Speech and Language Processing: An introduction to natural |anguage processing,

conput ati onal

|'i ngui stics, and speech recognition. Daniel Jurafsky & Janes H Martin.

Copyright © 2005, Al rights reserved. Draft of January 10, 2007. Do not cite
wi t hout perm ssion.

AUTOMATIC SPEECH
RECOGNITION

When Frederic was a little lad he proved so brave and daring,
His father thought he'd 'prentice him to some career seadgri
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice fmlat —
A life not bad for a hardy lad, though surely not a high lot,
Though I'm a nurse, you might do worse than make your boy a.pilo
I was a stupid nurs’rymaid, on breakers always steering,
And | did not catch the word aright, through being hard of rear
Mistaking my instructions, which within my brain did gyrate
I took and bound this promising boy apprentice toilate.

The Pirates of Penzanc&ilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’'glomdenture as a pirate and,
due to a slight complication involving 21st birthdays andpe/ears, nearly led to 63
extra years of apprenticeship. The mistake was quite Hatura Gilbert-and-Sullivan
sort of way; as Ruth later noted, “The two words were so muiktetl True, true;
spoken language understanding is a difficult task, and @nsarkable that humans do
as well at it as we do. The goal afitomatic speech recognitio{ASR) research is to
address this problem computationally by building systeimas map from an acoustic
signal to a string of wordsAutomatic speech understanding ASU) extends this goal
to producing some sort of understanding of the sentendeenrt#itan just the words.
The general problem of automatic transcription of speechryyspeaker in any
environment is still far from solved. But recent years hasersASR technology ma-
ture to the point where it is viable in certain limited domaif©One major application
area is in human-computer interaction. While many taskdatter solved with visual
or pointing interfaces, speech has the potential to be atiaterface than the keyboard
for tasks where full natural language communication isuisef for which keyboards
are not appropriate. This includes hands-busy or eyesdqusications, such as where
the user has objects to manipulate or equipment to controlotifer important ap-
plication area is telephony, where speech recognitionrésadly used for example for
entering digits, recognizing “yes” to accept collect callading out airplane or train
information, and call-routing (“Accounting, please”, &r Regier, please”). In some
applications, a multimodal interface combining speechidting can be more effi-
cient than a graphical user interface without speech (Cehah, 1998). Finally, ASR
is being applied to dictation, that is, transcription ofemded monologue by a single

Chapter 9. Automatic Speech Recognition

DIGITS

ISOLATED WORD
CONTINUOUS
SPEECH

READ SPEECH

CONVERSATIONAL
SPEECH

specific speaker. Dictation is common in fields such as lawistadso important as
part of augmentative communication (interaction betwesnpmuters and humans with
some disability resulting in the inability to type, or thability to speak). The blind
Milton famously dictatedParadise Losto his daughters, and Henry James dictated his
later novels after a repetitive stress injury.

Before turning to architectural details, let’s discuss sarfithe parameters and
the state of the art of the speech recognition task. One diibeiof variation in speech
recognition tasks is the vocabulary size. Speech recogritieasier if the number of
distinct words we need to recognize is smaller. So tasks avithio word vocabulary,
like yesversuso detection, or an eleven word vocabulary, like recognizeguences
of digits, in what is called thdigits task, are relatively easy. On the other end, tasks
with large vocabularies, like transcribing human-humdepieone conversations, or
transcribing broadcast news, tasks with vocabularies gd@words or more, are
much harder.

A second dimension of variation is how fluent, natural, orvaseational the
speech islsolated word recognition, in which each word is surrounded by some sort
of pause, is much easier than recognizemntinuous speechin which words run
into each other and have to be segmented. Continuous spesgchthemselves vary
greatly in difficulty. For example, human-to-machine speteicns out to be far easier to
recognize than human-to-human speech. Thatis, recogrgpeech of humans talking
to machines, either reading out loud i@ad speech(which simulates the dictation
task), or conversing with speech dialogue systems, isivelgteasy. Recognizing the
speech of two humans talking to each othercamversational speechrecognition,
for example for transcribing a business meeting or a teleplomnversation, is much
harder. It seems that when humans talk to machines, theyifirtieir speech quite a
bit, talking more slowly and more clearly.

