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SPEECH SYNTHESIS

And computers are getting smarter all the time: Scientislisus
that soon they will be able to talk to us. (By ‘they’ | mean ‘q@ut
ers’: | doubt scientists will ever be able to talk to us.)

Dave Barry

In Vienna in 1769, Wolfgang von Kempelen built for the Emsrbtaria Theresa
the famous Mechanical Turk, a chess-playing automatonistimg of a wooden box
filled with gears, and a mannequin sitting behind the box wihggd chess by moving
pieces with his mechanical arm. The Turk toured Europe amdthericas for decades,
defeating Napolean Bonaparte and even playing CharlesdggbbThe Mechanical
Turk might have been one of the early successes of artifizielligence if it were not
for the fact that it was, alas, a hoax, powered by a chessptagieen inside the box.

What is perhaps less well-known is that von Kempelen, araexdinarily pro-
lific inventor, also built between 1769 and 1790 what is de&flginot a hoax: the first
full-sentence speech synthesizer. His device consisted h#llows to simulate the
lungs, a rubber mouthpiece and a nose aperature, a reedutasinthe vocal folds,
various whistles for each of the fricatives. and a small aryi bellows to provide
the puff of air for plosives. By moving levers with both handgening and closing
various openings, and adjusting the flexible leather ‘voat’, different consonants
and vowels could be produced.

More than two centuries later, we no longer build our spegaothesizers out of
wood, leather, and rubber, nor do we need trained human topgrd he modern task

seecHswTHess  Of speech synthesisalso calledext-to-speechor TTS, is to produce speech (acoustic
TEXT-TO-SPEECH waveforms) from text input.
us Modern speech synthesis has a wide variety of applicati@ysthesizers are
used, together with speech recognizers, in telephonedlmaseersational agents that
conduct dialogues with people (see Ch. 23). Synthesizealaceimportant in non-
conversational applications that speakpeople, such as in devices that read out loud
for the blind, or in video games or children’s toys. Finabpeech synthesis can be
used to spealfor sufferers of neurological disorders, such as astroplsts&teven
Hawking who, having lost the use of his voice due to ALS, sgeak typing to a
speech synthesizer and having the synthesizer speak oufotitks. State of the art
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systems in speech synthesis can achieve remarkably napgath for a very wide
variety of input situations, although even the best syststiidend to sound wooden
and are limited in the voices they use.

The task of speech synthesis is to map a text like the follgwin

(8.1) PG&E will file schedules on April 20.
to a waveform like the following:

il i+

Speech synthesis systems perform this mapping in two dtegis;onverting the

input text into aphonemic internal representationand then converting this internal
TEXT ANALYSIS representation into a waveform. We will call the first stegt Analysisand the second
WAERORM - stepWaveform Synthesis(although other names are also used for these steps).

A sample of the internal representation for this sentenchéwvn in Fig. 8.1.
Note that the acronyiRG&Eis expanded into the words P G AND E, the number
is expanded intdbwentieth a phone sequence is given for each of the words, and there
is also prosodic and phrasing information (the *'s) whichwié define later.

R « | L% |
P G AND |E| WILL FILE SCHEDULES ON APRIL TWENTIETH
p| iy| jh| iy| ag n| d|iy |w| ih| I| f| ay| || s| k| eh| jh| ax| || z| ag n| ey| p| r| ih| I| t| w| eh| n| t] iy| ax] th|

Figure 8.1 Intermediate output for a unit selection synthesizer fer tentenc@®G&E will file schedules on
April 20.. The numbers and acronyms have been expanded, words havedmeerted into phones, and prosodic
features have been assigned.

While text analysis algorithms are relatively standardr¢hare three widely
different paradigms for waveform synthes@oncatenative synthesisformant syn-
thesis andarticulatory synthesis. The architecture of most modern commercial TTS
systems is based on concatenative synthesis, in which earmapspeech are chopped
up, stored in a database, and combined and reconfigurecHie crew sentences. Thus
we will focus on concatenative synthesis for most of thispteg although we will
briefly introduce formant and articulatory synthesis atehd of the chapter.

Fig. 8.2 shows the TTS architecture for concatenative ggish using the two-

HOURGLASS  stephourglass metaphorof Taylor (2007).

8.1 TEXT NORMALIZATION

In order to generate a phonemic internal representati@ntaxt first needs to be pre-

NORMALIZED processed onormalized in a variety of ways. We'll need to break the input text into
sentences, and deal with the idiosyncracies of abbrengtimumbers, and so on. Con-
sider the difficulties in the following text (drawn from thein corpus (?)):
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SENTENCE
TOKENIZATION

(8.2)

PG&E will file schedules on April 20.

Text Analysis

hlhl h‘h

piyjhiyaend...

o
Waveform Synthesis IT

Figure 8.2  Architecture for the unit selection (concatenative) aestture for speech

synthesis.

He said the increase in credit limits helped B.C. Hydro aghirecord net income
of about $1 billion during the year ending March 31. This fegdoes not include
any write-downs that may occur if Powerex determines thgtadrits customer
accounts are not collectible. Cousins, however, was gsighat all debts will
be collected: “We continue to pursue monies owing and we &xjpebe paid for
electricity we have sold.”

The first task in text normalization g&ntence tokenizationIn order to segment
this paragraph into separate utterances for synthesis,eed to know that the first
sentence ends at the period afidéarch 31 not at the period oB.C. We also need
to know that there is a sentence ending at the vemitected despite the punctuation
being a colon rather than a period. The second normaliztiknis dealing witon-
standard words. Non-standard words include number, acronyms, abbrevigtiand
so on. For examplaviarch 31needs to be pronouncédiarch thirty-first not March
three one $1 billion needs to be pronouncede billion dollars with the worddollars
appearing after the wordillion.

8.1.1 Sentence Tokenization

We saw two examples above where sentence tokenizatiorfimuttibecause sentence
boundaries are not always indicated by periods, and cantsoagebe indicated by
punctuation like colons. An additional problem occurs wia@nabbreviation ends a
sentence, in which case the abbreviation-final period igipdpa dual role:

He said the increase in credit limits helped B.C. Hydro aghiecord net income of about $1
billion during the year ending March 31.
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(8:3)

(8.4)

(8.5)

Cousins, however, was insistent that all debts will be ctdlé: “We continue to pursue monies
owing and we expect to be paid for electricity we have sold.”

The group included Dr. J. M. Freeman and T. Boone Pickens Jr.

A key part of sentence tokenization is thus period disandtign; we've seen
a simple perl script for period disambiguation in Ch. 3. Msshtence tokenization
algorithms are slightly more complex than this determiaiatgorithm, and in partic-
ular are trained by machine learning methods rather thargbd®and-built. We do this
by hand-labeling a training set with sentence boundaried,then using any super-
vised machine learning method (decision trees, logistica®sion, SVM, etc) to train
a classifier to mark the sentence boundary decisions.

More specifically, we could start by tokenizing the inputttito tokens sepa-
rated by whitespace, and then select any token containiagbthe three characters
I',. or? (or possibly alsa ). After hand-labeling a corpus of such tokens, then we
train a classifier to make a binary decision (EOS (end-ofesae) versus not-EOS) on
these potential sentence boundary characters insidettiieses.

The success of such a classifier depends on the features¢hextsacted for
the classification. Let’'s consider some feature templateswght use to disambiguate
thesecandidate sentence boundary characters, assuming we have a smalhtafou
training data, labeled for sentence boundaries:

the prefix (the portion of the candidate token preceding #rallate)
the suffix (the portion of the candidate token following tladidate)
whether the prefix or suffix is an abbreviation (from a list)

the word preceding the candidate

the word following the candidate

whether the word preceding the candidate is an abbreviation
whether the word following the candidate is an abbreviation

Consider the following example:
ANLP Corp. chairman Dr. Smith resigned.

Given these feature templates, the feature values for thedpe in the wordCorp.
in (8.5) would be:

PreviousWord = ANLP NextWord = chairman
Prefix = Corp Suffix = NULL
PreviousWordAbbreviation = 1 NextWordAbbreviation = 0

If our training set is large enough, we can also look for lekimues about sen-
tence boundaries. For example, certain words may tend tar semtence-initially, or
sentence-finally. We can thus add the following features:

e Probability[candidate occurs at end of sentence]
e Probability[word following candidate occurs at beginnofgsentence]

Finally, while most of the above features are relativel\glaage-independent, we
can use language-specific features. For example, in Englistiences usually begin
with capital letters, suggesting features like the follogyi

e case of candidate: Upper, Lower, AllCap, Numbers



Section 8.1.

Text Normalization 5

NON-STANDARD
WORDS

e case of word following candidate: Upper, Lower, AliCap, Nagns

Similary, we can have specific subclasses of abbreviatsuth as honorifics or
titles (e.g., Dr., Mr., Gen.), corporate designators (€3grp., Inc.), or month-names
(e.g., Jan., Feb.).

Any machine learning method can be applied to train EOS ifilss Logistic
regression and decision trees are two very common methagistit regression may
have somewhat higher accuracy, although we have insteadinsho example of a
decision tree in Fig. 8.3 because it is easier for the readse¢ how the features are
used.

Figure 8.3 A decision tree for predicting whether a period '’ is an erfcsentence
(YES) or not an end-of-sentence (NO), using features lileltly likelihood of the cur-
rent word being the beginning of a sentenberpb ), the previous word being an end
of sentencedprob ), the capitalization of the next word, and the abbreviasabclass
(company, state, unit of measurement). After slides by &itlSproat.

8.1.2 Non-Standard Words

The second step in text normalization is normaliziman-standard words Non-
standard words are tokens like numbers or abbreviationghwieed to be expanded
into sequences of English words before they can be prondunce

What is difficult about these non-standard words is that #reyoften very am-
biguous. For example, the numtiet50can be spoken in at least three different ways,
depending on the context:

seventeen fifty: (in ‘The European economy in 1750’

one seven five zero: (in ‘The password is 175’

seventeen hundred and fifty: (in *1750 dollars)

one thousand, seven hundred, and fifty: (in ‘1750 dollars))

Similar ambiguities occur for Roman numerals likg (which can be pronounced
four , fourth , or as the letters V (meaning ‘intravenous’)), 02/3, which can be
two thirds  orFebruary third ortwo slash three
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PAIRED
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In addition to numbers, various non-standard words are osex of letters.
Three types non-standard words incladibreviations, letter sequencesandacronyms
Abbreviations are generally pronouncedd®pandingthem; thuslan 1is pronounced
January first , andWedis pronounce®Vednesday . Letter sequencedike UN,
DVD, PC,andIBM are pronounced by pronouncing each letter in a sequence idBM
thus pronouncedy b iy eh m). Acronyms like IKEA, MoMA, NASAandUNICEF
are pronounced as if they were wordidpMA is pronouncedn ow m ax Ambiguity
occurs here as well; shoulldn be read as a word (the narden ) or expanded as the
monthJanuary ?

