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Abstract
We describe experiments designed to learn associations be-
tween two types of intonational features, pitch accent and phras-
ing, from a tree-based corpus annotated with various intona-
tional and syntactic features, for a concept-to-speech system.
We show that using novel tree-based features improves the qual-
ity of boundary prediction over using only the linear order-
based features normally used in text-to-speech.

1. Introduction
Assigning intonational features such as phrasing and promi-
nence in text-to-speech (TTS) and concept-to-speech (CTS)
systems is a much-explored but still perplexing problem. In
TTS systems, the difficulties revolve around the need to inter-
pret an input text sufficiently to make plausible decisions about
how a human reader might produce the text orally. CTS systems
are widely believed to enjoy major advantages over TTS sys-
tems in intonational assignment, since they “know” the mean-
ings they wish to convey. Nonetheless, there are still serious
problems involved in reliably associating intonational features
with other (syntactic, semantic, discourse) linguistic features of
the message to be realized. Also, unlike TTS systems, CTS sys-
tems cannot make use of most punctuation. And how to select
among multiple plausible configurations of intonational, syn-
tactic, and lexical features, e.g., without giving one feature type
unwarranted prior status, represents an open question. Corpus-
based approaches are appealing since they allow us to experi-
mentally evaluate the contribution of different features; in prac-
tical terms, they allow us to port systems to new domains, gen-
res, or speaking styles. However, assembling a sufficiently rich
corpus is a major task, as is determining which features might
be good predictors of intonational properties.

In this paper we describe experiments designed to learn as-
sociations between two types of intonational features, pitch ac-
cent and phrasing, for a CTS system from a tree-based corpus
annotated with various intonational and syntactic features. The
novel contribution of the paper is that we use a dependency rep-
resentation of syntax from which we derive a large set of “deep”
features. Using the same set of data, we address two different
issues:

� In a TTS system, how much can parsing contribute?
We show that syntax-based features can predict phrase
boundaries significantly better than features derivable
simply from the linear order of words and superficial
processing (as is done in most TTS systems).

� In a CTS system, how much does the linear order con-
tribute? Put differently, can intonational features be as-
signed on the syntactic tree prior to the determination of
linear order, or do we need to wait until the linear order

is determined? We show that phrase boundaries can be
predicted significantly better if linear order is also taken
into account.

In Section 2 we describe previous research on the assign-
ment of intonational features in TTS and CTS. In Section 3 we
discuss the corpus used to train and test our assignment proce-
dures. Section 4 describes the machine learning algorithm we
employed and the features we used. In Section 5 we discuss our
results. Finally, in Section 6 we sum up the work to date and
describe future research plans.

2. Previous Research
Most recent research on predicting prosodic assignment for
text-to-speech (TTS) systems has largely focused on predict-
ing phrasing and prominence from simple analysis of input text
[1, 2, 3]. The best performing of these techniques employ auto-
matically generated information such as part-of-speech labels,
inferred constituency information, syllabification, length of sen-
tence and other distance measures, punctuation, and inferred in-
formation about other prosodic features of the input text. Such
predictions have been trained on prosodically labeled corpora,
and employ statistical and machine learning techniques. These
approaches have achieved accuracy rates of 80-85% for promi-
nence prediction and up to 95% for phrasing, on test sets drawn
from prosodically labeled read news stories or elicited speech
corpora such as the ATIS corpus. However, there also is a long
tradition of efforts to associate phrasing decisions, in particular,
with more sophisticated syntactic analyses [4, 5, 6, 7, 8]. While
most of these proposals have had to assume that parsing tech-
nology will improve to provide the requisite level of accuracy
for their inputs, [8] has in fact been able to demonstrate perfor-
mance better than simpler techniques using the uncorrected out-
put of the Collins parser [9] to provide syntactic information for
a corpus-based study of intonational phrasing. In CTS-oriented
work, Pan and McKeown [10] have investigated how features
such as deep syntactic/semantic structure and word informative-
ness correlate with accent placement. Pan and Hirschberg [11]
have found effects of word collocation on accent placement.

