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Abstract—In this paper, we describe a maximum entropy-based
automatic prosody labeling framework that exploits both language
and speech information. We apply the proposed framework to
both prominence and phrase structure detection within the Tones
and Break Indices (ToBI) annotation scheme. Our framework
utilizes novel syntactic features in the form of supertags and a
quantized acoustic–prosodic feature representation that is similar
to linear parameterizations of the prosodic contour. The proposed
model is trained discriminatively and is robust in the selection
of appropriate features for the task of prosody detection. The
proposed maximum entropy acoustic–syntactic model achieves
pitch accent and boundary tone detection accuracies of 86.0% and
93.1% on the Boston University Radio News corpus, and, 79.8%
and 90.3% on the Boston Directions corpus. The phrase struc-
ture detection through prosodic break index labeling provides
accuracies of 84% and 87% on the two corpora, respectively. The
reported results are significantly better than previously reported
results and demonstrate the strength of maximum entropy model
in jointly modeling simple lexical, syntactic, and acoustic features
for automatic prosody labeling.

Index Terms—Acoustic–prosodic representation, maximum en-
tropy model, phrasing, prominence, spoken language processing,
supertags, suprasegmental information, ToBI annotation.

I. INTRODUCTION

PROSODY is generally used to describe aspects of a
spoken utterance’s pronunciation which are not ade-

quately explained by segmental acoustic correlates of sound
units (phones). The prosodic information associated with a unit
of speech, say, syllable, word, phrase, or clause, influences all
the segments of the unit in an utterance. In this sense, they
are also referred to as suprasegmentals [1] that transcend the
properties of local phonetic context.

Prosody encoded in the form of intonation, rhythm, and lex-
ical stress patterns of spoken language conveys linguistic and
paralinguistic information such as emphasis, intent, attitude, and
emotion of a speaker. On the other hand, prosody is also used
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by speakers to provide cues to the listener and aid in the appro-
priate interpretation of their speech. This facilitates a method to
convey the intent of the speaker through meaningful chunking or
phrasing of the sentence, and is typically achieved by breaking
long sentences into smaller prosodic phrases. Two key prosodic
attributes described above include prominence and phrasing
[2].

Prosody in spoken language correlates with acoustic and syn-
tactic features. Acoustic correlates of duration, intensity and
pitch, such as syllable nuclei duration, short time energy, and
fundamental frequency (f0) are some of the acoustic features
that are used to express prosodic prominence or stress in Eng-
lish. Lexical and syntactic features such as parts-of-speech, syl-
lable nuclei identity, syllable stress of neighboring words have
also been shown to exhibit a high degree of correlation with
prominence. Humans realize phrasing acoustically by pausing
after a major prosodic phrase, accentuating the final syllable in
a phrase, and/or by lengthening the final syllable nuclei before
a phrase boundary. Prosodic phrase breaks typically coincide
with syntactic boundaries [3]. However, prosodic phrase struc-
ture is not isomorphic to the syntactic structure [4], [5].

Incorporating prosodic information can be beneficial in
speech applications such as text-to-speech synthesis, auto-
matic speech recognition, and natural language understanding,
dialog act detection and even speech-to-speech translation.
Accounting for the correct prosodic structure is essential in
text-to-speech synthesis to produce natural sounding speech
with appropriate pauses, intonation, and duration. Speech
understanding applications also benefit from being able to
interpret the recognized utterance through the placement of
correct prosodic phrasing and prominence. Speech-to-speech
translation systems can also greatly benefit from the marking
of prosodic phrase boundaries, e.g., providing this information
could directly help in building better phrase-based statistical
machine translation systems. The integration of prosody in
these applications is preempted by two main requirements:

1) a suitable and appropriate representation of prosody (e.g.,
categorical or continuous);

2) algorithms to automatically detect and seamlessly integrate
the detected prosodic structure in speech applications.

Prosody is highly dependent on the individual speaker style,
gender, dialect, and phonological factors. Nonuniform acoustic
realizations of prosody are characterized by distinct intonation
patterns and prosodic constituents. These distinct intonation
patterns are typically represented using either symbolic or
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parametric prosodic labeling schemes such as Tones and Break
Indices (ToBI) [6], TILT intonational model [7], Fujisaki
model [8], Intonational Variation in English (IViE) [9], and
International Transcription System for Intonation (INTSINT)
[10]. These prosodic labeling approaches provide a common
framework for characterizing prosody and hence facilitate
development of algorithms and computational modeling frame-
works for automatic detection and subsequent integration of
prosody within various speech applications. While detailed
categorical representations are suitable for text-to-speech
synthesis, speech, and natural language understanding tasks,
simpler prosodic representations in terms of raw or speaker
normalized acoustic correlates of prosody have also been shown
to be beneficial in many speech applications such as disfluency
detection [11], sentence boundary detection [12], parsing [13],
and dialog act detection [14]. As long as the acoustic correlates
are reliably extracted under identical conditions during training
and testing, an intermediate symbolic or parametric representa-
tion of prosody can be avoided, even though they may provide
additional discriminative information if available. In this paper,
we use the ToBI labeling scheme for categorical representation
of prosody.

Prior efforts in automatic prosody labeling have utilized a
variety of machine learning techniques, such as decision trees
[2], [15], rule-based systems [16], bagging and boosting on de-
cision trees [17], hidden Markov models (HMMs) [18], cou-
pled HMMs [19], neural networks [20], and conditional random
fields [21]. These algorithms typically exploit lexical, syntactic,
and acoustic features in a supervised learning scenario to predict
prosodic constituents characterized through one of the afore-
mentioned prosodic representations.

The interplay between acoustic, syntactic, and lexical fea-
tures in characterizing prosodic events has been successfully
exploited in text-to-speech synthesis [22], [23], dialog act
modeling [24], [25], speech recognition [20], and speech
understanding [2]. The procedure in which the lexical, syn-
tactic, and acoustic features are integrated plays a vital role in
the overall robustness of automatic prosody detection. While
generative models using HMMs typically perform a front-end
acoustic–prosodic recognition and integrate syntactic informa-
tion through back-off language models [19], [20], stand-alone
classifiers use a concatenated feature vector combining the
three sources of information [21], [26]. We believe that a
discriminatively trained model that jointly exploits lexical,
syntactic, and acoustic information would be the best suited for
the task of prosody labeling. We present a brief synopsis of the
contribution of this paper in the following section.

A. Contributions of This Work

We present a discriminative classification framework using
maximum entropy modeling for automatic prosody detection.
The proposed classification framework is applied to both promi-
nence and phrase structure prediction, two important prosodic
attributes that convey vital suprasegmental information beyond
the orthographic transcription. The prominence and phrase
structure prediction is carried out within the ToBI framework
designed for categorical prosody representation. We perform
automatic pitch accent and boundary tone detection, and break

index prediction, that characterize prominence and phrase
structure, respectively, with the ToBI annotation scheme.