These different types of numeric and alphabetic non-stahdards can be sum-
marized in Fig. 8.4. Each of the types has a particular ratdia (or realizations). For
example, a yearYER is generally read in thpaired method, in which each pair of
digits is pronounced as an integer (espyenteen fifty for 1750), while a U.S.
zip codeNzip is generally read in theerial method, as a sequence of single digits
(e.g.,nine four one one zero for 9411Q. The typeBMONEY deals with the
idiosyncracies of expressions li#.2 billion, which must be read out with the word
dollars  atthe end, athree point two billion dollars

For the alphabetic NSWs, we have the class EXPN for abbrensatlkeN Y.
which are expanded, LSEQ for acronyms pronounced as letijeilesices, and ASWD
for acronyms pronounced as if they were words.

< EXPN abbreviation adv, N.Y., mph, gov't
o LSEQ letter sequence DVD, D.C., PC, UN, IBM,
< ASWD read as word IKEA, unknown words/names
NUM number (cardinal) 12,45, 1/2,0.6
NORD number (ordinal) May 7, 3rd, Bill Gates IlI
NTEL telephone (or part of) 212-555-4523
NDIG number as digits Room 101
" NIDE identifier 747, 386, I5, pc110, 3A
& NADDR number as street address 747, 386, 15, pc110, 3A
g NZIP zip code or PO Box 91020
= NTIME a (compound) time 3.20, 11:45
NDATE a (compound) date 2/28/05, 28/02/05
NYER year(s) 1998, 80s, 1900s, 2008
MONEY money (US or other) $3.45, HK$300, Y20,200$200K
BMONEY money tr/m/billions $3.45 billion
PRCT percentage 75% 3.4%
Figure 8.4 Some types of non-standard words in text normalizatiorcsetl from Ta-
ble 1 of Sproat et al. (2001); not listed are types for URLsa#snand some complex uses
of punctuation.

Dealing with non-standard words requires at least thrgesstekenization to
separate out and identify potential non-standard woctissificationto label them
with a type from Fig. 8.4, andxpansionto convert each type into a string of standard
words.

In the tokenization step, we can tokenize the input by wpaes, and then as-
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sume that any word which is not in the pronunciation dictignia a non-standard
word. More sophisticated tokenization algorithms woulsbatleal with the fact that
some dictionaries already contain some abbreviationsC\Mg dictionary, for exam-
ple, contains abbreviated (and hence incorrect) prontion&for st, mr, mrs as well
as day and month abbreviations liken, tues, nov, deetc. Thus in addition to unseen
words, we also need to label any of these acronyms and alglestharacter token as
potential non-standard words. Tokenization algorithnss aleed to split words which
are combinations of two tokens, likecar or RVing Words can be split by simple
heuristics, such as splitting at dashes, or at changes thwericase to upper-case.

The next step is assigning a NSW type; many types can be ddtedth simple
regular expressions. For exampie;ER could be detected by the following regular
expression:

/(1[89][0-9][0-9])| (20[0-9][0-9]/

Other classes might be harder to write rules for, and so a pmserful option
is to use a machine learning classifier with many features.

To distinguish between the alphabetiswD, LSEQandeEXPN classes, for exam-
ple we might want features over the component letters. Thad,sall-capital words
(IBM, US might be LSEQ, longer all-lowercase words with a singletgugov',
cap’n) might beexpn, and all-capital words with multiple vowelBIASA, IKEA might
be more likely to beaswp.

Another very useful features is the identity of neighbonivayds. Consider am-
biguous strings lik&/4, which can be anDATE march third  or anumthree-fourths
NDATE might be preceded by the wouh, followed by the worddf, or have the word
Mondaysomewhere in the surrounding words. By contrasty examples might be
preceded by another number, or followed by words likiée andinch. Similarly, Ro-
man numerals lik&/Il tend to beNORD (sevef when preceded b€hapter part, or
Act, butNum (seventhiwhen the word&ingor Popeoccur in the neighborhood. These
context words can be chosen as features by hand, or can heddar machine learning
techniques like thdecision listalgorithm of Ch. 8.

We can achieve the most power by building a single machinaileg classifier
which combines all of the above ideas. For example, the NSMsiler of (Sproat
et al., 2001) uses 136 features, including letter-baseifes like ‘all-upper-case;
‘has-two-vowels’ ‘contains-slash’ and‘token-length, as well as binary features for
the presence of certain words likghapter on, or king in the surrounding context.
Sproat et al. (2001) also included a rough-draft rule-batassifier, which used hand-
written regular expression to classify many of the numbewsS The output of this
rough-draft classifier was used as just another featuresimthin classifier.

In order to build such a main classifier, we need a hand-ldidedéning set, in
which each token has been labeled with its NSW category; actelsand-labeled data-
base was produced by Sproat et al. (2001). Given such a thiralaing set, we can
use any supervised machine learning algorithm to build lesdier.

Formally, we can model this task as the goal of producing digesequenc&
which is most probable given the observation sequence:
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(8:6)

(8.7)

HUNDREDS

TRAILING UNIT

T* = argma@(T|O)
T

One way to estimate this probability is via decision treew.dxample, for each
observed tokem;, and for each possible NSW tag the decision tree produces the
posterior probabilityP(tj|o;). If we make the incorrect but simplifying assumption
that each tagging decision is independent of its neighlessan predict the best tag
sequencd = argmax p(T|O) using the tree:

T = argma@(T|0)
T

Q

m
[[argma®(t|o)
i-1 !

The third step in dealing with NSWs is expansion into ordyivaords. One NSW
type,EXPN, is quite difficult to expand. These are the abbreviatiormsaamonyms like
NY. Generally these must be expanded by using an abbrevidtitardary, with any
ambiguities dealt with by the homonym disambiguation athars discussed in the
next section.

Expansion of the other NSW types is generally determinisfiany expansions
are trivial; for exampleLSEQ expands to a sequence of words, one for each letter,
ASWD expands to itselfyum expands to a sequence of words representing the cardinal
number,NORD expands to a sequence of words representing the ordinalenanid
NDIG andNzIP both expand to a sequence of words, one for each digit.

Other types are slightly more complexyER expands to two pairs of digits, un-
less the year ends B0, in which case the four years are pronounced as a cardinal num
ber 2000astwo thousand ) orin thehundreds method (e.g., 1800 asghteen
hundred ). NTEL can be expanded just as a sequence of digits; alternatifielyast
four digits can be read gmired digits, in which each pair is read as an integer. It is
also possible to read them in a form knowrtrasling unit , in which the digits are read
serially until the last nonzero digit, which is pronouncetidwed by the appropriate
unit (e.g.,876-5000aseight seven six five thousand ). The expansion of
NDATE, MONEY, andNTIME is left as exercises (8.1)-(8.4) for the reader.

Of course many of these expansions are dialect-specificubtralian English,
the sequenc83 in a telephone number is generally redoluble three . Other
languages also present additional difficulties in nongdat word normalization. In
French or German, for example, in addition to the above fsoermalization may
depend on morphological properties. In French, the phta#ke (‘one girl’) is nor-
malized toune fille , but1l garcon(‘one boy’) is normalized taun garcon
Similarly, in GermarHeinrich IV (‘Henry IV’) can be normalized tbleinrich der
Vierte ,Heinrich des Vierten ,Heinrich dem Vierten , orHeinrich
den Vierten depending on the grammatical case of the noun (?).



Section 8.1.

Text Normalization

HOMOGRAPHS

(8.8)
(8.9)
(8.10)

8.1.3 Homograph Disambiguation

The goal of our NSW algorithms in the previous section wasdteanine which se-
quence of standard words to pronounce for each NSW. But soeetdetermining
how to pronounce even standard words is difficult. This igipalarly true forhomo-
graphs, which are words with the same spelling but different pranations. Here are
some examples of the English homograpks live, andbass

It's no use(/y uw s/)to ask to us€/y uw z/) the telephone.
Do you live(/l ih v/) near a zoo with livé/l ay v/) animals?
| prefer basg/b ae s/¥ishing to playing the baggb ey s/)guitar.

French homographs includi¢s (which has two pronunciations [fis] ‘son’ versus
[fil] ‘thread]), or the multiple pronunciations fdier (‘proud’ or ‘to trust’), andest(‘is’
or ‘East’) (Divay and Vitale, 1997).

Luckily for the task of homograph disambiguation, the twonis of homographs
in English (as well as in similar languages like French anch@) tend to have differ-
ent parts of speech.For example, the two formaseabove are (respectively) a noun
and a verb, while the two forms ti’e are (respectively) a verb and a noun. Fig. 8.5
shows some interesting systematic relations between treipciation of some noun-
verb and adj-verb homographs.

Final voicing

Stress shift -ate final vowel

N (/s))

YAG2)

N (init. stress

V (fin. stress

N/A (final /ax/)

V (final /ey/)

use
close
house

yuws
klows
haws

record
insult
object

yuw z
klowz
hawz

rehl k axrOd
ihlnsax0lt

rixOkaolrd
ixOnsahllt

aalbjehOk

[ axObjehlkt

estimate
separate]

ehstihmaxt
sehpaxraxt

moderatg

pmaadaxrax

ehstihmeyt
sehpaxreyt
tmaadaxrey

Figu

re 8.5

stress shift (noun initial versus verb final stress), and fioael weakening inate noun/adjs.

t

Some systematic relationships between homographs: fimslooant (noun /s/ versus verb /z/),

In addition to homographs that are distinguishable by p&gpeech, there are
many homographs where both pronunciations have the sartefpgpeech. We saw
two pronunciations fobass(fish versus instrument) above. Other examples of these
includelead (because there are two noun pronunciations, /I iy d/ (a leasastraint)
and /I eh d/ (a metal)).

We can also think of the task of disambiguating certain aliatens as homo-
graph disambiguation or as NSW expansion. For exanipleis ambiguous between
doctor anddrive , andSt.betweerSaint or street

Finally, there are some words that differ in capitalizasidike polish/Polish,
which are homographs only in situations like sentence lmggs or all-capitalized
text.

How should we disambiguate these homographs? Liberman ot (1992)
showed that many of the most frequent homographs in 44 miiords of AP newswire
are disambiguatable just by using part-of-speech (the fregtient 15 homographs in
order areuse increaseclose record house contract lead, live, lives, protest survey
project separatepresentread).
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Because knowledge of part-of-speech is sufficient to disgmalte many ho-
mographs, we store distinct pronunciations for these haoapits labeled by part-of-
speech, and then run a part-of-speech tagger to choosedhenmiation for a given
homograph in context.

Those remaining homographs that cannot be resolved usit@fspeech are
often ignored in TTS systems, or are resolved using the wemdesdisambiguation al-
gorithms that we will introduce in Ch. 19, like tliecision-listalgorithm of Yarowsky
(2997).

8.2 PHONETIC ANALYSIS

The next stage in synthesis is to take the normalized wonagstifrom text analysis
and produce a pronunciation for each word. The most impbcamponent here is a
large pronunciation dictionary. Dictionaries alone tut to be insufficient, because
running text always contains words that don't appear in fledahary. For example
Black et al. (1998) used a British English dictionary, thelMAlexicon on the first
section of the Penn Wall Street Journal Treebank. Of the 398#tds (tokens) in this
section, 1775 word tokens (4.6%) were not in the dictionafryyhich 943 are unique
(i.e. 943 tokens). The distributions of these unseen woatsag follows:

names unknown typos and other
1360 351 64
76.6% 19.8% 3.6%

Thus the two main areas where dictionaries need to be augoh&nin dealing
with names and with other unknown words. We'll discuss ditdiries in the next
section, followed by names, and then turn to grapheme-tm@ime rules for dealing
with other unknown words.