3. Corpus
The corpus used in our experiments consists of 11,074 words
of Wall Street Journaltext from the Penn Tree Bank (PTB)
[12] (507 sentences, average sentence length of 21.8 words).1

The hand-annotated phrase structure tree from the PTB was
converted to a dependency tree using the head percolation

1We thank the AT&T TTS group, in particular Alistair Conkie,
Volker Strom, and Ann Syrdal, as well as Srinivas Bangalore, for help
in assembling the corpus.
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technique first used by Magerman [13], and the tokenization
changed to that used in voice transcriptions. A sample depen-
dency tree is shown in Figure 1. The text was read by a female
professional speaker. The recordings were transcribed and an-
notated with ToBI labels [14] by two trained and experienced
labelers. Subsequently, the ToBI labels from the annotated tran-
scription were added to the dependency tree as follows: accent
labels were added to the node of the lexical item with which
they are associated, while boundary labels were added to the
lexical item preceding the boundary. For our current experi-
ments, we collapsed ToBI accent labels to form a binary dis-
tinction accented vs. deaccented. We also collaprsed the ToBI
break index label in two ways: intonational phrase (level 4) vs.
all other break indices and intermediate phrase (level 3 or 4) ver-
sus all other break indices. The data used for our experiments
consisted in the 11,074 words from the corpus annotated with
the ToBI labels as just described, which provide the classifica-
tions to be learned, and with syntactic features which are de-
scribed in the next section, providing the independent features
used in the learning.

4. Machine Learnings Experiments
This section describes experiments using the machine learning
program Ripper [15] to automatically induce prediction mod-
els, using features derivable from the syntactic tree and from
the linear order. Like many learning programs, Ripper takes as
input the classes to be learned, a set of feature names and pos-
sible values, and training data specifying the class and feature
values for each training example. In our case, the training ex-
amples are the words from the training corpus as described in
Section 3. Ripper outputs a classification model for predicting
the class of future examples. The model is learned using greedy
search guided by an information gain metric, and is expressed
as an ordered set of if-then rules.

In the following, we summarize the features we used in de-
termining rules for prosody. In a generation system, the syntac-
tic structure of a sentence is fully (and correctly) determined; in
addition, the generation system must of course also determine
the linear order of the lexemes. Accordingly, the features we
use fall into two classes: “surfacy” features that can be deduced
from the linear order alone (“linear order features”), and “deep”
features that can only be deduced from the syntactic structure.
The latter group we divide further into two groups: those syn-
tactic features that can be determined with some reliability from
a linear sequence without the need for full parsing (“linear syn-
tactic features”), and those that require full parsing (“tree-based
syntactic features”). For reasons of space limitations, we omit
some useful features in the presentation.

4.1. Linear Order Features (LIN)

The following features can be deduced from the linear order
alone. We refer to these features as LIN. Note that we are as-
suming that part-of-speech (POS) taggers of sufficient quality
are available.

� Part-of-speech (POS). This is taken from a small set (12
tags) which distinguishes only the main word classes, including
all function word classes.

� Length of sentence in words (LEN).
� Normalized relative position of that node in the sentence

(RPS), a number between 0 (beginning of sentence) and 1000
(end of sentence).

We use these features for a five-word window around the

current word. Subscripts denote features applying to words in
the window (e.g.,POS

�2 is the part-of-speech of the word two
to the left of the current word).

4.2. Linear Syntactic Features (LIN+)

This is one feature which can be determined with some reliabil-
ity from a linearly ordered sentence without the need for a full
parser. We refer to the linear features plus this one as LIN+.

� Supertag (STAG). A supertag is like a part-of-speech tag,
but it contains more information, specifically the lexeme’s ac-
tive valency (what arguments it requires), passive valency (to
what lexemes it can attach), and the manner in which the ar-
guments are realized (for example, whether the verb is in ac-
tive or passive voice). The supertags are names of trees in a
Tree Adjoining Grammar of English [16]. Bangalore and Joshi
[17] discuss trigram-based models for automatic supertagging,
which achieve accuracy figures of 91%.

4.3. Tree-Based Syntactic Features (TREE)

We use the syntactic dependency trees to represent syntactic
structure. In a syntactic dependency tree, each node is labeled
with a lexeme of the target sentence; there are no nodes that rep-
resent intermediate phrasal projections such as VP. The daugh-
ters of a node are the lexical arguments and adjuncts of that
node; in addition, we assume function words depend on their
major-class lexeme, i.e., auxiliaries depend on their verb, de-
terminers on their noun, and so on. The arcs are labeled with a
small set of grammatical functions (FUNC): 0 for the subject, 1
for the direct object or object of a preposition, 2 for the indirect
or prepositional object,ADJ for all types of adjuncts, andFUNC

for the arcs that relate function words to their major-class lex-
eme. We use the following features; they are illustrated using
the sample tree in Figure 1. We refer to the features presented
in this subsection as TREE. We will refer to the union of all
features as LIN+TREE.