The primary motivation for the proposed work is to exploit
lexical, syntactic, and acoustic–prosodic features in a discrim-
inative modeling framework for prosody modeling that can be
easily integrated in a variety of speech applications. The fol-
lowing are some of the salient aspects of our work.

1) Syntactic Features:
• We propose the use of novel syntactic features for prosody

labeling in the form of supertags which represent depen-
dency analysis of an utterance and its predicate-argument
structure, akin to a shallow syntactic parse. We demon-
strate that inclusion of supertag features can further exploit
the prosody-syntax relationship compared to that offered
by using parts-of-speech tags alone.

2) Acoustic Features:
• We propose a novel representation scheme for the mod-

eling of acoustic–prosodic features such as energy and
pitch. We use -gram features derived from the quantized
continuous acoustic–prosodic sequence that is integrated
in the maximum entropy classification scheme. Such an

-gram feature representation of the prosodic contour is
similar to representing the acoustic–prosodic features with
a piecewise linear fit as done in parametric approaches to
modeling intonation.

3) Modeling:
• We present a maximum entropy framework for prosody

detection that jointly exploits lexical, syntactic, and
prosodic features. Maximum entropy modeling has been
shown to be favorable for a variety of natural language
processing tasks such as part-of-speech tagging, statistical
machine translation, sentence chunking, etc. In this paper,
we demonstrate the suitability of such a framework for
automatic prosody detection. The proposed framework
achieves state-of-the-art results in pitch accent, boundary
tone, and break index detection on the Boston University
(BU) Radio News Corpus [30] and Boston Directions
Corpus (BDC) [31], two publicly available read speech
corpora with prosodic annotation.

• Our framework for modeling prosodic attributes using
lexical, syntactic, and acoustic information is at the word
level, as opposed to syllable level. Thus, the proposed au-
tomatic prosody labeler can be readily integrated in speech
recognition, text-to-speech synthesis, speech translation,
and dialog modeling applications.

The rest of the paper is organized as follows. In Section II,
we describe some of the standard prosodic labeling schemes
for representation of prosody, particularly, the ToBI annotation
scheme that we use in our experiments. We discuss related
work in automatic prosody labeling in Section III followed by
a description of the proposed maximum entropy algorithm for
prosody labeling in Section IV. Section V describes the lexical,
syntactic, and acoustic–prosodic features used in our frame-
work and Section VI-A describes the data used. We present
results of pitch accent and boundary tone detection, and break
index detection in Sections VII and VIII, respectively. We
provide discussion of our results in Section IX and conclude in
Section X along with directions for future work.
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II. PROSODIC LABELING STANDARDS

Automatic detection of prosodic prominence and phrasing re-
quires appropriate representation schemes that can characterize
prosody in a standardized manner and hence facilitate design of
algorithms that can exploit lexical, syntactic, and acoustic fea-
tures in detecting the derived prosodic representation. Existing
prosody annotation schemes range from those that seek compre-
hensive representations for capturing the various multiple facets
of prosody to those that focus on exclusive categorization of cer-
tain prosodic events.

Prosodic labeling systems can be categorized into two main
types: linguistic systems, such as ToBI [6], which encode
events of linguistic nature through discrete categorical labels
and parametric systems, such as TILT [7] and INTSINT [10]
that aim only at providing a configurational description of the
macroscopic pitch contour without any specific linguistic in-
terpretation. While TILT and INTSINT are based on numerical
and symbolic parameterizations of the pitch contour and hence
are more or less language independent, ToBI requires expert
human knowledge for the characterization of prosodic events
in each language (e.g., Spanish ToBI [28] and Japanese ToBI
[29]). In contrast, the gross categorical descriptions within
the ToBI framework offer a level of uncertainty in the human
annotation to be incorporated into the labeling scheme and
hence provide some generalization, considering that prosodic
structure is highly speaker dependent. They also provide more
general-purpose description of prosodic events encompassing
acoustic correlates of pitch, duration, and energy compared to
TILT and INTSINT that exclusively model the pitch contour.
Furthermore, the availability of large prosodically labeled
corpora with manual ToBI annotations, such as the Boston
University (BU) Radio News Corpus [30] and Boston Direc-
tions Corpus (BDC) [31], offer a convenient and standardized
avenue to design and evaluate automatic ToBI-based prosody
labeling algorithms.

Several linguistic theories have been proposed to represent
the grouping of prosodic constituents [6], [32], [33]. In the
simplest representation, prosodic phrasing constituents can be
grouped into word, minor phrase, major phrase, and utterance
[1]. The ToBI break index representation [6] uses indices be-
tween 0 and 4 to denote the perceived disjuncture between each
pair of words, while the perceptual labeling system described
in [32] represents a superset of prosodic constituents by using
labels between 0 and 6. In general, these representations are
mediated by rhythmic and segmental analysis in the ortho-
graphic tier and associate each word with an appropriate index.

In this paper, we evaluate our automatic prosody algorithm
on the Boston University Radio News Corpus and Boston
Directions Corpus, both of which are hand annotated with
ToBI labels. We perform both prominence and phrase structure
detection that are characterized within the ToBI framework
through the following parallel tiers: 1) a tone tier, and 2) a
break-index tier. We provide a brief description of the ToBI an-
notation scheme and the associated characterization of prosodic
prominence and phrasing by the parallel tiers in the following
section.

A. ToBI Annotation Scheme

The ToBI [6] framework consists of four parallel tiers that
reflect the multiple components of prosody. Each tier consists
of discrete categorical symbols that represent prosodic events
belonging to that particular tier.1 A concise summary of the four
parallel tiers is presented below. The reader is referred to [6] for
a more comprehensive description of the annotation scheme.

• Orthographic Tier: The orthographic tier contains the
transcription of the orthographic words of the spoken
utterance.

• Tone tier: Two types of tones are marked in the tonal
tier: pitch events associated with intonational boundaries,
phrasal tones or boundary tones, and pitch events asso-
ciated with accented syllables, pitch accents. The basic
tone levels are high (H) and low (L), and are defined
based on the relative value of the fundamental frequency
in the local pitch range. There are a total of five pitch
accents that lend prominence to the associated word:

H L L H L H H H . The phrasal tones are di-
vided in two coarse categories, weak intermediate phrase
boundaries L H , and full intonational phrase
boundaries L L% L H% H H% H L% that
group together semantic units in the utterance.

• Break index tier: The break-index tier marks the perceived
degree of separation between lexical items (words) in the
utterance and is an indicator of prosodic phrase structure.
Break indices range in value from 0 through 4, with 0 indi-
cating no separation, or cliticization, and 4 indicating a full
pause, such as at a sentence boundary. This tier is strongly
correlated with phrase tone markings on the tone tier.