8.2.1 Dictionary Lookup

Phonetic dictionaries were introduced in Se2of Ch. 8. One of the most widely-used
for TTS is the freely available CMU Pronouncing DictionaGMU, 1993), which has
pronunciations for about 120,000 words. The pronunciatae roughly phonemic,
from a 39-phone ARPAbet-derived phoneme set. Phonemisdrgations means that
instead of marking surface reductions like the reduced \@ye] or [ix], CMUdict
marks each vowel with a stress tag, 0 (unstressed), 1 (8thess 2 (secondary stress).
Thus (non-diphthong) vowels with O stress generally cgesl to [ax] or [ix]. Most
words have only a single pronunciation, but about 8,000@ftbrds have two or even
three pronunciations, and so some kinds of phonetic realustire marked in these
pronunciations. The dictionary is not syllabified, althbuge nucleus is implicitly
marked by the (humbered) vowel. Fig. 8.6 shows some samgplaipciations.

The CMU dictionary was designed for speech recognitioneratthan synthesis
uses; thus it does not specify which of the multiple pronaticns to use for synthesis,
does not mark syllable boundaries, and because it cagitalie dictionary headwords,
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ANTECEDENTS AE2NTIHOSIYIDAHONTS PAKISTANI P AE2KIHOSTAE1NIYO
CHANG CH AE1 NG TABLE TEY1BAHOL
DICTIONARY D IH1 K SH AHON EH2 R 1YO TROTSKY TRAALTSKIY2
DINNER DIH1 N ERO WALTER WAO1LTERO
LUNCH L AH1N CH WALTZING WAO1LTSIHONG
MCFARLAND MAHOKFAALRLAHOND WALTZING(2) WAO1L SIHONG

Figure 8.6  Some sample pronunciations from the CMU Pronouncing Dietigp.

does not distinguish between e.gS andus (the formUShas the two pronunciations
[AH1 S]and [Y UW1 EH1 S].

The 110,000 word UNISYN dictionary, freely available fosearch purposes,
resolves many of these issues as it was designed specificafiynthesis (Fitt, 2002).
UNISYN gives syllabifications, stress, and some morphaialgboundaries. Further-
more, pronunciations in UNISYN can also be read off in anyadeahs of dialects of
English, including General American, RP British, Aus@atnd so on. The UNISYN
uses a slightly different phone set; here are some examples:

going: { g *ou}l>ing >
antecedents: { *an .t i.s ii.dnt} s>
dictionary: {d*ik.sh @ .n"e.rii}

8.2.2 Names

As the error analysis above indicated, names are an imgasgre in speech synthe-
sis. The many types can be categorized into personal namstsiffimes and surnames),
geographical names (city, street, and other place namesganmercial names (com-
pany and product names). For personal names alone, Spxs)(gives an estimate
from Donnelly and other household lists of about two millifferent surnames and
100,000 first names just for the United States. Two millioa igery large number; an
order of magnitude more than the entire size of the CMU dietig. For this reason,
most large-scale TTS systems include a large name prortiamcdictionary. As we
saw in Fig. 8.6 the CMU dictionary itself contains a wide etyiof names; in partic-
ular it includes the pronunciations of the most frequen080,surnames from an old
Bell Lab estimate of US personal name frequency, as wellGB0djrst names.

How many names are sufficient? Liberman and Church (1992)ddbat a
dictionary of 50,000 names covered 70% of the name tokens milion words of AP
newswire. Interestingly, many of the remaining names (Upi@d3% of the tokens in
their corpus) could be accounted for by simple modificatiohthese 50,000 names.
For example, some name pronunciations can be created bygsldiple stress-neutral
suffixes likes orville  to names in the 50,000, producing new names as follows:

walters = walter+s lucasville = lucas+ville abelson = abel+ son

Other pronunciations might be created by rhyme analogy.elthave the pro-
nunciation for the nam@&rotsky but not the nam@Iotsky we can replace the initial
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GRAPHEME-TO-
PHONEME

LETTER-TO-SOUND

(8.11)
(8.12)

(8.13)

(8.14)

[t/ from Trotskywith initial /pl/ to derive a pronunciation fdPlotsky
Techniques such as this, including morphological decoiitipnsanalogical for-

mation, and mapping unseen names to spelling variantsigiiedhe dictionary (Fack-
rell and Skut, 2004), have achieved some success in namargriation. In general,
however, name pronunciation is still difficult. Many modeystems deal with un-
known names via the grapheme-to-phoneme methods desaritienext section, of-
ten by building two predictive systems, one for names and@neon-names. Spiegel
(2003, 2002) summarizes many more issues in proper nameeiation.

8.2.3 Grapheme-to-Phoneme

Once we have expanded non-standard words and looked them &lla pronuncia-
tion dictionary, we need to pronounce the remaining, unknewrds. The process
of converting a sequence of letters into a sequence of phismmadledgrapheme-to-
phonemeconversion, sometimes shorteng2p. The job of a grapheme-to-phoneme
algorithm is thus to convert a letter string likakeinto a phone string likfK EY K] .

The earliest algorithms for grapheme-to-phoneme cormersere rules written
by hand using the Chomsky-Halle phonological rewrite rolerfat of Eq.??in Ch. 7.
These are often callel@tter-to-sound or LTS rules, and they are still used in some
systems. LTS rules are applied in order; a simple pair ofsréde pronouncing the
letterc might be:

¢ — [K]/ — {a,0}V  ;context-dependent
c — [s] ; context-independent

Actual rules must be much more complicated (for exantgptan also be pro-
nounced [ch] incello or concertg. Even more complex are rules for assigning stress,
which are famously difficult for English. Consider just onfetloe many stress rules
from Allen et al. (1987), where the symhXlIrepresents all possible syllable onsets:

V — [+stress] X __C* {Vshort CCV} {Vshort CHV}

This rule represents the following two situations:
1. Assign 1-stress to the vowel in a syllable preceding a sghldble followed by a morpheme-
final syllable containing a short vowel and 0 or more consténg.difficult)

2. Assign 1-stress to the vowel in a syllable preceding a wghdble followed by a morpheme-
final vowel (e.g.oregang

While some modern systems still use such complex handenrittiles, most
systems achieve higher accuracy by relying instead on aittorar semi-automatic
methods based on machine learning.

The modern probabilistic grapheme-to-phoneme problemfirstsformalized
by Lucassen and Mercer (1984). Given a letter sequenee are searching for the
most probable phone sequerite

P = argma@(P|L)
=)

The probabilistic method requires a training set and a esthoth sets are lists of
words from a dictionary, with a spelling and a pronunciafimneach word.
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(8.16)

(8.17)

The populadecision treemodel for estimating this probability(P|L) assumes
we have a hiddealignment, which tells us which phones align with each letter. We'll
need this alignment for each word in the training set. Sortterke might align to
multiple phones (e.gx often aligns tok s), while other letters might align with no
phones at all, like the final letter oefkein the following alignment:

L: ¢c a ke
T
P: K EY K ¢

One method for finding such a letter-to-phone alignmentéssiimi-automatic
method of (Black et al., 1998). Their algorithm is semi-ami&tic because it relies
on a hand-written list of thallowable phones that can realize each letter. Here are
allowables lists for the lettersande:

c:k ch s shts ¢
e:ih iy er ax ah eh ey uw ay ow y-uw oy aa €

In order to produce an alignment for each word in the trairsiey we take this
allowables list for all the letters, and for each word in tharing set, we find all
alignments between the pronunciation and the spellingdtiatorm to the allowables
list. From this large list of alignments, we compute, by sunmgrover all alignments
for all words, the total count for each letter being alignedech phone (or multi-
phone ofe). From these counts we can normalize to get for each pppaed letter
a probabilityp(pi|l;):

1y countpi,lj)
p(pl||J)_ COUn(Ij)

We can now take these probabilities and use the Viterbi dglgortto produce the
best (Viterbi) alignment for each word, where the probapiif each alignment is just
the product of all the individual phone/letter alignments.

In this way we can produce a single good alignm&far a particular paiP,L)
in our training set. Strictly speaking, in order to estimBt®|L), we would need to
sum over all possible alignments like this one, as follows:

P(PIL) =) P(PIL,A)
A

In practice, however, we’'ll instead approximate the pralggbP(P|L) via P(P|L,A),
the probability given this one good (Viterbi) alignmextLet us suppose that there are
maligned phone/letter pairs v We approximat®(P|L,A) by independently estimat-
ing the probability of each phorg and multiplying thesen estimates, as follows:

m
P(P|L,A) ~ [ [ P(pilli, other featureks

i=1

For estimating the probability of each phopewe’ll use a decision tree. What

features should we use in this decision tree besides theagliigttet; itself? Obviously
we can do a better job of predicting the phone if we look at adevn of surrounding
letters; for example consider the letterin the wordcat, thea is pronouncéE. But in
our wordcake a is pronouncedtY, becauseakehas a finak; thus knowing whether
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(8.18)

LIAISON

there is a finak is a useful feature. Typically we look at theprevious letters and the
k following letters.

Another useful feature would be the correct identity of thepus phone. Know-
ing this would allow us to get some phonotactic informatiaioiour probability model.
Of course, we can't know the true identity of the previousmddut we can approxi-
mate this by looking at the previous phone that was prediayeslir model. In order to
do this, we’'ll need to run our decision tree left to right, geating phones one by one.

In summary, in the most common decision tree model, the fibityaof each
phonep; is estimated from a window df previous andk following letters, as well
as the most recemktphones that were previously produced, resulting in thefdglg
equation:

P(PIL,A) ~ HP p||p| K I+k)

Fig. 8.7 shows a sketch of this left-to-right process, iatlig the features that
a decision tree would use to decide the letter correspondithie lettersin the word
Jurafsky As this figure indicates, we can integrate stress predidtito phone pre-
diction by augmenting our set of phones with stress infoimnatWe can do this by
having two copies of each vowel (e.dE andAE1L), or possibly even the three levels
of stressAEQ, AE1, andAE2, that we saw in the CMU lexicon. We'll also want to add
other features into the decision tree, including the patpeech tag of the word (most
part-of-speech taggers provide an estimate of the paspeéch tag even for unknown
words) and facts such as whether the previous vowel wasstes

In addition, grapheme-to-phoneme decision trees canmatdade other more so-
phisticated features. For example, we can use classesarslétorresponding roughly
to consonants, vowels, liquids, and so on). In additionsfane languages, we need to
know features about the following word. For example Frerehdphenomenon called
liaison, in which the realization of the final phone of some words deiseon whether
there is a next word, and whether it starts with a consonaatwvamwel. For example
the French wordix can be pronounced [sis] (ifen veux six'| want six’), [siz] (six
enfantssix children’), [si] (six filles'six girls’).

Finally, most synthesis systems build two separate grapkitesphoneme deci-
sion trees, one for unknown personal names and one for ottk@rown words. For
pronouncing personal names it turns out to be helpful to dsitianal features that
indicate which foreign language the names originally coroef Such features could
be the output of a foreign-language classifier based o ttguences (different lan-
guages have characteristic letiéigram sequences).

