to other methods using

the same data and found that they did not identify MITF or any

other known driver in melanoma (see Extended Experimental

Procedures).



Statistical dependencies in gene expression have been used

to connect a regulator to its target (Friedman et al., 2000; Lee

et al., 2006; Segal et al., 2003) and for uncovering important

regulators in cancer (Adler et al., 2006; Carro et al., 2010;

Wang et al., 2009a). These approaches typically only detect tran-

scription factors and signaling molecules and do not connect the

altered regulatory networks to upstream genetic aberrations.

Incorporating information on amplification or deletion status

allows us to consider any functional class of genes and thus

permits detection of vesicular trafficking genes that would not

be identified using other methods. It also allows us to relate

the malignant phenotype to genetic aberrations from which it is

likely to have originated.

We tuned our method toward reducing the selection of modu-

lators that are not drivers. To gain this specificity, we do not

detect all genes and pathways that drive tumors. First, some

drivers in amplified and deleted regions do not pass the stringent

statistical tests employed in ourmethod. Second, CONEXIC only

identifies candidate drivers that are encoded in amplified or

deleted regions. In consequence, it would not detect drivers of

melanoma such asBRAF andNRAS that are typically associated

with point mutations. Third, CONEXIC detects drivers based on

the assumptions delineated above; though these hold for many

drivers, it is likely that they are not appropriate for all drivers.

To meet the challenge of finding all driving alterations in

cancer, a number of complementary approaches are needed.

Experimental approaches such as screening using pooled short

hairpin RNAs (shRNAs) (Bric et al., 2009; Zender et al., 2008) are

likely to detect a set of drivers different from those detected by

CONEXIC. These screens are dependent on the genetic back-

ground and are limited to drivers that influence processes that

can be readily measured, such as proliferation, whereas

CONEXIC scans all of the genetic data together and can poten-

tially identify drivers of any function across different genetic

backgrounds. In the future, we envision that CONEXIC will be

used to guide in vivo screening initiatives and to assist in the

choice of regions, functional assays, and genetic backgrounds

probed.

Beyond Melanoma
The challenge of finding candidate drivers is considerable:

tumors are heterogeneous, the data are noisy and highly corre-

lated, and there are a large number of possible combinations

of drivers and genes in modules. Our approach is successful

because it couples simple modeling assumptions with powerful

computational search techniques and rigorous statistical evalu-

ation of the results at each step.

Both the principles underlying CONEXIC and the software can

be applied to any tumor cohort containing matched data for

copy number aberrations and gene expression. The principle

of associating any type of mutation (e.g., epigenetic alterations

and coding sequence) with gene expression signatures or

other phenotypic outputs that differ among samples will be of

increasing importance as sequence and epigenetic data accu-

mulate. Not only does this help to distinguish between driver

and passenger mutations, but the genes in the associated

module can also provide insight into the role of the driver. This

approach can be used to identify the genetic aberrations respon-
C

sible for tumorigenesis and to find those that relate to any other

measurable phenotype, such as the resistance of tumors to

drugs. We anticipate that our approach will make an important

contribution toward a basic mechanistic understanding of

cancer and in revealing associations of clinical significance.

Cancer is a heterogeneous disease in which we are only just

beginning to appreciate the importance of genetic background

and the myriad ways in which the cellular machinery can be re-

directed toward the transformed state. Methods that begin to

dissect this complexity move us another step closer to a world

where personalized therapies are routine.

EXPERIMENTAL PROCEDURES

Statistical Methods

A detailed description of the statistical methods and computational algorithms

used can be found in the Extended Experimental Procedures. The CONEXIC

and LitVAN algorithms were developed for this research, and the software is

available at http://www.c2b2.columbia.edu/danapeerlab/html/software.html.

Experimental Methods

Cells were grown using standard culture conditions, and knockdown was

carried out by infection with lentivirus using RNAi sequences designed by

the RNAi Consortium. shRNA lentivirus were prepared according to TRC

protocols (http://www.broadinstitute.org/rnai/trc), with minor modifications.

Cell proliferation assays, RT-PCR, microarrays, and immunoblotting were

carried out using standard techniques. Primer sequences and detailed

methods can be found in the Extended Experimental Procedures.

ACCESSION NUMBERS

All primary data are available at the Gene Expression Omnibus (GSE23884).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, eight

figures, and six tables and can be found with this article online at doi:10.1016/
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