• Miscellaneous tier: This may include annotation of non-
speech events such as disfluencies, laughter, etc.

The detailed representation of prosodic events in the ToBI
framework, however, suffers from the drawback that all the
prosodic events are not equally likely, and hence a prosodically
labeled corpus would consist of only a few instances of one
event while comprising a majority of another. This in turn
creates serious data sparsity problems for automatic prosody
detection and identification algorithms. This problem has been
circumvented to some extent by decomposing the ToBI labels
into intermediate or coarse categories such as presence or
absence of pitch accents, phrasal tones, etc., and performing
automatic prosody detection on the decomposed inventory of
labels. Such a grouping also reduces the effects of labeling
inconsistency. A detailed illustration of the label decomposi-
tions is presented in Table I. In this paper, we use the coarse
representation (presence versus absence) of pitch accents,
boundary tones, and break indices to alleviate the data sparsity
and compare our results with previous work.

III. RELATED WORK

In this section, we survey previous work in prominence and
phrase break prediction with an emphasis on ToBI-based pitch
accent, boundary tones, and break index prediction. We present

1On a variety of speaking styles, Pitrelli et al. [38] have reported inter-an-
notator agreements of 83%–88%, 94%–95%, and 92.5%, respectively, for pitch
accent, boundary tone, and break index detection within the ToBI annotation
scheme.
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TABLE I
TOBI LABEL MAPPING USED IN EXPERIMENTS. THE DECOMPOSITION

OF LABELS IS ILLUSTRATED FOR PITCH ACCENTS, PHRASAL

TONES, AND BREAK INDICES

a brief overview of speech applications that have used such
prosodic representations along with algorithms and their cor-
responding performance on the various prosody detection and
identification tasks.

A. Pitch Accent and Boundary Tone Labeling

Automatic prominence labeling through pitch accents and
boundary tones, has been an active research topic for over a
decade. Wightman and Ostendorf [2] developed a decision-tree
algorithm for labeling prosodic patterns. The algorithm de-
tected phrasal prominence and boundary tones at the syllable
level. Bulyko and Ostendorf [22] used a prosody prediction
module to synthesize natural speech with appropriate pitch
accents. Verbmobil [39] incorporated prosodic prominence into
a translation framework for improved linguistic analysis and
speech understanding.

Pitch accent and boundary tone labeling has been reported
in many past studies [15], [19], [20]. Hirschberg [15] used a
decision-tree based system that achieved 82.4% speaker-de-
pendent accent labeling accuracy at the word level on the BU
corpus using lexical features. Wang and Hirschberg [37] used a
CART-based labeling algorithm to achieve intonational phrase
boundary classification accuracy of 90.0%. Ross and Ostendorf
[34] also used an approach similar to [2] to predict prosody

for a text-to-speech (TTS) system from lexical features. Pitch
accent accuracy at the word level was reported to be 82.5% and
syllable-level accent accuracy was 87.7%. Hasegawa-Johnson
et al. [20] proposed a neural network based syntactic–prosodic
model and a Gaussian mixture model-based acoustic–prosodic
model to predict accent and boundary tones on the BU corpus
that achieved 84.2% accuracy in accent prediction and 93.0%
accuracy in intonational boundary prediction. With syntactic
information alone, they achieved 82.7% and 90.1% for accent
and boundary prediction, respectively. Ananthakrishnan and
Narayanan [19] modeled the acoustic–prosodic information
using a coupled hidden Markov model that modeled the asyn-
chrony between the acoustic streams. The pitch accent and
boundary tone detection accuracy at the syllable level were
75% and 88%, respectively. Yoon [40] has recently proposed
memory-based learning approach and has reported accuracies
of 87.78% and 92.23% for pitch accent and boundary tone
labeling. The experiments were conducted on a subset of the
BU corpus with 10 548 words and consisted of data from same
speakers in the training and test set.

More recently, pitch accent labeling has been performed on
spontaneous speech in the Switchboard corpus. Gregory and
Atlun [21] modeled lexical, syntactic, and phonological features
using conditional random fields and achieved pitch accent detec-
tion accuracy of 76.4% on a subset of words in the Switchboard
corpus. Ensemble machine learning techniques such as bagging
and random forests on decision trees were used in the 2005 JHU
Workshop [36] to achieve pitch accent detection accuracy of
80.4%. The corpus used was a prosodic database consisting of
spontaneous speech from the Switchboard corpus [41]. Nenkova
et al. [35] have reported a pitch accent detection accuracy of
76.6% on a subset of the Switchboard corpus using a decision
tree classifier.

Our proposed maximum entropy discriminative model out-
performs previous work on prosody labeling on the BU and
BDC corpora. On the BU corpus, with syntactic information
alone we achieve pitch accent and boundary tone accuracy of
85.2% and 91.5% on the same training and test sets used in
[20] and [27]. These results are statistically significant by a dif-
ference of proportions test.2 Further, the coupled model with
both acoustic and syntactic information results in accuracies of
86.0% and 93.1%, respectively. The pitch accent improvement
is statistically significant compared to results reported in [27] by
a difference of proportions test. On the BDC corpus, we achieve
pitch accent and boundary tone accuracies of 79.8% and 90.3%.
The proposed work uses speech and language information that
can be reliably and easily extracted from the speech signal and
orthographic transcription. It does not rely on any hand-coded
features [35] or prosody labeled lexicons [20]. The results of
previous work on pitch accent and boundary tone detection on
the BU corpus are summarized in Table II.

B. Prosodic Phrase Break Labeling

Automatic intonational phrase break prediction has been ad-
dressed mainly through rule-based systems developed by in-
corporation of rich linguistic rules, or, data-driven statistical

2Results at a level � ����� were considered significant.
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TABLE II
SUMMARY OF PREVIOUS WORK ON PITCH ACCENT AND BOUNDARY TONE DETECTION (COARSE MAPPING). LEVEL DENOTES THE

ORTHOGRAPHIC LEVEL (WORD OR SYLLABLE) AT WHICH THE EXPERIMENTS WERE PERFORMED. THE RESULTS OF HASEGAWA-JOHNSON ET AL.
AND OUR WORK ARE DIRECTLY COMPARABLE AS THE EXPERIMENTS ARE PERFORMED ON IDENTICAL DATASET

methods that use labeled corpora to induce automatic labeling
information [2], [26], [42], [43]. Typically, syntactic informa-
tion like part-of-speech (POS) tags, syntactic structure (parse
features), as well as acoustic correlates like duration of pre-
boundary syllables, boundary tones, pauses and f0 contour have
been used as features in automatic detection and identification
of intonational phrase breaks. Algorithms based on machine
learning techniques such as decision trees [2], [26], [44], HMM
[42], or combination of these [43] have been successfully used
for predicting phrase breaks from text and speech.