The decision tree is a conditional classifier, computinggheneme string that
has the highest conditional probability given the grapheseguence. More recent
grapheme-to-phoneme conversion makes use of a joint fidasgi which the hidden
state is a combination of phone and grapheme callgchphone see the end of the
chapter for references.



Section 8.3. Prosodic Analysis 15

LANG=Russian |
POS=NNP &
r

# # J u

o
w

\<4/,'\")

H -
H

JH| € |AXRAE1 F |2
ok
Pis Pio Pig

Figure 8.7  The process of converting graphemes to phonemes, shovemeftiio-right
process making a decision for the letsellhe features used by the decision tree are shgwn
in blue. We have shown the context windéw-= 3; in real TTS systems the window sizg
is likely to be 5 or even larger.

8.3 PROSODICANALYSIS

prosoy  The final stage of linguistic analysis is prosodic analykigpoetry, the worgrosody
refers to the study of the metrical structure of verse. Iguistics and language pro-

prosoy  cessing, however, we use the tepnosody to mean the study of the intonational and
rhythmic aspects of language. More technically, prosodytheen defined by Ladd
(1996) as the ‘use of suprasegmental features to convesremtevel pragmatic mean-

SUPRASEGMENTAL ings’. The termsuprasegmentaimeans above and beyond the level of the segment or

phone, and refers especially to the uses of acoustic featimeF0O duration, and
energyindependently of the phone string.

By sentence-level pragmatic meaning_add is referring to a number of kinds
of meaning that have to do with the relation between a seatand its discourse
or external context. For example, prosody can be used to distkurse structure
or function, like the difference between statements and questionfieoway that a
conversation is structured into segments or subdialogssdely is also used to mark
saliency, such as indicating that a particular word or phrase is ingmbior salient. Fi-
nally, prosody is heavily used for affective and emotionalming, such as expressing
happiness, surprise, or anger.

In the next sections we will introduce the three aspectsagquy, each of which
isimportant for speech synthesgosodic prominence prosodic structure andtune.
Prosodic analysis generally proceeds in two parts. Firstz@mpute an abstract repre-
sentation of the prosodic prominence, structure and tutiesdtext. For unit selection
synthesis, this is all we need to do in the text analysis corapt For diphone and
HMM synthesis, we have one further step, which is to prediication andF0 values
from these prosodic structures.
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PROSODIC
PHRASING

INTONATION
PHRASES

INTERMEDIATE
PHRASE

8.3.1 Prosodic Structure

Spoken sentences have prosodic structure in the sens@thatvgords seem to group
naturally together and some words seem to have a noticeeds& br disjuncture be-
tween them. Often prosodic structure is described in termgrasodic phrasing,
meaning that an utterance has a prosodic phrase structargrmilar way to it having
a syntactic phrase structure. For example, in the sentemaeted to go to London, but
could only get tickets for Frandbere seems to be two maimntonation phrases their
boundary occurring at the comma. Furthermore, in the firsagdy there seems to be
another set of lesser prosodic phrase boundaries (oftetddalermediate phrases)
that split up the words as followsvanted| to go| to London

Prosodic phrasing has many implications for speech syisthbe final vowel of
a phrase is longer than usual, we often insert a pause aftatamation phrases, and,
as we will discuss in Sec. 8.3.6, there is often a slight dnopd from the beginning
of an intonation phrase to its end, which resets at the beginof a new intonation
phrase.

Practical phrase boundary prediction is generally treated binary classifica-
tion task, where we are given a word and we have to decide whethnot to put a
prosodic boundary after it. A simple model for boundary jctdn can be based on
deterministic rules. A very high-precision rule is the one saw for sentence seg-
mentation: insert a boundary after punctuation. Anothenroonly used rule inserts a
phrase boundary before a function word following a contewridy

More sophisticated models are based on machine learnisgifits. To create
a training set for classifiers, we first choose a corpus, aed thark every prosodic
boundaries in the corpus. One way to do this prosodic boynldaeling is to use
an intonational model like ToBI or Tilt (see Sec. 8.3.4), &&wuman labelers listen to
speech and label the transcript with the boundary eventsatkfiy the theory. Because
prosodic labeling is extremely time-consuming, howevéext-only alternative is of-
ten used. In this method, a human labeler looks only at theofeke training corpus,
ignoring the speech. The labeler marks any juncture betweeds where they feel a
prosodic boundary might legitimately occur if the utterameere spoken.

Given a labeled training corpus, we can train a decisiondregher classifier to
make a binary (boundary vs. no boundary) decision at evertjue between words
(Wang and Hirschberg, 1992; Ostendorf and Veilleux, 1994jar and Black, 1998).

Features that are commonly used in classification include:

e Length features phrases tend to be of roughly equal length, and so we can use

various feature that hint at phrase length (Bachenko angé#itick, 1990; ?).

— The total number of words and syllables in utterance

— The distance of the juncture from the beginning and end o$éiméence (in
words or syllables)

— The distance in words from the last punctuation mark

¢ Neighboring part-of-speech and punctuation

— The part-of-speech tags for a window of words around thetjurc Gen-
erally the two words before and after the juncture are used.
— The type of following punctuation
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PROMINENT

PITCH ACCENT
BEAR

(8.19)

NUCLEAR ACCENT

(8.20)

There is also a correlation between prosodic structure lamdyntactic struc-
ture that will be introduced in Ch. 11, Ch. 12, and Ch. 14 (Pricelgtl®91). Thus
robust parsers like Collins (1997) can be used to label theesee with rough syn-
tactic information, from which we can extract syntactictteras such as the size of the
biggest syntactic phrase that ends with this word (Ostdrashal Veilleux, 1994; Koehn
et al., 2000).

8.3.2 Prosodic prominence

In any spoken utterance, some words sound rpooeninent than others. Prominent
words are perceptually more salient to the listener; speakake a word more salient
in English by saying it louder, saying it slower (so it has ader duration), or by
varying FO during the word, making it higher or more variable

We generally capture the core notion of prominence by aaogia linguistic
marker with prominent words, a marker callgitich accent Words which are promi-
nent are said tbear (be associated with) a pitch accent. Pitch accent is thusptire
phonological description of a word in context in a spokepnattce.

Pitch accent is related tstress which we discussed in Ch. 7. The stressed
syllable of a word is where pitch accent s realized. In otherds, if a speaker decides
to highlight a word by giving it a pitch accent, the accentiappear on the stressed
syllable of the word.

The following example shows accented words in capitaligtisith the stressed
syllable bearing the accent (the louder, longer, syllaii&pldface:

I’'m alittle SURPRISED to hear tCHARACTERIZED as UBEAT.

Note that the function words tend not to bear pitch accenilewhost of content
words are accented. This is a special case of the more géaetrtiat very informative
words (content words, and especially those that are new expeatted) tend to bear
accent (Ladd, 1996; ?).

We've talked so far as if we only need to make a binary distimcbetween
accented and unaccented words. In fact we generally needke more fine-grained
distinctions. For example the last accent in a phrase giynéaerceived as being
more prominent than the other accents. This prominenttasrd is called thauclear
accent Emphatic accents like nuclear accent are generally usesgfoantic purposes,
for example to indicate that a word is teemantic focusof the sentence (see Ch. 20)
or that a word is contrastive or otherwise important in sorag.\i8uch emphatic words
are the kind that are often written IN CAPITAL LETTERS or wit6 TARS** around
them in SMS or email oAlice in Wonderlanghere’s an example from the latter:

‘I know SOMETHING interesting is sure to happen, she saiti¢oself,

Another way that accent can be more complex than just bisahat some words
can belessprominent than usual. We introduced in Ch. 7 the idea thattfan words
are often phonetically vemeduced

A final complication is that accents can differ accordinghetuine associated
with them; for example accents with particularly high piteéive different functions
than those with particularly low pitch; we’'ll see how thisiedeled in the ToBI model
in Sec. 8.3.4.
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TFIDF

(8.21)

ACCENT RATIO

Ignoring tune for the moment, we can summarize by sayingsietch synthesis
systems can use as many as four levels of prominamaphatic accent pitch accent,
unaccented andreduced In practice, however, many implemented systems make do
with a subset of only two or three of these levels.

Let's see how a 2-level system would work. With two-levelicip accent pre-
diction is a binary classification task, where we are giveroedvand we have to decide
whether it is accented or not.

Since content words are very often accented, and functiodsare very rarely
accented, the simplest accent prediction system is justderd all content words and
no function words. In most cases better models are necessary

In principle accent prediction requires sophisticated astin knowledge, for
example to understand if a word is new or old in the discowbether it is being used
contrastively, and how much new information a word contalitesly models made use
of sophisticated linguistic models of all of this informai (Hirschberg, 1993). But
Hirschberg and others showed better prediction by usinglsinmobust features that
correlate with these sophisticated semantics.

For example, the fact that new or unpredictable informatéonls to be accented
can be modeled by using robust features hkgrams or TF*IDF (Pan and Hirschberg,
2000; Pan and McKeown, 1999). The unigram probability of adv®(w;) and its
bigram probabilityP(w;|wi_1), both correlate with accent; the more probable a word,
the less likely it is to be accented. Similarly, an informatiretrieval measure known as
TF*IDF (Term-Frequency/Inverse-DocumentFrequency; see Clis 21)seful accent
predictor. TF*IDF captures the semantic importance of admwoa particular document
d, by downgrading words that tend to appear in lots of diffedgcuments in some
large background corpus with documents. There are various versions of TF*IDF;
one version can be expressed formally as follows, assubimg the frequency ofv
in the documendl, andk is the total number of documents in the corpus that contain

TF*IDF (W) = Nwx Iog(%)

For words which have been seen enough times in a traininthestccent ratio
feature can be used, which models a word’s individual proibabf being accented.
AccentRatigw) = % whereN is the total number of times the wovdoccurred in the
training set, and is the number of times it was accented (Yuan et al., 2005).

Features like part-of-speecN-grams, TF*IDF, and accent ratio can then be
combined in a decision tree to predict accents. While thebast features work rel-
atively well, a number of problems in accent predictiorl sémain the subject of re-
search.

For example, it is difficult to predict which of the two wordsaild be accented
in adjective-noun or noun-noun compounds. Some regwdarito exist; for example
adjective-noun combinations likeew truckare likely to have accent on the right word
(new TRUCHK;, while noun-noun compounds liKEREE surgeoare likely to have ac-
cent on the left. But the many exceptions to these rules maedend prediction in noun
compounds quite complex. For example the noun-noun compbABR®PLE cakehas
the accent on the first word while the noun-noun compaoayle PIEor city HALL
both have the accent on the second word (Liberman and SA@@2, Sproat, 1994,
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CLASH
LAPSE

TUNE

QUESTION RISE
FINAL FALL

1998a).

Another complication has to do with rhythm; in general spgalavoid putting
accents too close together (a phenomenon knowelass) or too far apart lapse.
Thuscity HALL andPARKING lotcombine aITY hall PARKING lo{(Liberman and
Prince, 1977).