� Whether or not the word is at the right boundary of a
subsuming major constituent, i.e., one headed by a noun or a
verb other than itself (RMC). Note that this feature requires
more than just “noun chunking”, since we also need to know
whether a post-nominal PP attaches to the NP or not.

� Whether or not the word is at the right edge of a coordi-
nated constituent (RCC).

� The size of the subtree headed by the current word, in-
cluding the node (STZ). For example,board in Figure 1 has a
value of 2.

� The number of siblings of the current word, including the
current word (SIB). For example, for this featureboard has a
value of 1.

� The distance in arcs in the tree from the current word to
the next word in the surface string (TRD). For example, the
node labeledboardhas a value of 2: fromboard to asone must
traverse two arcs.

In addition, we use thePOS, STG, andLEX features de-
scribed above for the mother and grandmother nodes in the syn-
tax tree (denoted by subscriptm andg).

5. Results
Results of our experiments are summarized in Figure 2. We
report the average error rate obtained during a five-fold cross-
validation, as well as recall, precision, and the F-measure2 ob-

2F = 2RP=(R + P ), whereR is recall andP precision.
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Figure 1: Dependency syntax tree forPierre Vinken, sixty one years old, will join the board as a nonexecutive director November twenty
ninth. Words in boldface have a pitch accent, while words in italics do not. A solid line following a word indicates an intonational
phrase boundary following that word, while a dotted line indicates an intermediate phrase boundary.

Class BL TREE LIN LIN+ LIN+TREE

Acc Rec/Prec F Acc Rec/Prec F Acc Rec/Prec F Acc Rec/Prec F
Pitch 40.7 11.8 96.6/84.7 90.3 13.0 97.2/82.0 89.0 12.0 96.8/84.3 90.1 12.0 96.4/84.4 90.0
accent (yes) (:30) (:35) (:27) (:21)
Interm. 33.6 16.6 65.1/81.6 72.4 17.0 68.4/75.9 71.9 14.9 76.6/80.2 78.4 13.9 77.2/79.5 78.3
phrase (no) (:21) (:57) (:20) (:57)
Inton. 20.0 14.7 63.6/61.8 62.7 14.2 56.2/67.8 61.5 12.5 56.2/75.2 64.3 10.2 64.1/77.5 70.1
phrase (no) (:39) (:64) (:33) (:17)

Figure 2: Error rates (Acc), recall (Rec), precision (Prec), and F-measure (F) for different feature sets. The baseline (BL) is the error
rate on the majority choice (given in parentheses).

tained when training on a trainig corpus of approximately 8,800
words, tested on a test corpus of 2,200 words. Significance
is assessed on the accuracy figures using the confidence inter-
vals supplied by Ripper; these are given in parentheses after the
figures. If the difference between two figures is greater than
twice the sum of their intervals, then the difference is signifi-
cant (p < 0:05). We see that for both phrase boundary types,
L IN+TREE performs significantly better than either TREE or
L IN alone. With respect to the finding that the performance
of linear features can be improved upon by using more sophis-
ticated syntatcic features, our findings support those of [10, 8];
our results that linear and syntactic features together improve on
syntactic features are new. Furthermore, we see that for inter-
mediate phrase boundaries, LIN+ performs significantly better
than LIN, while for intonational phrase boundaries, LIN+TREE

performs significantly better than LIN+. Despite the fact that
the f-measure does not increase for intermediate phrase bound-
aries, we expect that more data will make both the comparison
of L IN and LIN+, and of LIN+ and LIN+TREE significant for
both boundary types, showing the power of the supertags (the
only feature in LIN+ not in LIN). LIN and TREE do not differ
significantly. We can also see that pitch accent placement is not
significantly affected by the choice of feature set. The low con-
tribution of the syntactic tree features can be explained by the
high level of accenting that our speaker performed and the re-
sulting regularity: if we use only two features –POS andLEX
(with no window at all) – we obtain the same results as shown
in Figure 2.