Automatic detection of phrase breaks has been addressed
mainly from the intent of incorporating the information in
text-to-speech systems [26], [42], to generate appropriate
pauses and lengthening at phrase boundaries. Phrase breaks
have also been modeled from the interest of their utility in
resolving syntactic ambiguity [13], [44], [45]. Intonational
phrase break prediction is also important in speech under-
standing [2], where the recognized utterance needs to be
interpreted correctly.

One of the first efforts in automatic prosodic phrasing was
presented by Ostendorf and Wightman [2]. Using the seven-
level break index proposed in [32], they achieved an accuracy
of 67% for exact identification and 89% correct identification
within . They used a simple decision tree classifier for this
task. Wang and Hirschberg [37] have reported an overall accu-
racy of 81.7% in detection of phrase breaks through a CART-
based scheme. Ostendorf and Veilleux [45] achieved 70% ac-
curacy for break correct prediction, while, Taylor and Black
[42], using their HMM-based phrase break prediction based on
POS tags have demonstrated 79.27% accuracy in correctly de-
tecting break indices. Sun and Applebaum [43] have reported
F-scores of 77% and 93% on break and nonbreak prediction.
Recently, ensemble machine learning techniques such as bag-
ging and random forests that combined decision tree classifiers
were used at the 2005 JHU workshop [36] to perform automatic
break index labeling. The classifiers were trained on sponta-

TABLE III
SUMMARY OF PREVIOUS WORK ON BREAK INDEX DETECTION

(COARSE MAPPING). DETECTION IS PERFORMED AT WORD

LEVEL FOR ALL EXPERIMENTS

neous speech [41] and resulted in break index detection accu-
racy of 83.2%. Kahn et al. [13] have also used prosodic break
index labeling to improve parsing. Yoon [40] has reported break
index accuracy of 88.06% in a three-way classification between
break indices using only lexical and syntactic features.

We achieve a break index accuracy of 83.95% and 87.18% on
the BU and BDC corpora using lexical and syntactic informa-
tion alone. Our combined maximum entropy acoustic–prosodic
model achieves a break index detection accuracy of 84.01% and
87.58%, respectively, on the two corpora. The results from pre-
vious work are summarized in Table III.

IV. MAXIMUM ENTROPY DISCRIMINATIVE

MODEL FOR PROSODY LABELING

Discriminatively trained classification techniques have
emerged as one of the dominant approaches for resolving
ambiguity in many speech and language processing tasks.
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Models trained using discriminative approaches have been
demonstrated to outperform generative models as they directly
optimize the conditional distribution without modeling the
distribution of all the underlying variables. The maximum
entropy approach can model the uncertainty in labels in typical
NLP tasks and hence is desirable for prosody detection due to
the inherent ambiguity in the representation of prosodic events
through categorical labels. A preliminary formulation of the
work in this section was presented by the authors in [46] and
[47].

We model the prosody prediction problem as a classifi-
cation task as follows: given a sequence of words in an
utterance , the corresponding syntactic
information sequence (e.g., parts-of-speech,
syntactic parse, etc.), a set of acoustic–prosodic features

, where is the
acoustic–prosodic feature vector corresponding to word

with a frame length of and a prosodic label vocab-
ulary , the best prosodic label sequence

is obtained as follows:

(1)

We approximate the string level global classification problem,
using conditional independence assumptions, to a product of
local classification problems as shown in (3). The classifier is
then used to assign to each word a prosodic label conditioned
on a vector of local contextual features comprising the lexical,
syntactic, and acoustic information:

(2)

(3)

(4)

where is a set of features
extracted within a bounded local context . is
shortened to in the rest of the section.

To estimate the conditional distribution , we use the
general technique of choosing the maximum entropy (maxent)
distribution that estimates the average of each feature over the
training data [48]. This can be written in terms of the Gibbs
distribution parameterized with weights , where ranges over
the label set and is the size of the prosodic label set. Hence

(5)

To find the global maximum of the concave function in (5), we
use Sequential L1-Regularized Maxent algorithm (SL1-Max)
[49]. Compared to iterative scaling (IS) and gradient descent
procedures, this algorithm results in faster convergence and pro-
vides L1-regularization as well as efficient heuristics to esti-
mate the regularization meta-parameters. We use the machine
learning toolkit LLAMA [50] to estimate the conditional dis-
tribution using maxent. LLAMA encodes multiclass maxent as

TABLE IV
LEXICAL, SYNTACTIC, AND ACOUSTIC FEATURES USED IN THE EXPERIMENTS.
THE ACOUSTIC FEATURES WERE OBTAINED OVER 10-ms FRAME INTERVALS

binary maxent to increase the training speed and to scale the
method to large data sets. We use here one-versus-other bi-
nary classifiers. Each output label is projected onto a bit string,
with components . The probability of each component is
estimated independently:

(6)

where is the parameter vector for . Assuming the bit
vector components to be independent, we have

(7)

Therefore, we can decouple the likelihoods and train the clas-
sifiers independently. In this paper, we use the simplest and most
commonly studied code, consisting of one-versus-others bi-
nary components. The independence assumption states that the
output labels or classes are independent.

V. LEXICAL, SYNTACTIC , AND ACOUSTIC FEATURES

In this section, we describe the lexical, syntactic, and acoustic
features that we use in our maximum entropy discriminative
modeling framework. We use only features that are derived from
the local context of the text being tagged, referred to as static
features hereon (see Table IV). One would have to perform a
Viterbi search if the preceding prediction context were to be
added. Using static features is especially suitable for performing
prosody labeling in lockstep with recognition or dialog act de-
tection, as the prediction can be performed incrementally in-
stead of waiting for the entire utterance or dialog to be decoded.

A. Lexical and Syntactic Features

The lexical features used in our modeling framework are
simply the words in a given utterance. The BU and BDC cor-
pora that we use in our experiments are automatically labeled
(and hand-corrected) with POS tags. The POS inventory is
the same as the Penn treebank which includes 47 POS tags:
22 open class categories, 14 closed class categories, and 11
punctuation labels. We also automatically tagged the utterances
using the AT&T POS tagger. The POS tags were mapped into
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TABLE V
ILLUSTRATION OF THE SUPERTAGS GENERATED FOR A SAMPLE UTTERANCE IN BU CORPUS. EACH SUB-TREE IN THE TABLE CORRESPONDS TO ONE SUPERTAG

function and content word categories3 and were added as a
discrete feature.