Some of these rhythmic constraints can be modeled by usimfim&learning
techniques that are more appropriate for sequence modelihgs can be done by
running a decision tree classifier left to right through ateeece, and using the output
of the previous word as a feature, or by using more sophtsticenachine learning
models like Conditional Random Fields (CRFs) (Gregory attdiA 2004).

8.3.3 Tune

Two utterances with the same prominence and phrasing psitan still differ prosod-
ically by having differentunes Thetune of an utterance is the rise and fall of its
FO over time. A very obvious example of tune is the differehetwveen statements
and yes-no questions in English. The same sentence candbeittai final rise in FO
to indicate a yes-no-question, or a final fall in FO to indécatdeclarative intonation.
Fig. 8.8 shows the FO track of the same words spoken as a ou@stia statement.
Note that the question rises at the end; this is often callgakestion rise The falling
intonation of the statement is callediaal fall .

you

Pitch (Hz)

mean

mean

Pitch (Hz)

you know what

0922 [ 0912
Time (s) Time (s)

Figure 8.8 The same text read as the statemémi know what | mear{on the left) and as a questidiou know
what | mean?on the right). Notice that yes-no-question intonation mgksh has a sharp final rise in FO.

CONTINUATION RISE

Itturns out that English makes very wide use of tune to exyme=aning. Besides
this well known rise for yes-no questions, ann English phasitaining a list of nouns
separated by commas often has a short rise caltexhinuation rise after each noun.
English also has characteristic contours to express atioti@n, to express surprise,
and many more.

The mapping between meaning and tune in English is extrenmthplex, and
linguistic theories of intonation like ToBI have only begtmdevelop sophisticated
models of this mapping.

In practice, therefore, most synthesis systems just djistét two or three tunes,
such as theontinuation rise (at commas), thguestion rise(at question mark if the
question is a yes-no question), anfiral fall otherwise.
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TOBI

BOUNDARY TONES

BREAK INDEX

TIERS

8.3.4 More sophisticated models: ToBI

While current synthesis systems generally use simple rsadfgdrosody like the ones
discussed above, recent research focuses on the develophmeach more sophisti-
cated models. We'll very briefly discuss tlieBI, andTilt models here.

ToBI

One of the most widely used linguistic models of prosody &TibBI (Tone and Break
Indices) model (Silverman et al., 1992; Beckman and Hirecpkll 994; Pierrehumbert,
1980; Pitrelli et al., 1994). ToBlI is a phonological theofyirtonation which models
prominence, tune, and boundaries. ToBI's model of prongéremd tunes is based on
the 5 pitch accents and 4 boundary tones shown in Fig. 8.9.

Pitch Accents Boundary Tones

H* peak accent || L-L% “final fall”: “declarative contour” of American En}
glish”

L* low accent L-H% continuation rise

L*+H scooped accent| H-H% | “question rise”: cantonical yes-no question con-
tour

L+H* rising peak accent H-L% final level plateau (plateau because H- causes ['up-
step” of following)

H+!H* step down

Figure 8.9 The accent and boundary tones labels from the ToBlI trartgmmigystem
for American English intonation (Beckman and Ayers, 1997; ?

An utterance in ToBI consists of a sequence of intonatiohaages, each of
which ends in one of the folroundary tones The boundary tones are used to rep-
resent the utterance final aspects of tune discussed in 8. &ach word in the
utterances can optionally be associated with one of theyfjwestof pitch accents.

Each intonational phrase consists of one or mintermediate phrase These
phrases can also be marked with kinds of boundary tone,dimuthe%H high ini-
tial boundary tone, which is used to mark a phrase which iiqudarly high in the
speakers’ pitch range, as well as final phrase acd¢ngndL-.

In addition to accents and boundary tones, ToBI distingsstour levels of
phrasing, which are labeled on a sepatatsk index tier. The largest levels of phras-
ing are the intonational phrase (break indgand the intermediate phrase (break index
3), and were discussed above. Break indéxused to mark a disjuncture or pause be-
tween words that is smaller than an intermediate phrasdehs used for normal
phrase-medial word boundaries.

Fig. 8.10 shows the tone, orthographic, and phrasiarg of a ToBI transcrip-
tion, using the Praat program. We see the same sentence tbawvav different into-
nation patterns. In (a), the woldariannais spoken with a high H* accent, and the
sentence has the declarative boundary tone L-L%. In (b)vtrd Mariannais spoken
with a low L* accent and the yes-no question boundary tone%d-ne goal of ToBI
is to express different meanings to the different type otats Thus, for example, the
L* accent adds a meaning sfirpriseto the sentence (i.e., with a connotation like ‘Are
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you really saying it was Marianna?’). (Hirschberg and Rieumbert, 1986; Steedman,

2003).

; — 2
H NS
T I
H* L-L L* H-H
| | | |
<Bll> marianna made |the marmalade <S> marianna made |[the| marmalade
T
1 11 4 1 11 4
| [ | | [ |
0 1.3 0 1.49

Time (s) Time (s)

Figure 8.10 The same sentence read by Mary Beckman with two differeabatton patterns and transcribed

in ToBI. (a) shows an H* accent and the typical American Estglieclarative final fall L-L%. (b) shows the L
accent, with the typical American English yes-no questisa H-H%.

*

TILT

TILT

ToBlI models have been proposed for many languages, suck a3 @Bl system
for Japanese (Venditti, 2005); see Jun (2005).

Other Intonation models

The Tilt model (Taylor, 2000) resembles ToBI in using sequences tohational
events like accents and boundary tones. But Tilt does notTaBd-style discrete
phonemic classes for accents. Instead, each event is nddolgleontinuous param-
eters that represent the FO shape of the accent.

Instead of giving each event a category label, as in ToBlhéglt prosodic
event is characterized by a set of three acoustic parametergluration, the ampli-
tude, and theilt parameter. These acoustic parameters are trained on ascghich
has been hand-labeled for pitch accea)sahd boundary tone®). The human label-
ing specifies the syllable which bears the accent or toneatbestic parameters are
then trained automatically from the wavefile. Fig. 8.11 skavwsample of a Tilt repre-
sentation. Each accent in Tilt is viewed as having a (poggilo)rise componentup
to peak, followed by a (possible zer@ll component An automatic accent detector
finds the start, peak, and end point of each accent in the u@vefich determines
the duration and amplitude of the rise and fall componentse filt parameter is an
abstract description of the FO slope of an event, calculbyecomparing the relative
sizes of the rise and fall for an event. A tilt value of 1.0 icates a rise, tilt of -1.0 a
fall, 0 equal rise and fall, -0.5 is an accent with a rise anargdr fall, and so on:

tiltamp+tilt g

tilt =
! 2
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Figure 8.11 PLACEHOLDER FIGURE. Schematic view of events in the Tilt retd
each pitch accent (a) and boundary tones (b) is aligned wsyllable nucleus s. From
Taylor (2000).

_ Avisel — Afalll " Drise— Dfall
|Arisel T |Afalll - Drise Drall
See the end of the chapter for pointers to a wide variety ofroifitonational
models.

8.3.5 Computing duration from prosodic labels

The results of the text analysis processes described s farstring of phonemes,
annotated with words, with pitch accent marked on relevasride;, and appropriate
boundary tones marked. For thait selectionsynthesis approaches that we will de-
scribe in Sec. 8.5, this is a sufficient output from the textigsis component.

For diphone synthesis, as well as other approaches like formant syisthes
also need to specify thduration and theF0 values of each segment.

Phones vary quite a bit in duration. Some of the duration lieliant to the
identity of the phone itself. Vowels, for example, are gafigmuch longer than con-
sonants; in the Switchboard corpus of telephone speeciphibiee [aa] averages 118
milliseconds, while [d] averages 68 milliseconds. But phduration is also affected
by a wide variety of contextual factors, which can be modéledule-based or statis-
tical methods.

The most well-known of the rule-based methods is the metfiddait (1979),
which uses rules to model how the the average or ‘contextraléduration of a phone
dis lengthened or shortened by context, while staying abovieanum duratiord,.
Each rule is associated with a duration multiplicative dacsome examples:

Prepasual Lengthening The vowel or syllabic consonant in the syllable before aspais

lengthened by 1.4.

Non-phrase-final Shortening: Segments which are not phrase-final are shortened by 0.6.

Phrase-final postvocalic liquids and nasals are lengthbpdd4.

Unstressed ShorteningUnstressed segments are more compressible, so their rmmduara-
tion dyyip is halved, and are shortened by .7 for most phone types.
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SUM-OF-PRODUCTS

TARGET POINTS

PITCH RANGE

BASELINE
FREQUENCY

TOPLINE
REFERENCE LINE

ALIGNMENT

Lengthening for Accent: A vowel which bears accent is lengthened by 1.4
Shortening in Clusters: A consonants followed by a consonant is shortened by 0.5.
Pre-voiceless shorteningVowels are shortened before a voiceless plosive by 0.7
Given the set oN factor weightsf, the Klatt formula for the duration of a phone
is:

N
d = dmin+ [ ] fi x (d—dmip)
i=1

More recent machine-learning systems use the Klatt haittewnrules as the
basis for defining features, for example using features asche following:
identity of the left and right context phone
lexical stress and accent values of current phone
position in syllable, word, phrase
following pause
We can then train machine learning classifiers like decisiees or thesum-of-

products model (van Santen, 1994, 1997, 1998), to combine the feataggredict the
final duration of the segment.

8.3.6 Computing FO from prosodic labels

For diphone, articulatory, HMM, and formant synthesis waaleed to specify the FO
values of each segment. For the tone sequence models likeoTdit, this FO gener-
ation can be done by specifying f&rget points for each pitch accent and boundary
tone; the FO contour for the whole sentence can be createdtéspolating among
these targets (Anderson et al., 1984).

In order to specify a target point we need to describe what (the FO value)
and when it occurs (the exact time at which this peak or traaggturs in the syllable).
The FO of a target points are generally not specified in abstdums of Hertz. Instead,
they are defined relative ftch range. A speaker'pitch range is the range between
the lowest frequency they use in a particular utterancel{ftseline frequency and
the the highest frequency in the utterance (tgine). In some models, target points
are specified relative to a line in between calledriference line

For example, we might write a rule specifying that the vergibring of an
utterance have a target point of 50% (halfway between thelibeasand topline). In the
rule-based system of Jilka et al. (1999) the target poiréufo* accent is at 100% (the
topline) and for an L* accent at 0% (at the baseline). L+H*eads have two target
points, at 20% and 100%. Final boundary tones H-H% and L-Lé&eatra-high and
extra-low at 120% and -20% respectively.

Second, we must also specify exactly where in the accentibkgythe targets
apply; this is known as acceafignment. In the rule-based system of Jilka et al.
(1999), again, H* accents are aligned 60% of the way throhghvbiced part of the
accent syllable (although IP-initial accents are alignetiewhat later in the syllable,
while IP-final accents are aligned somewhat earlier).