Comparing these results to prior research on the prediction
of prosodic features from text is not straightforward, due to dif-

1 yes ifSTG=A NXN, RMC=Y (521/43)
2 yes ifSTG=A NXN, TRD>=2, SIB<=1 (184/55)
3 yes ifSTG=A NXN, TRD>=3, LEXg 6=adj (19/10)
4 yes if STG=A NXN, POS

�1 = N, ROL+2=adj,
STZ>=4, STG1 6=B nxPnx,LEXg 6=adj (73/11)

5 yes if STG=A NXN, TRD>=2, ROL
�1=adj,

TRI<=0 (26/8)
6 yes ifRMC=Y, STG6=B ABB (166/13)
7 yes ifSTG=A NXN, STZ>=8, RCC=Y (21/2)
8 yes ifSTG=A NXN, yps=V, STZ>=3 (47/30)
9 default no (6932/699)

Figure 3: Sample rule set for intonational phrase boundaries,
using LIN+TREEfeatures.

ferences in corpus domain, style, and size; the description of de-
pendent variables; and the methods used to evaluate predictive
accuracy. The most comparable study is [8] which improved
on [3]. Both used an 89,103-word training corpus (including
punctuation) labeled with break indices. [8] achieved precision,
recall and F-ratios predicting intonational phrase boundaries
(ToBI level 4 vs. other) ranging from 86.6%, 52.7%, and 65.5%
when trained on a 10,000-word subset of the corpus (compara-
ble in size to our training set) and tested on a held-out test set,
to 90.1%, 80.0% and 84.8% when trained on a 60,456-word
subset. Earlier researchers obtained recall scores in the 75-85%
range (with false alarm rates ranging from 1-11%) on smaller
training and test sets of read and spontaneous speech [5, 18, 19].

We now discuss a sample rule set for predicting intona-
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tional phrase boundaries, using the TREE features (Figure 3).
The Ripper rule sets contain an ordered list of rules. Each rule
contains a conjunction of conditions and a consequent classifi-
cation. Each rule (except the first) only applies if the preced-
ing ones do not. The rules are annotated in parentheses with
the number of examples from the test corpus of that particular
fold which they classify correctly and incorrectly, separated by
a slash. The supertag conditionSTG=A NXN means that the
word is a noun which serves as an argument (the nouns at the
end of numbered arcs), as opposed to a noun modifying a noun
(Pierre), a verb (November), or an adjective (years). The first,
very productive rule states that an argument noun which is at
the right edge of its containing major constituent (headed by a
different noun or a verb) is followed by an intonational phrase
boundary. In our example (Figure 1), it does not apply to any
nodes – the only nodes at the right edge of a subsuming ma-
jor constituent areold andninth, neither of which are argument
nouns. The second rule states that an argument node which has
no other siblings and whose tree distance to the next word is at
least two arcs is followed by an intonational phrase boundary.
This applies correctly todirector, but incorrectly toboard as
well. Note the fairly high error rate on this rule in the test cor-
pus. The third rule inserts a boundary after an argument noun if
the tree distance is at least three and the grandmother is not an
adjunct; this applies toVinken: the next word,sixty, is exactly
three arcs away. (The grandmother condition is met because
there is no grandmother.) Rule 6 applies, correctly, toold and
to ninth. None of the other rules apply (since there are no other
argument nouns in the sentence), so this rule set gets one pre-
diction wrong on this sentence of 17 words (6% error rate).

6. Conclusion
Using a read corpus of newspaper text which was annotated
for intonational and for novel syntactic features, we have au-
tomatically learned rules for placing pitch accents, intermedi-
ate phrase boundaries, and intonational phrase boundaries. We
have shown that for our corpus, pitch accent can be predicted
simply from the word and its part of speech, while for both
boundary types, using both “deep” syntactic features derived
from the unordered tree and “surfacy” features derived from the
linear sequence of words improves over the use of just one of
these feature sets. We conclude that for TTS systems, deeper
parsing will be valuable, and that in CTS systems, the deci-
sions on intonational features should only be taken once linear
order has been determined (i.e., nearly at the end of the gen-
eration process). We leave to future work the incorporation of
frequency-based features, and features reflecting the discourse
context.
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