In addition to the POS tags, we also annotate the utterance
with Supertags [51]. Supertags encapsulate predicate-argument
information in a local structure. They are the elementary trees
of Tree-Adjoining Grammars (TAGs) [52]. Similar to part-of-
speech tags, supertags are associated with each word of an utter-
ance, but provide much richer information than part-of-speech
tags, as illustrated in the example in Table V. Supertags can be
composed with each other using substitution and adjunction op-
erations [52] to derive the predicate-argument structure of an
utterance.

There are two methods for creating a set of supertags. One
approach is through the creation of a wide coverage English
grammar in the lexicalized tree adjoining grammar formalism,
called XTAG [53]. An alternate method for creating supertags
is to employ rules that decompose the annotated parse of a sen-
tence in Penn Treebank into its elementary trees [54], [55]. This
second method for extracting supertags results in a larger set of
supertags. For the experiments presented in this paper, we em-
ploy a set of 4726 supertags extracted from the Penn Treebank.

There are many more supertags per word than part-of-speech
tags, since supertags encode richer syntactic information than
part-of-speech tags. The task of identifying the correct supertag
for each word of an utterance is termed as supertagging [51].
Different models for supertagging that employ local lexical and
syntactic information have been proposed [56]. For the purpose
of this paper, we use a maximum entropy supertagging model
that achieves a supertagging accuracy of 87% [57].4

While there have been previous attempts to employ syntactic
information for prosody labeling [44], [58], which mainly ex-
ploited the local constituent information provided in a parse
structure, supertags provide a different representation of syn-
tactic information. First, supertags localize the predicate and
its arguments within the same local representation (e.g., give
is a di-transitive verb) and this localization extends across syn-
tactic transformations (relativization, passivization, wh-extrac-
tion), i.e., there is a different supertag for each of these transfor-
mations for each of the argument positions. Second, supertags
also factor out recursion from the predicate-argument domain.

3Function and content word features were obtained through a look-up table
based on POS.

4The model is trained to disambiguate among the supertags of a word by using
the lexical and part-of-speech features of the word and of six words in the left
and right context of that word. The model is trained on one million words of
supertag annotated text.

Fig. 1. Illustration of the quantized feature input to the maxent classifier. “�”
denotes feature input conditioned on preceding values in the acoustic–prosodic
sequence.

Thus, modification relations are specified through separate su-
pertags as shown in Table V. For this paper, we use the supertags
as labels, even though there is a potential to exploit the internal
representation of supertags as well as the dependency structure
between supertags as demonstrated in [59]. Table V shows the
supertags generated for a sample utterance in the BU corpus.

B. Acoustic–Prosodic Features

The BU corpus contains the corresponding acoustic–prosodic
feature file corresponding to each utterance. The f0 and root
mean square (rms) energy (e) of the utterance along with fea-
tures for distinction between voiced/unvoiced segments, cross-
correlation values at estimated f0 values, and ratio of first two
cross correlation values are computed over 10-ms frame inter-
vals. The pitch values for unvoiced regions are smoothed using
linear interpolation. In our experiments, we use these values
rather than computing them explicitly which is straightforward
with most audio processing toolkits. Both the energy and the
f0 levels were range normalized (znorm) with speaker specific
means and variances. Delta and acceleration coefficients were
also computed for each frame. The final feature vector has six di-
mensions comprising f0, f0, f0, e, e, and e per frame.

We model the frame level continuous acoustic–prosodic ob-
servation sequence as a discretized sequence through quantiza-
tion (see Fig. 1). We perform this on the normalized pitch and
energy extracted from the time segment corresponding to each
word. The quantized acoustic stream is then used as a feature
vector. For this case, (3) becomes

(8)

where , the acoustic–prosodic feature vector
corresponding to word with a frame length of .
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TABLE VI
STATISTICS OF BOSTON UNIVERSITY RADIO NEWS AND BOSTON DIRECTIONS CORPORA USED IN EXPERIMENTS

The quantization, while being lossy, reduces the vocab-
ulary of the acoustic–prosodic features, and hence offers
better estimates of the conditional probabilities. The quantized
acoustic–prosodic cues are then modeled using the maximum
entropy model described in Section IV. The -gram representa-
tion of quantized continuous features is similar to representing
the acoustic–prosodic features with a piecewise linear fit as
done in the TILT intonational model [7]. Essentially, we leave
the choice of appropriate representations of the pitch and en-
ergy features to the maximum entropy discriminative classifier,
which integrates feature selection during classification.

The proposed scheme of quantized -gram prosodic features
as input to the maxent classifier is different from previous work
[60]. Shriberg et al. [60] have proposed -grams of Syllable-
based Nonuniform Extraction Region Features (SNERF-grams)
for speaker recognition. In their approach, they extract a large
set of prosodic features such as maximum pitch, mean pitch,
minimum pitch, durations of syllable onset, coda, nucleus, etc.,
and quantize these features by binning them. The resulting syl-
lable-level features, for a particular bin resolution, are then mod-
eled as either unigram (using current syllable only), bigram (cur-
rent and previous syllable or pause), or trigram (current and
previous two syllables or pauses). They use support vector ma-
chines (SVMs) for subsequent classification. Our framework, on
the other hand, models the macroscopic prosodic contour in its
entirety by using -gram feature representation of the quantized
prosodic feature sequence. This representation coupled with the
strength of the maxent model to handle large feature sets and in
avoiding overtraining through regularization makes our scheme
attractive for capturing characteristic pitch movements associ-
ated with prosodic events.

VI. EXPERIMENTAL EVALUATION

A. Data

All the experiments reported in this paper are performed on
the Boston University (BU) Radio News Corpus [30] and the
Boston Directions Corpus (BDC) [31], two publicly available
speech corpora with manual ToBI annotations intended for ex-
periments in automatic prosody labeling. The BU corpus con-
sists of broadcast news stories including original radio broad-
casts and laboratory simulations recorded from seven FM radio
announcers. The corpus is annotated with orthographic tran-
scription, automatically generated and hand-corrected part-of-

speech tags and automatic phone alignments. A subset of the
corpus is also hand annotated with ToBI labels. In particular, the
experiments in this paper are carried out on four speakers similar
to [27], two males and two females referred to hereafter as

, and . The BDC corpus is made of elicited mono-
logues produced by subjects who were instructed to perform a
series of direction-giving tasks. Both spontaneous and read ver-
sions of the speech are available for four speakers ,
and with hand-annotated ToBI labels and automatic phone
alignments, similar to the BU corpus. Table VI shows some of
the statistics of the speakers in the BU and BDC corpora.

In all our prosody labeling experiments, we adopt a leave-
one-out speaker validation similar to the method in [20] for the
four speakers with data from one speaker for testing and those
from the other three for training. For the BU corpus, speaker

was always used in the training set since it contains the most
data. In addition to performing experiments on all the utterances
in BU corpus, we also perform identical experiments on the train
and test sets reported in [27] which is referred to as Hasegawa-
Johnson et al. set.