Instead of writing these rules by hand, the mapping fromhpitccent sequence
to FO value may be learned automatically. For example BlackHunt (1996) used
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DECLINATION

DOWNSTEP

linear regression to assign target values to each syll&bleeach syllable with a pitch
accent or boundary tone, they predicted three target vatudse beginning, middle,
and end of the syllable. They trained three separate liregaession models, one for
each of the three positions in the syllable. Features ireclud

e accent type on the current syllable as well as two previoustan following
syllables

o lexical stress of this syllable and surrounding syllables
e number of syllables to start of phrase and to end of phrase
e number of accented syllables to end of phrase

Such machine learning models require a training set thathsléd for accent;
a number of such prosodically-labeled corpora exist, aliiindt is not clear how well
these models generalize to unseen corpora.

Finally, FO computation models must model the fact thattpimds to decline
through a sentence; this subtle drop in pitch across arawmiteris calledleclination;
an example is shown in Fig. 8.12.

400

Pitch (Hz)
/
f

100 —
0 1.81392
Time (s)

Figure 8.12 FO declination in the sentence ‘I was pretty goofy for abouerity-four
hours afterwards’.

The exact nature of declination is a subject of much rese@mctome models,
it is treated by allowing the baseline (or both baseline apdiine) to decrease slowly
over the utterance. In ToBlI-like models, this downdrift i i modeled by two sep-
arate components; in addition to declination, certain higts are marked as carrying
downstep Each downstepped high accent causes the pitch range tonpressed,
resulting in a lowered topline for each such accent.

8.3.7 Final result of text analysis: Internal Representain

The final output of text analysis is what we called th&rnal representation of the
input text sentence. For unit selection synthesis, thenateepresentation can be as
simple as a phone string together with indications of prasbdundaries and promi-
nent syllables, as shown in Fig. 8.1. For diphone synthasig#l as non-concatenative
synthesis algorithms the internal representation mustiatdude a duration and an FO
value for each phone.

Fig. 8.13 shows some sample TTS output from the FESTIVAL ¢Blat al.,
1999) diphone speech synthesis system for the senf2og®u really want to see all
of it?. This output, together with the FO values shown in Fig. 8. bl be the input
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to thewaveform synthesiscomponent described in Sec. 8.4. The durations here are
computed by a CART-style decision tree (Riley, 1992).

H* L* L- H%
do you really want to see all of it
d uw| y|luw| r|ih| l|liy |w|laa n| t| tlax| sliy |ao | |ah v| ih|t
110] 110 50| 50 | 75| 64 57‘ 82|57 S(j 72| 41| 43| 47| 54| 130| 76| 90|44| 62 46‘ 220

Figure 8.13 Output of the FESTIVAL (Black et al., 1999) generator for #sntencdo you really want to se
all of it?, together with the FO contour shown in Fig. 8.14. Figure kisaio Paul Taylor.

[}

H%

H*

do you really want to see all of it

Figure 8.14 The FO contour for the sample sentence generated by |the
FESTIVAL synthesis system in Fig. 8.13, thanks to Paul Taylo

As was suggested above, determining the proper prosodarp#br a sentence
is difficult, as real-world knowledge and semantic inforimais needed to know which
syllables to accent, and which tune to apply. This sort adrimfation is difficult to ex-
tract from the text and hence prosody modules often aim tdyre a “neutral declara-
tive” version of the input text, which assume the sentenoalshbe spoken in a default
way with no reference to discourse history or real-worldseThis is one of the main
reasons why intonation in TTS often sounds “wooden”.

8.4 DIPHONE WAVEFORM SYNTHESIS

We are now ready to see how the internal representation camribed into a wave-
form. We will present two kinds ofoncatentativesynthesis:diphone synthesisin
this section, andnit selection synthesisn the next section.

Recall that for diphone synthesis, our internal represemtds as shown in
Fig. 8.13 and Fig. 8.14, consisting of a list of phones, edutnp associated with a
duration and a set of FO targets.

The diphone concatenative synthesis model generates domavérom a se-
quence of phones by selecting and concatenating units froner@corded database

orvones  Of diphones A diphone is a phone-like unit going from roughly the middieone



26 Chapter 8. Speech Synthesis

phone to the middle of the following phone. Diphone concatee synthesis can be
characterized by the following steps:

Training:
1. Record a single speaker saying an example of each diphone.

2. Cut each diphone out from the speech and store all diphinoreediphone
database.

Synthesis:

1. Grab from the database a sequence of diphones that condsspo the
desired phone sequence.

2. Concatenate the diphones, doing some slight signal gsoweat the bound-
aries

3. Use signal processing to change the prosody (fO, dudatiothe diphone
sequence to the desired prosody.

We tend to use diphones rather than phones for concatesgtitieesis because
coarmicuaion  of the phenomenon afoarticulation. In Ch. 7 we defined the worcbarticulation as
coarTicuLAion  the movement of articulators to anticipate the next soung@geoseverating movement

from the last sound. Because of coarticulation, each phdfezsislightly depending
on the previous and following phone. This if we just concated phones together, we
would have very large discontinuities at the boundaries.

In a diphone, we model this coarticulation by including ttemsition to the next
phone inside the unit. The diphone [w-eh], for example,udek the transition from
the [w] phone to the [eh] phone. Because a diphone is defimaal tihe middle of one
phone to the middle of the next, when we concatenate the deshave are concate-
nating the middle of phones, and the middle of phones tend teds influenced by the
context. Fig.?? shows the intuition that the beginning and end of the vowte] fave
much more movement than the center.

Time (s)

Figure 8.15 The vowel [eh] in different surrounding contexts, in the d®wedand
Ben Notice the differences in the second formants (F2) at thytnbéng and end of the
[eh], but the relatively steady state portion in the middléha blue line.
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VOICE TALENT
VOICE

CARRIER PHRASE

8.4.1 Building a diphone database

There are six steps in building a diphone database:

1. Create aiphone inventory

. Recruit a speaker

. Create a text for the speaker to read for each diphone
. Record the speaker reading each diphone

. Segment, label, and pitch-mark the diphones

. Excise the diphones

o O~ WN

What is the inventory of diphones that we need for a system®elhave 43
phones (like the AT&T diphone system of Olive et al. (1998)gre are 43= 1849
hypothetically possible diphone combinations. Not alllafge diphones can actually
occur. For example, the rules of Engliphonotacticsrules out some combinations;
phones like [h], [y], and [w] can only occur before vowels.adddition, some diphone
systems don't bother storing diphones if there is no posgiblarticulation between
the phones, such as across the silence between succedsiles®stops. The AT&T
43-phone system of (Olive et al., 1998) thus has only 116Rdatips rather than the
1849 hypothetically possible set.

Next we recruit our speaker, often called/aice talent The database of di-
phones for this speaker is calledvaice commercial systems often have multiple
voices, such as one male and one female voice.

We’'ll now create a text for the voice talent to say, and re@ach diphone. The
most important thing in recording diphones is to keep therocasistent as possible;
if possible, they should have constant pitch, energy, amdtaun, so they are easy to
paste together without noticeable breaks. We do this byosimg each diphone to be
recorded in aarrier phrase. By putting the diphone in the middle of other phones,
we keep utterance-final lengthening or initial phone effécim making any diphone
louder or quieter than the others. We’'ll need differentieamphrases for consonant-
vowel, vowel-consonant, phone-silence, and silence-plsequences. For example, a
consonant vowel sequence like [b aa] or [b ae] could be endzkblddtween the sylla-
bles [t aa] and [m aa]:

pause t aa b aa m aa pause
pause t aa b ae m aa pause
pause t aa b eh m aa pause

If we have an earlier synthesizer voice lying around, we lisuae that voice
to read the prompts out loud, and have our voice talent regfatthe prompts. This
is another way to keep the pronunciation of each diphoneistems. It is also very
important to use a a high quality microphone and a quiet roonbetter, a studio
sound booth.

Once we have recorded the speech, we need to label and segmbmd phones
that make up each diphone. This is usually done by runningeacprecognizer in
forced alignment mode In forced alignment mode, a speech recognition is told ex-
actly what the phone sequence is; its job is just to find thetephone boundaries
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in the waveform. Speech recognizers are not completelyrateat finding phone
boundaries, and so usually the automatic phone segmenisitiand-corrected.

We now have the two phones (for example [b aa]) with handeoted bound-
aries. There are two ways we can create the /b-aa/ diphonthdodatabase. One
method is to use rules to decide how far into the phone to preediphone boundary.
For example, for stops, we put place the diphone boundary @0#te way into the
phone. For most other phones, we place the diphone boun@égyriio the phone.

A more sophisticated way to find diphone boundaries is tcedfioe entire two
phones, and wait to excise the diphones until we are know phabe we are about

oPTMALCOUPLNG  tO concatenate with. In this method, known@gimal coupling, we take the two
(complete, uncut) diphones we need to concatenate, and ok elvery possible cut-
ting point for each diphones, choosing the two cutting moihat would make the final
frame of the first diphone acoustically most similar to thd #ame of the next diphone
(Taylor and Isard, 1991; Conkie and Isard, 1996). Acouksitailar can be measured
by usingcepstral similarity, to be defined in Se@?.

8.4.2 Diphone concatenation and TD-PSOLA for prosodic adjst-
ment

We are now ready to see the remaining steps for synthesinimgdévidual utterance.
Assume that we have completed text analysis for the uttetaaral hence arrived at a
sequence of diphones and prosodic targets, and that we tsavgrabbed the appro-
priate sequence of diphones from the diphone database.wéemeed to concatenate
the diphones together and then adjust the prosody (pit@rggnand duration) of the
diphone sequence to match the prosodic requirements fremntirmediate represen-
tation.

Given two diphones, what do we need to do to concatenate theoessfully?

If the waveforms of the two diphones edges across the juacue very different,

cuck  a perceptibleclick will result. Thus we need to apply a windowing function to the
edge of both diphones so that the samples at the juncturedwava zero amplitude.
Furthermore, if both diphones are voiced, we need to indwaethe two diphones are
svehronaldl joined pitch-synchronously. This means that the pitch periods at the end of the first

diphone must line up with the pitch periods at the beginnifithe second diphone;
otherwise the resulting single irregular pitch period & plincture is perceptible as
well.

Now given our sequence of concatenated diphones, how do widyntloe pitch
and duration to meet our prosodic requirements? It turnstloere is a very sim-

to-pso,a  ple algorithm for doing this calledD-PSOLA (Time-Domain Pitch-Synchronous
OverLap-and-Add).

As we just said, pitch-synchronousalgorithm is one in which we do something
at each pitch period apoch For such algorithms it is important to have very accurate
pitch markings: measurements of exactly where each pittdemrepochoccurs. An
epoch can be defined by the instant of maximum glottal pressurralternatively by

rrcimarking  the instant of glottal closure. Note the distinction betavpéch marking or epoch
rrcHTRACKNG  detectionandpitch tracking . Pitch tracking gives the value of FO (the average cycles
per second of the glottis) at each particular point in tinveraged over a neighborhood.
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Pitch marking finds the exact point in time at each vibratomie at which the vocal
folds reach some specific point (epoch).