VII. PITCH ACCENT AND BOUNDARY TONE LABELING

In this section, we present pitch accent and boundary tone la-
beling results obtained through the proposed maximum entropy
prosody labeling scheme. We first present some baseline results,
followed by the description of results obtained from our classi-
fication framework.

A. Baseline Experiments

We present three baseline experiments. One is simply based
on chance where the majority class label is predicted. The
second is a baseline only for pitch accents derived from the
lexical stress obtained through look-up from a pronunciation
lexicon labeled with stress. Finally, the third baseline is ob-
tained through prosody detection in current off-the-shelf speech
synthesis systems. The baseline using speech synthesis systems
is comparable to our proposed model that uses lexical and
syntactic information alone. For experiments using acoustics,
our baseline is simply chance.

1) Acoustic Baseline (Chance): The simplest baseline we use
is chance, which refers to the majority class label assignment for
all tokens. The majority class label for pitch accents is presence
of a pitch accent (accent) and that for boundary tone is absence
(none).
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TABLE VII
BASELINE CLASSIFICATION RESULTS OF PITCH ACCENTS AND BOUNDARY TONES (IN %) USING FESTIVAL AND AT&T NATURAL VOICES SPEECH SYNTHESIZER

2) Prosody Labels Derived From Lexical Stress: Pitch ac-
cents are usually carried by the stressed syllable in a particular
word. Lexicons with phonetic transcription and lexical stress
are available in many languages. Hence, one can use these
lexical stress markers within the syllables and evaluate the
correlation with pitch accents. Even when the lexicon has a
closed vocabulary, letter-to-sound rules can be derived from
it for unseen words. For each word carrying a pitch accent,
we find the particular syllable where the pitch accent occurs
from the manual annotation. For the same syllable, we assign
a pitch accent based on the presence or absence of a lexical
stress marker in the phonetic transcription. The CMU pronun-
ciation lexicon was used for predicting lexical stress through
simple lookup. Lexical stress for out-of-vocabulary words was
predicted through a CART based letter-to-sound rule derived
from the pronunciation lexicon. The results are presented in
Table VII.

3) Prosody Labels Predicted Using TTS Systems: We
perform prosody prediction using two off-the-shelf speech
synthesis systems, namely, AT&T NV speech synthesizer
and Festival. The AT&T NV speech synthesizer [61] is a
half phone speech synthesizer. The toolkit accepts an input
text utterance and predicts appropriate ToBI pitch accent and
boundary tones for each of the selected units (in this case, a
pair of phones) from the database. The toolkit uses a rule-based
procedure to predict the ToBI labels from lexical information
[15]. We reverse mapped the selected half phone units to
words, thus obtaining the ToBI labels for each word in the
input utterance. The pitch accent labels predicted by the toolkit
are and the boundary tones are

% % % .
Festival [62] is an open-source unit selection speech synthe-

sizer. The toolkit includes a CART-based prediction system that
can predict ToBI pitch accents and boundary tones for the input
text utterance. The pitch accent labels predicted by the toolkit
are , and the boundary tones

are % % % . The prosody
labeling results obtained through both the speech synthesis en-
gines are presented in Table VII.

B. Maximum Entropy Pitch Accent and Boundary Tone
Classifier

In this section, we present results of our maximum en-
tropy pitch accent and boundary tone classification. We first
present a maximum entropy syntactic–prosodic model that uses
only lexical and syntactic information for prosody detection,
followed by a maximum entropy acoustic–prosodic model
that uses an -gram feature representation of the quantized
acoustic–prosodic observation sequence.

1) Maximum Entropy Syntactic-Prosodic Model: The max-
imum entropy syntactic–prosodic model uses only lexical and
syntactic information for prosody labeling. Our prosodic label
inventory consists of for pitch ac-
cents and for boundary tones. Such a
framework is beneficial for text-to-speech synthesis that relies
on lexical and syntactic features derived predominantly from
the input text to synthesize natural sounding speech with ap-
propriate prosody. The results are presented in Table VIII. In
Table VIII, correct POS tags refer to hand-corrected POS tags
present in the BU corpus release and POS tags refers to parts-of-
speech tags predicted automatically.

Prosodic prominence and phrasing can also be viewed as
joint events occurring simultaneously. Previous work
by [2] suggests that a joint labeling approach may be
more beneficial in prosody labeling. In this scenario, we
treat each word to have one of the four labels

. We trained the classifier on the joint labels and then
computed the error rates for individual classes. The joint
modeling approach provides a marginal improvement in the
boundary tone prediction but is slightly worse for pitch
accent prediction.
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TABLE VIII
CLASSIFICATION RESULTS (%) OF PITCH ACCENTS AND BOUNDARY TONES FOR DIFFERENT SYNTACTIC REPRESENTATIONS. CLASSIFIERS WITH

CARDINALITY � � � LEARNED EITHER ACCENT OR BTONE CLASSIFICATION, CLASSIFIERS WITH CARDINALITY � � � CLASSIFIED ACCENT,
AND BTONE SIMULTANEOUSLY. THE VARIABLE ��� CONTROLLING THE LENGTH OF THE LOCAL CONTEXT WAS SET TO � � �

TABLE IX
CLASSIFICATION RESULTS OF PITCH ACCENTS AND BOUNDARY TONES (IN %) WITH ACOUSTICS ONLY, SYNTAX ONLY, AND ACOUSTICS�SYNTAX

USING BOTH OUR MODELS. THE SYNTAX-BASED RESULTS FROM OUR MAXIMUM ENTROPY SYNTACTIC–PROSODIC CLASSIFIER

ARE PRESENTED AGAIN TO VIEW THE RESULTS COHESIVELY. IN THE TABLE, A�ACOUSTICS, S�SYNTAX

2) Maximum Entropy Acoustic–Prosodic Model: We quan-
tize the continuous acoustic–prosodic values by binning and ex-
tract -gram features from the resulting sequence. The quan-
tized acoustic–prosodic -gram features are then modeled with
a maxent acoustic–prosodic model similar to the one described
in Section 5. Finally, we append the syntactic and acoustic fea-
tures to model the combined stream with the maxent acoustic-
syntactic model, where the objective criterion for maximization
is (1). The two streams of information were weighted in the
combined maximum entropy model by performing optimiza-
tion on the training set (weights of 0.8 and 0.2 were used on the
syntactic and acoustic vectors, respectively). The pitch accent
and boundary tone prediction accuracies for quantization per-
formed by considering only the first decimal place is reported
in Table IX. As expected, we found the classification accuracy
to drop with increasing number of bins used in the quantization
due to the small amount of training data. In order to compare the
proposed maxent acoustic–prosodic model with conventional
approaches such as HMMs, we also trained continuous obser-

vation density HMMs to represent pitch accents and boundary
tones. This is presented in detail in the following section.

C. HMM Acoustic–Prosodic Model

In this section, we compare the proposed maxent
acoustic–prosodic model with a traditional HMM approach.
HMMs have been demonstrated to capture the time-varying
pitch patterns associated with pitch accents and boundary tones
effectively [18], [19]. We trained separate context-independent
HMMs with three state left-to-right topology with uniform
segmentation. The segmentations need to be uniform due to
lack of an acoustic–prosodic model trained on the features per-
tinent to our task to obtain forced segmentation. The acoustic
observations of the HMM were unquantized acoustic–prosodic
features described in Section V-B. The label sequence was
decoded using the Viterbi algorithm.

The final label sequence using the maximum entropy syn-
tactic–prosodic model and the HMM based acoustic–prosodic
model was obtained by combining the syntactic and acoustic
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Fig. 2. Illustration of the FST composition of the syntactic and acoustic lattices and resulting best path selection. The syntactic–prosodic maxent model produces
the syntactic lattice and the HMM acoustic–prosodic model produces the acoustic lattice.

probabilities. Essentially, the prosody labeling task reduces to
the following:

(9)

where is the syntactic feature encoding of the word se-
quence . The first term in (9) corresponds to the probability
obtained through our maximum entropy syntactic model. The
second term in (9) computed by an HMM corresponds to the
probability of the acoustic data stream which is assumed to be
dependent only on the prosodic label sequence. is a weighting
factor to adjust the weight of the two models.

The syntactic–prosodic maxent model outputs a posterior
probability for each class per word. We formed a lattice out
of this structure and composed it with the lattice generated
by the HMM acoustic–prosodic model. The best path was
chosen from the composed lattice through a Viterbi search.
The procedure is illustrated in Fig. 2. The acoustic–prosodic
probability was raised by a power of to adjust
the weighting between the acoustic and syntactic model. The
value of was chosen as 0.008 and 0.015 for pitch accent and
boundary tone, respectively, by tuning on the training set. The
results of the HMM acoustic–prosodic model and the coupled
model are shown in Table IX. The weighted maximum entropy
syntactic–prosodic model and HMM acoustic–prosodic model
performs the best in pitch accent and boundary tone classifi-
cation. We conjecture that the generalization provided by the
acoustic HMM model is complementary to that provided by the
maximum entropy model, resulting in slightly better accuracy
when combined together as compared to that of a combined
maxent-based acoustic and syntactic model.

VIII. PROSODIC BREAK INDEX LABELING

We presented pitch accent and boundary tone labeling re-
sults using our proposed maximum entropy classifier in the pre-
vious section. In the following section, we address phrase struc-
ture detection by performing automatic break index labeling
within the ToBI framework. Prosodic phrase break prediction
has been especially useful in text-to-speech [42] and sentence
disambiguation [44], [45] applications, both of which rely on
prediction based on lexical and syntactic features. We follow the
same format as the prominence labeling experiments, presenting
baseline experiments followed by our maximum entropy syn-
tactic and acoustic classification schemes. All the experiments
are performed on the entire BU and BDC corpora.

A. Baseline Experiments

We present baseline experiments, both chance and break
index labeling results using an off-the-shelf speech synthesizer.
The AT&T Natural Voices speech synthesizer does not have a
prediction module for prosodic break prediction, and hence we
present results from using the Festival [62] speech synthesizer
alone. Festival speech synthesizer produces simple binary
break presence or absence distinction, as well as more detailed
ToBI-like break index prediction.

1) Break Index Prediction in Festival: Festival can predict
break index at the word level based on the algorithm presented
in [42]. The toolkit can predict both, ToBI-like break values

and simple presence versus ab-
sence . Only lexical and syntactic
information is used in this prediction without any acoustics.
Baseline classification results are presented in Table X.

B. Maximum Entropy Model for Break Index Prediction

1) Syntactic–Prosodic Model: The maximum entropy syn-
tactic–prosodic model uses only lexical and syntactic informa-
tion for prosodic break index labeling. Our prosodic label in-
ventory consists of for ToBI based
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TABLE X
CLASSIFICATION RESULTS OF BREAK INDICES (IN %) WITH SYNTAX ONLY, ACOUSTICS ONLY, AND ACOUSTICS �SYNTAX

USING THE MAXIMUM ENTROPY CLASSIFIER. IN THE TABLE, A�ACOUSTICS, S�SYNTAX

break indices and for binary break
versus no-break distinction. The categorization was
obtained by grouping break indices into and
into [6]. The classifier is then applied for break index labeling
as described in Section VII-B1 for the pitch accent prediction.
We assume knowledge of sentence boundary through the means
of punctuation in all the reported experiments.

2) Acoustic–Prosodic Model: Prosodic break index predic-
tion is typically used in text-to-speech systems and syntactic
parse disambiguation. Hence, the lexical and syntactic features
are crucial in the automatic modeling of these prosodic events.
Further, they are defined at the word level and do not demon-
strate a high degree of correlation with specific pitch patterns.
We thus use only the maximum entropy acoustic–prosodic
model described in Section VII-B2. The combined maximum
entropy acoustic-syntactic model is then similar to (2), where
the prosodic label sequence is conditioned on the words, POS
tags, supertags, and quantized acoustic–prosodic features.
A binary flag indicating the presence or absence of a pause
before and after the current word was also included as a fea-
ture. The results of the maximum entropy syntactic, acoustic,
and acoustic-syntactic model for break index prediction are
presented in Table X. The maxent syntactic–prosodic model
achieves break index detection accuracies of 83.95% and
87.18% on the BU and BDC corpora. The addition of acoustics
to the lexical and syntactic features does not result in a signifi-
cant improvement in detection accuracy. In these experiments,
we used only pitch and energy features and did not use duration
features such as rhyme duration, duration of final syllable, etc.,
used in [2]. Such features require both phonetic alignment and
syllabification and therefore are difficult to obtain in speech
applications that require automatic prosody detection to be per-
formed in lockstep. Additionally, in the context of TTS systems
and parsers, the proposed maximum entropy syntactic–prosodic
model for break index prediction performs with high accuracy
compared to previous work.

IX. DISCUSSION

The automatic prosody labeling presented in this paper is
based on ToBI-based categorical prosody labels but is extend-
able to other prosodic representation schemes such as IViE [9]
or INTSINT [10]. The experiments are performed on decompo-
sitions of the original ToBI labels into binary classes. However,
with the availability of sufficient training data, we can over-
come data sparsity and provide more detailed prosodic event
detection (refer to Table I). We use acoustic features only in the
form of pitch and energy contour for pitch accent and boundary
tone detection. Durational features, which are typically obtained

through forced alignment of the speech signal at the phone level
in typical prosody detection tasks have not been considered in
this paper. We concentrate only on the energy and pitch con-
tour that can be robustly obtained from the speech signal. How-
ever, our framework is readily amenable to the addition of new
features. We provide discussions on the prominence and phrase
structure detection presented in Sections VII and VIII below.