Epoch-labeling can be done in two ways. The traditional aag still the most
ELECTROGIOTIO.  accurate, is to use aglectroglottograph or EGG (often also called #&aryngograph

EGG
LARYNGOGRAPH
LX

OVERLAP-AND-ADD
OLA

orLx). An EGG is a device which straps onto the (outside of thejlspies neck near
the larynx and sends a small current through the Adam’s apgpkeansducer detects
whether the glottis is open or closed by measuring the impezlacross the vocal
folds. Some modern synthesis databases are still recoriledmEGG. The problem
with using an EGG is that it must be attached to the speakdelgy are recording
the database. Although an EGG isn't particularly invasiligs is still annoying, and

the EGG must be used during recording; it can’t be used tditark speech that
has already been collected. Modern epoch detectors are ppreaching a level of
accuracy that EGGs are no longer used in most commercial figiaes. Algorithms

for epoch detection include ? (?, ?).

Given an epoch-labeled corpus, the intuition of TD-PSOL#& we can mod-
ify the pitch and duration of a waveform by extracting a fraimeeach pitch period,
windowing the frame with a Hanning window, and then reconmgrthese frames in
various ways by simply overlapping and adding the windowshpberiod frames. The
idea that we modify a signal by extracting frames, manipodgthem in some way and
then recombining them by adding up the overlapped signabslisd theoverlap-and-
add or OLA algorithm; TD-PSOLA is a special case of overlap-and-adahich the
frames are pitch-synchronous, and the whole process téesip the time domain.

For example, in order to assign a specific duration to a diphwe might want to
lengthen the recorded master diphone. To lengthen a sigtral®-PSOLA, we sim-
ply insert extra copies of some of the pitch-synchronousnés, essentially duplicating
a piece of the signal. Fig. 8.16 shows the intuition.

TD-PSOLA can also be used to change the FO value of a recoiighdrte to
give a higher or lower value. To increase the FO, we extragh @étch-synchronous
frame from the original recorded diphone signal, place thmes closer together (over-
lapping them), with the amount of overlap determined by tesired period and hence
frequency, and then add up the overlapping signals to pethe final signal. But
note that by moving all the frames closer together, we maseitgnal shorter in time!
Thus in order to change the pitch while holding the durationstant, we need to add
in duplicate frames.

Fig. 8.17 shows the intuition; in this figure we have expljcshown the extracted
pitch-synchronous frames which are overlapped and adadee timat the frames moved
closer together (increasing the pitch) while extra framegehbeen added to hold the
duration constant.

8.5 UNIT SELECTION (WAVEFORM) SYNTHESIS

Diphone waveform synthesis suffers from two main problemsst, the stored di-
phone database must be modified by signal process methed83®LA to produce
the desired prosody. Any kind of signal processing of theestspeech leaves artifacts
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Figure 8.16 TD-PSOLA for duration modification.

the signal.

frames can be duplicated to lengthen the signal (as showa),her deleted to shorten

Individual pitch-symonous

in the speech which can make the speech sound unnaturan&etiphone synthesis
only captures the coarticulation due to a single neighlggsimone. But there are many
more global effects on phonetic realization, including endistant phones, syllable
structure, the stress patterns of nearby phones, and everleve| effects.

For this reason, modern commercial synthesizers are basadjeneralization
of diphone synthesis callednit selection synthesis Like diphone synthesis, unit
selection synthesis is a kind of concatenative synthegisigthm. It differs from classic

diphone synthesis in two ways:

1. Indiphone synthesis the database stores exactly oneoéepgh diphone, while
in unit selection, the unit database is many hours long,aining many copies

of each diphone.

2. Indiphone synthesis, the prosody of the concatenateslismodified by PSOLA
or similar algorithms, while in unit selection no (or minifhaignal processing

is applied to the concatenated units.

The strengths of unit selection are due to the large unitdae In a sufficiently
large database, entire words or phrases of the utteranceametw synthesize may
be already present in the database, resulting in extrenaglyal waveform for these
words or phrases. In addition, in cases where we can't findge lehunk and have to
back off to individual diphones, the fact that there are soyr@pies of each diphone
makes it more likely that we will find one that will fit in very thaally.

The architecture of unit selection can be summarized aswsll We are given a
large database of units; let's assume these are diphotigsygh it's also possible to do
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Figure 8.17 TD-PSOLA for pitch (FO) modification.

constant.

the individual pitch-synchronous frames are extractedriitay windowed, moved close
together and then added up. To decrease the pitch, we movieathes further apart.
Increasing the pitch will result in a shorter signal (sinloe frames are closer together), g
we also need to duplicate frames if we want to change the pitéle holding the duration

o

unit selection with other kinds of units such half-phong#iables, or half-syllables)
We are also given a characterization of the target ‘intergyalesentation’, i.e. a phone

string together with features such as stress values,

wernttityl, FO information, as

described in Fig. 8.1.

The goal of the synthesizer is to select from the databasbdakesequence of
diphone units that corresponds to the target representdfithat do we mean by the
‘best’ sequence? Intuitively, the best sequence would ledrowhich:

e each diphone unit we select exactly meets the specificatithe target diphone

(in terms of FO, stress level, phonetic neighbors, etc)
e each diphone unit concatenates smoothly with its neighaunits, with no



32

Chapter 8. Speech Synthesis

TARGET COST

JOIN COST

(8.24)

(8.25)

perceptible break.

Of course, in practice, we can't guarantee that there wil beiewhich exactly
meets our specifications, and we are unlikely to find a sequefenits in which every
single join is imperceptible. Thus in practice unit seleatalgorithms implement a
gradient version of these constraints, and attempt to fiadéiguence of unit which at
least minimizes these two costs:

target costT (u, s ): how well the target specificaticsh matches the potential unit

join cost J(u,u1): how well (perceptually) the potential unit joins with its po-
tential neighbory 1

Note that theT andJ values are expressed esstsin the formulation by Hunt
and Black (1996a) which has become standard, meaning tjlatalues indicate bad
matches and bad joins.

Formally, then, the task of unit selection synthesis, gwsrquencgof T target
specifications, is to find the sequendé®f T units from the database which minimizes
the sum of these costs:

T T 1
U= ar%minZT(s[,ut) +) I, i)
t=1 t=1

Let’s now define the target cost and the join cost in more Hegdiore we turn to
the decoding and training tasks.

The target cost measures how well the unit matches the @irgeine specifica-
tion. We can think of the specification for each diphone teagea feature vector; Here
are three sample vectors for three target diphone spe@fisatising dimensions (fea-
tures) likeshould the syllable be stressedhdwhere in the intonational phrase should
the diphone come from

lih-t/, +stress, phrase internal, high FO, content word
In-t/, -stress, phrase final, low FO, content word
/dh-ax/, -stress, phrase initial, high FO, function word
t he

We'd like the distance between the target specificatiand the unit to be some
function of the how different the unit is on each of these disiens from the specifi-
cation. Let's assume that for each dimenspmprwe can come up with somgibcost
To(s[p],uj[p]). The subcost for a binary feature lisressmight be 1 or 0. The sub-
cost for a continuous feature like FO might be the differgjocéog difference) between
the specification FO and unit FO. Since some dimensions are important to speech
perceptions than others, we’ll also want to weight each dsim. The simplest way
to combine all these subcosts is just to assume that thepa@epéndent and additive.
Using this model, the total target cost for a given target/pair is the weighted sum
over all these subcosts for each feature/dimension:

P
T(S[,Uj) = ZWpr(St[p],Uj[p])
p=1
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(8.26)

The target cost is a function of the desired diphone spetiditand a unit from
the database. THein cost, by contrast, is a function of two units from the database.
The goal of the join cost is to be low (0) when the join is congienatural, and high
when the join would be perceptible or jarring. We do this byaswing the acoustic
similarity of the edges of the two units that we will be joiginif the two units have
very similar energy, FO, and spectral features, they withably join well. Thus as
with the target cost, we compute a join cost by summing weigistibcosts:

P
J(Ug, U y1) = ZWpJp(Ut[p]aUHl[p])
p=1

The three subcosts used in the classic Hunt and Black (128¢)ithm are the
cepstral distanceat the point of concatenation, and the absolute differencédsg
power and FO.

In addition, if the two units; and w1 to be concatenated were consecutive
diphones in the unit database (i.e. they followed each athttre original utterance),
then we set the join cost to Ql(u;, 1) = 0. This is an important feature of unit
selection synthesis, since it encourages large naturaksegs of units to be selected
from the database.

How do we find the best sequence of units which minimizes thme sfithe
target and join costs as expressed in Eq. 8.24? The standdhdadnis to think of the
unit selection problem as a Hidden Markov Model. The targstsuare the observed
outputs, and the units in the database are the hidden s@tegob is to find the best
hidden state sequence. We will use the Viterbi algorithmaleesthis problem, just
as we saw it in Ch. 5 and Ch. 6, and will see it again in Ch. 9. 8i$8 shows a
sketch of the search space as well as the best (Viterbi) patrdetermines the best
unit sequence.

TARG ETS # s-ih ih-k k-s s-# #

' Target Costs

.- Join Cost

Figure 8.18 The process of decoding in unit selection. The figure shoeséguence
of target (specification) diphones for the waig, and the set of possible database diphgne
units that we must search through. The best (Viterbi) padhrinimizes the sum of the
target and join costs is shown in bold.

The weights for join and target costs are often set by handeghe number of
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weights is small (on the order of 20) and machine learningritlyms don't always
achieve human performance. The system designer listemgite sentences produced
by the system, and chooses values for weights that residasonable sounding utter-
ances. Various automatic weight-setting algorithms dstekiowever. Many of these
assume we have some sort of distance function between thestasoof two sentences,
perhaps based on cepstral distance. The method of Hunt ack B1996b), for exam-
ple, holds out a test set of sentences from the unit seledtitabase. For each of these
test sentences, we take the word sequence and synthesizieacgawaveform (using
units from the other sentences in the training databasey.Wscompare the acoustics
of the synthesized sentence with the acoustics of the troeahisentence. Now we
have a sequence of synthesized sentences, each one a&sbaitiata distance function
to its human counterpart. Now we use linear regression bas¢itese distances to set
the target cost weights so as to minimize the distance.

There are also more advanced methods of assigning both tardgoin costs.
For example, above we computed target costs between tws lmitooking at the
features of the two units, doing a weighted sum of featurésc@nd choosing the
lowest-cost unit. An alternative approach (which the neadex might need to come
back to after learning the speech recognition techniquesdaced in the next chapter)
is to map the target unit into some acoustic space, and the:a fimit which is near the
target in that acoustic space. In the method of Donovan ashel @998), Donovan and
Woodland (1995), for example, all the training units arestdued using the decision
tree algorithm of speech recognition described in 838cThe decision tree is based on
the same features described above, but here for each settofds, we follow a path
down the decision tree to a leaf node which contains a cladtenits that have those
features. This cluster of units can be parameterized by &<&sumodel, just as for
speech recognition, so that we can map a set of features primbability distribution
over cepstral values, and hence easily compute a distarieedre the target and a
unit in the database. As for join costs, more sophisticatettios make use of how
perceivable a particular join might be (Wouters and Mac®98t Syrdal and Conkie,
2004; Bulyko and Ostendorf, 2001).

8.6 EVALUATION

INTELLIGIBILITY

QUALITY

DIAGNOSTIC RHYME
TEST

DRT

Speech synthesis systems are evaluated by human listefbesdevelopment of a
good automatic metric for synthesis evaluation, that walilshinate the need for ex-
pensive and time-consuming human listening experimegtsains an open and exiting
research topic.