A. Prominence Prediction

The baseline experiment with lexical stress obtained from a
pronunciation lexicon for prediction of pitch accent yields sub-
stantially higher accuracy than chance. This could be partic-
ularly useful in resource-limited languages where prosody la-
bels are usually not available but one has access to a reasonable
lexicon with lexical stress markers. Off-the-shelf speech syn-
thesizers like Festival and AT&T speech synthesizer have utili-
ties that perform reasonably well in pitch accent and boundary
tone prediction. The AT&T speech synthesizer performs better
than Festival in pitch accent prediction while the latter performs
better in boundary tone prediction. This can be attributed to
better rules in the AT&T synthesizer for pitch accent prediction.
Boundary tones are usually highly correlated with punctuation
and Festival seems to capture this well. However, both these syn-
thesizers generate a high degree of false alarms.

The maximum entropy model syntactic–prosodic proposed
in Section VII-B1 outperforms previously reported results on
pitch accent and boundary tone classification. Much of the gain
comes from the strength of the maximum entropy modeling in
capturing the uncertainty in the classification task. Considering
the inter-annotator agreement for ToBI labels is only about 81%
for pitch accents and 93% for boundary tones, the maximum
entropy framework is able to capture the uncertainty present
in manual annotation. The supertag feature offers additional
discriminative information over the part-of-speech tags (also
demonstrated by Rambow and Hirschberg [59]).

The maximum entropy acoustic–prosodic model discussed
in Section VII-B2 performs well in isolation compared to the
traditional HMM acoustic–prosodic model. This is a simple
method, and the quantization resolution can be adjusted based
on the amount of data available for training. However, the
model performs with slightly lower accuracy when combined
with the syntactic features compared to the combined maxent
syntactic–prosodic and HMM acoustic–prosodic model. We
conjecture that the generalization provided by the acoustic
HMM model is complementary to that provided by the max-
imum entropy acoustic model, resulting in slightly better
accuracy when combined with the maxent syntactic model
compared the maxent acoustic–syntactic model. We attribute
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this behavior to better smoothing offered by the HMM com-
pared to the maxent acoustic model. We also expect this slight
difference would not be noticeable with a larger data set.

The weighted maximum entropy syntactic–prosodic model
and HMM acoustic–prosodic model performs the best in pitch
accent and boundary tone classification. The classification
accuracies are comparable to the inter-annotator agreement
for the ToBI labels. Our HMM acoustic–prosodic model is a
generative model and does not assume the knowledge of word
boundaries in predicting the prosodic labels as in previous
approaches [2], [15], [20]. This makes it possible to have
true parallel prosody prediction during speech recognition.
However, the incorporation of word boundary knowledge,
when available, can aid in improved detection accuracies [63].
This is also true in the case of our maxent acoustic–prosodic
model that assumes word segmentation information. The
weighted approach also offers flexibility in prosody labeling for
either speech synthesis or speech recognition. While the syn-
tactic–prosodic model would be more discriminative for speech
synthesis, the acoustic–prosodic model is more appropriate for
speech recognition.

B. Phrase Structure Prediction

The baseline results from Festival speech synthesizer are rel-
atively modest for the break index prediction and only slightly
better than chance. The break index prediction module in the
synthesizer is mainly based on punctuation and parts-of-speech
tag information and hence does not provide a rich set of dis-
criminative features. The accuracies reported on the BU corpus
are substantially higher compared to chance than those reported
on the BDC corpus. We found that the distribution of break in-
dices was highly skewed in the BDC corpus, and the corpus
also does not contain any punctuation markers. Our proposed
maximum entropy break index labeling with lexical and syn-
tactic information alone achieves 83.95% and 87.18% accu-
racy on the BU and BDC corpora. The syntactic model can be
used in text-to-speech synthesis and sentence disambiguation
(for parsing) applications. We also envision the use of prosodic
breaks in speech translation by aiding in the construction of im-
proved phrase translation tables.

X. SUMMARY, CONCLUSIONS, AND FUTURE WORK

In this paper, we described a maximum entropy discrimina-
tive modeling framework for automatic prosody labeling. We
applied the proposed scheme to both prominence and phrase
structure detection within the ToBI annotation scheme. The
proposed maximum entropy syntactic–prosodic model alone
resulted in pitch accent and boundary tone accuracies of 85.2%
and 91.5% on training and test sets identical to [27]. As far as
we know, these are the best results on the BU and BDC corpus
using syntactic information alone and a train-test split that does
not contain the same speakers. We have also demonstrated the
significance of our approach by setting reasonable baseline
from out-of-the-box speech synthesizers and by comparing
our results with prior work. Our combined maximum entropy
syntactic–prosodic model and HMM acoustic–prosodic model
performs the best with pitch accent and boundary tone labeling
accuracies of 86.0% and 93.1%, respectively. The results of

collectively using both syntax and acoustic within the max-
imum entropy framework are not far behind at 85.2% and
92%, respectively. The break index detection with the proposed
scheme is also promising with detection accuracies ranging
from 84% to 87%. The inter-annotator agreement for pitch
accent, boundary tone and break index labeling on the BU
corpus [30] are 81%–84%, 93%, and 95%, respectively. The
accuracies of 80–86%, 90–93.1%, and 84–87% achieved with
the proposed framework for the three prosody detection tasks
are comparable to the inter-labeler agreements. In summary,
the experiments of this paper demonstrate the strength of
using a maximum entropy discriminative model for prosody
prediction. Our framework is also suitable for integration into
state-of-the-art speech applications.

The supertag features in this work were used as categorical
labels. The tags can be unfolded, and the syntactic dependen-
cies and structural relationship between the nodes of the su-
pertags can be exploited further as demonstrated in [59]. We
plan to use these more refined features in future work. As a
continuation of our work, we have integrated our prosody la-
beler in a dialog act tagging scenario, and we have been able to
achieve modest improvements [64]. We are also working on in-
corporating our automatic prosody labeler in a speech-to-speech
translation framework. Typically, state-of-the-art speech trans-
lation systems have a source language recognizer followed by a
machine translation system. The translated text is then synthe-
sized in the target language with prosody predicted from text. In
this process, some of the critical prosodic information present in
the source data is lost during translation. With reliable prosody
labeling in the source language, one can transfer the prosody to
the target language (this is feasible for languages with phrase
level correspondence). The prosody labels by themselves may
or may not improve the translation accuracy but they provide
a framework where one can obtain prosody labels in the target
language from the speech signal rather than depending only on
a lexical prosody prediction module in the target language.
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