The minimal evaluation metric for speech synthesis systisnistelligibility :
the ability of a human listener to correctly interpret therdand meaning of the syn-
thesized utterance. A further metricgsality ; an abstract measure of the naturalness,
fluency, or clarity of the speech.

The most local measures of intelligibility test the abilitfya listener to discrim-
inate between two phones. TiBagnostic Rhyme Test(DRT) (?) tests the intel-
ligibility of initial consonants. It is based on 96 pairs ajrfusable rhyming words
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MODIFIED RHYME
TEST

MRT

CARRIER PHRASES

QUALITY
MOS

AB TESTS

which differ only in a single phonetic feature, such dsr{se/tenger bond/ponddif-
fering in voicing) ormean/beabr neck/deck(differing in nasality), and so on. For
each pair, listeners hear one member of the pair, and irdighich they think it is.
The percentage of right answers is then used as an intdiligitnetric. TheModified
Rhyme Test(MRT) (House et al., 1965) is a similar test based on a differentfse
300 words, consisting of 50 sets of 6 words. Each 6-word dftrdiin either initial
or final consonants (e.guyent sent bent dent tent, rentor bat, bad, back bass ban
bath). Listeners are again given a single word and must identifgnfa closed list of
six words; the percentage of correct identifications is mgeed as an intelligibility
metric.

Since context effects are very important, both DRT and MRTds@re embed-
ded incarrier phrases like the following:

Now we will say <word> again.

In order to test larger units than single phones, we canseseantically un-
predictable sentencegSUS (Benoit et al., 1996). These are sentences constructed
by taking a simple POS template likeeT ADJ NOUN VERB DET NOUNand inserting
random English words in the slots, to produce sentences like

The unsure steaks closed the fish.

Measures of intelligibility like DRT/MRT and SUS are desaghto factor out
the role of context in measuring intelligibility. While thiallows us to get a care-
fully controlled measure of a system’s intelligibility, duacontextual or semantically
unpredictable sentences aren't a good fit to how TTS is usetbst commercial ap-
plications. Thus in commercial applications instead of DRTSUS, we generally test
intelligibility using situations that mimic the desired@jgations; reading addresses
out loud, reading lines of news text, and so on.

To further evaluate thquality of the synthesized utterances, we can play a sen-
tence for a listener and ask them to givmaan opinion scorqfMOS), a rating of how
good the synthesized utterances are, usually on a scalelffmriiVe can then compare
systems by comparing their MOS scores on the same sentarsieg,(e.g., t-tests to
test for significant differences).

If we are comparing exactly two systems (perhaps to see ifticpkar change
actually improved the system), we can usB tests In AB tests, we play the same
sentence synthesized by two different systems (an A and astrsy. The human
listener chooses which of the two utterances they like betf¢e can do this for 50
sentences and compare the number of sentences preferreacfosystems. In order
to avoid ordering preferences, for each sentence we mustpiréhe two synthesized
waveforms in random order.
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8.7 ADVANCED: HMM SYNTHESIS

BIBLIOGRAPHICAL AND HISTORICAL NOTES

As we noted at the beginning of the chapter, speech syntisesie of the earliest fields
of speech and language processing. The 18th century sawlzenofrphysical models
of the articulation process, including the von Kempelen elgdentioned above, as
well as the 1773 vowel model of Kratzenstein in Copenhagergusgan pipes.

But the modern era of speech synthesis can clearly be saa/tdrrived by the
early 1950’s, when all three of the major paradigms of warmafeynthesis had been
proposed (formant synthesis, articulatory synthesis camdatenative synthesis).

Concatenative synthesis seems to have been first proposddrbg (1953) at
Bell Laboratories, who literally spliced together piecésmagnetic tape correspond-
ing to phones. Harris’'s proposal was actually more like salection synthesis than
diphone synthesis, in that he proposed storing multipléesopf each phone, and pro-
posed the use of a join cost (choosing the unit with the snesbtformant transitions
with the neighboring unit). Harris’s model was based on thene, rather than di-
phone, resulting in problems due to coarticulation. Peteet al. (1958) added many
of the basic ideas of unit selection synthesis, includirggube of diphones, a database
with multiple copies of each diphone with differing prospdgd each unit labeled with
intonational features including FO, stress, and duratiod, the use of join costs based
on FO and formant distant between neighboring units. They pfoposed microcon-
catenation techniques like windowing the waveforms. TheiBen et al. (1958) model
was purely theoretical, however, and concatenative sgigheas not implemented un-
til the 1960’s and 1970’s, when diphone synthesis was firgiemented (?; Olive,
1977). Later diphone systems included larger units suchoasanant clusters (?).
Modern unit selection, including the idea of large units ofiruniform length, and the
use of a target cost, was invented by Sagisaka (1988), &agtal. (1992). (Hunt and
Black, 1996b) formalized the model, and put it in the form imieh we have presented
it in this chapter in the context of the ATR CHATR system (Bdand Taylor, 1994).
The idea of automatically generating synthesis units bgteling was first invented
by Nakajima and Hamada (1988), but was developed mainly pyy2ncorporating
decision tree clustering algorithms from speech recogmitiMany unit selection in-
novations took place as part of the ATT NextGen synthesizeSyrdal and Conkie,
2004; ?).

We have focused in this chapter on concatenative synthmsishere are two
other paradigms for synthesifarmant synthesis in which we attempt to build rules
which generate artificial spectra, including especialiyrfants, andrticulatory syn-
thesis in which we attempt to directly model the physics of the Vdact and articu-
latory process.

Formant synthesizersoriginally were inspired by attempts to mimic human
speech by generating artificial spectrograms. The Haslkam®iatories Pattern Play-
back Machine generated a sound wave by painting spectroga#terns on a moving
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transparent belt, and using reflectance to filter the haresasfi a waveform (Cooper
et al., 1951); other very early formant synthesizers inelaq?) and Fant (3951). Per-
haps the most well-known of the formant synthesizers wer&ltt formant synthe-
sizerand its successor systems, including the MITalk systene(Adit al., 1987), and
the Klattalk software used in Digital Equipment CorporatsoDECtalk (Klatt, 1982).
See Klatt (1975) for detalils.

Articulatory synthesizers attempt to synthesize speech by modeling the physics
of the vocal tract as an open tube. Representative modeis,daoly and somewhat
more recent include Stevens et al. (1953), Flanagan et2d5§1? (?) See Klatt (1975)
and Flanagan (1972) for more details.

Development of the text analysis components of TTS came whiaidater, as
techniques were borrowed from other areas of natural laggypaocessing. The in-
put to early synthesis systems was not text, but rather pheaétyped in on punched
cards). The firstext-to-speech system to take text as input seems to have besysthe
tem of Umeda and Teranishi (Umeda et al., 1968; Teranishuamelda, 1968; Umeda,
1976). The system included a lexicalized parser which wasl & assign prosodic
boundaries, as well as accent and stress; the extensior{8)ralded additional rules,
for example for deaccenting light verbs. These early TT$esys used a pronuncia-
tion dictionary for word pronunciations. In order to expaodarger vocabularies, early
formant-based TTS systems such as MITlak (Allen et al., 128éd letter-to-sound
rules instead of a dictionary, since computer memory wasoarexpensive to store
large dictionaries.

Modern grapheme-to-phoneme models derive from the inflalegdrly proba-
bilistic grapheme-to-phoneme model of Lucassen and Méi@&84), which was orig-
inally proposed in the context of speech recognition. Thdespread use of such
machine learning models was delayed, however, becausese@ddotal evidence sug-
gested that hand-written rules worked better than e.gneheal networks of Sejnowski
and Rosenberg (1987). The careful comparisons of Dampel €1999) showed
that machine learning methods were in generally superionufber of such mod-
els make use of pronunciation by analogy (Byrd and Chodot®85; ?; Daelemans
and van den Bosch, 1997; Marchand and Damper, 2000) or tafdgy (Bellegarda,
2005); HMMs (Taylor, 2005) have also been proposed. The mecsint work makes

GRAPHONE use of jointgraphone models, in which the hidden variables are phoneme-grapheme
pairs and the probabilistic model is based on joint rathan tonditional likelihood (?,
?; Galescu and Allen, 2001; Bisani and Ney, 2002; Chen, 2003)
There is a vast literature on prosody. Besides the ToBl ahd Todels de-
russaki  scribed above, other important computational models detheFujisaki model (Fu-
jisaki and Ohno, 1997). There is also much debate on the ahitgonational struc-
INTONATIONUNITS — ture (ntonational phrases (Beckman and Pierrehumbert, 198@)tonation units
Toneunts  (Du Bois et al., 1983) otone units (Crystal, 1969)), and their relation to clauses and
other syntactic units (Chomsky and Halle, 1968; Langend®6ii5; Streeter, 1978;
Hirschberg and Pierrehumbert, 1986; Selkirk, 1986; Nespor Vogel, 1986; Croft,
1995; Ladd, 1996; Ford and Thompson, 1996; Ford et al., 1996)

More details on TTS evaluation can be found in Huang et abD{2@nd Gibbon

et al. (2000). Other descriptions of evaluation can be fdartle annual speech syn-
o FRR - thesis competition called tHglizzard Challenge (Black and Tokuda, 2005; Bennett,
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2005).

Much recent work on speech synthesis has focused on gemgeatiotional
speech (Cahn, 1990; Bulutl et al., 2002; Hamza et al., 202 & al., 2004; Lee
et al., 2006; Schroder, 2006, inter alia)

Two classic text-to-speech synthesis systems are dedgérnit#dlen et al. (1987)
(the MITalk system) and Sproat (1998b) (the Bell Labs system). Recatlideks
include Dutoit (1997), Huang et al. (2001), Taylor (200T)d &lan Black’s online lec-
ture notes afittp://festvox.org/festtut/notes/festtut_toc.html
Influential collections of papers include van Santen etl&®9¢), Sagisaka et al. (1997)
Narayanan and Alwan (2004). Conference publications appéae main speech engi-
neering conferences (INTERSPEEQHEE ICASSP and theSpeech Synthesis Work-
shops Journals includ&peech Communicatip@omputer Speech and Languatfe
IEEE Transactions on Audio, Speech, and Language Proggsaid theACM Trans-
actions on Speech and Language Processing

EXERCISES

8.1 Implement the text normalization routine that deals withNEY, i.e. mapping

strings of dollar amounts liké45, $320, and $4100to words (either writing code
directly or designing an FST). If there are multiple ways torunce a number you
may pick your favorite way.

8.2 Implement the text normalization routine that deals WtEL, i.e. seven-digit
phone numbers lik55-1212555-130Qand so on. You should use a combination of
the paired andtrailing unit methods of pronunciation for the last four digits. (Again
you may either write code or design an FST).

8.3 Implementthe text normalization routine that deals withetpATE in Fig. 8.4

8.4 Implement the text normalization routine that deals withetwTIME in Fig. 8.4.

8.5 (Suggested by Alan Black). Download the free Festival spegothesizer. Aug-
ment the lexicon to correctly pronounce the names of everyogour class.

8.6 Download the Festival synthesizer. Record and train a diplsynthesizer using
your own voice.
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