A third dimension of variation is channel and noise. Comnatdictation sys-
tems, and much laboratory research in speech recogniiaigrie with high quality,
head mounted microphones. Head mounted microphones etienine distortion that
occurs in a table microphone as the speakers head movedarNoise of any kind
also makes recognition harder. Thus recognizing a speabttidg in a quiet office
is much easier than recognizing a speaker dictating in a/raison the highway with
the window open.

A final dimension of variation is accent or speaker-classattaristics. Speech
is easier to recognize if the speaker is speaking a standaletd or in general one
that matches the data the system was trained on. Recogisitioms harder on foreign-
accented speech, or speech of children (unless the systsrapeaifically trained on
exactly these kinds of speech).

Table 9.1 shows the rough percentage of incorrect wordsitird error rate ,
or WER, defined on page 37) from state-of-the-art systemgange of different ASR
tasks.

Variation due to noise and accent increases the error ratesaybit. The word
error rate on strongly Japanese-accented or Spanish addemglish has been reported
to be about 3 to 4 times higher than for native speakers onaime $ask (Tomokiyo,
2001). And adding automobile noise with a 10dB SNR (signataise ratio) can cause
error rates to go up by 2 to 4 times.

Section 9.1.

Speech Recognition Architecture 3

LVCSR

SPEAKER-
INDEPENDENT

Task | Vocabulary | Error Rate %]

TI Digits 11 (zero-nine, oh) 5
Wall Street Journal read speech 5,000 3
Wall Street Journal read speech 20,000 3
Broadcast News 64,000+ 10
Conversational Telephone Speech (CT$) 64,000+ 20

Figure 9.1 Rough word error rates (% of words misrecognized) reportedral 2006
for ASR on various tasks; the error rates for Broadcast NewdsGI'S are based on par-
ticular training and test scenarios and should be takenlgmablanumbers; error rates for
differently defined tasks may range up to a factor of two.

In general, these error rates go down every year, as speeatnition perfor-
mance has improved quite steadily. One estimate is thabiesaince has improved
roughly 10 percent a year over the last decade (Deng and KHa804), due to a com-
bination of algorithmic improvements and Moore’s law.

While the algorithms we describe in this chapter are applecacross a wide va-
riety of these speech tasks, we chose to focus this chaptiedaondamentals of one
crucial area:Large-Vocabulary Continuous Speech RecognitioliLVCSR). Large-
vocabulary generally means that the systems have a vocghaflaoughly 20,000
to 60,000 words. We saw above thaintinuous means that the words are run to-
gether naturally. Furthermore, the algorithms we will dsx are generallgpeaker-
independent that is, they are able to recognize speech from people wéppesech the
system has never been exposed to before.

The dominant paradigm for LVCSR is the HMM, and we will focustbis ap-
proach in this chapter. Previous chapters have introduaesd of the core algorithms
used in HMM-based speech recognition. Ch. 7 introducedeligokonetic and phono-
logical notions ofphone, syllable, and intonation. Ch. 5 and Ch. 6 introduced the use
of the Bayes rulg the Hidden Markov Model (HMM), the Viterbi algorithm, and
the Baum-Welch training algorithm. Ch. 4 introduced tiiggram language model
and theperplexity metric. In this chapter we begin with an overview of the atety
ture for HMM speech recognition, offer an all-too-brief oview of signal processing
for feature extraction, and an overview of Gaussian acoustidels. We then continue
with Viterbi decoding, and talk about the use of word errde far evaluation. In ad-
vanced sections, we introduce advanced search technigeés landN-best decoding
and lattices, context-dependent triphone acoustic mashelglealing with variation.

Of course the field of ASR is far too large even to summarizeurhsa short
space; the reader is encouraged to see the suggested seatdihg end of the chapter
for useful textbooks and articles.

9.1 SPEECHRECOGNITIONARCHITECTURE

NOISY CHANNEL

The task of speech recognition is to take as input an acowstieform and produce
as output a string of words. HMM-based speech recognitiatesys view this task
using the metaphor of the noisy channel. The intuition ofrthisy channelmodel

Chapter 9. Automatic Speech Recognition

BAYESIAN

(see Fig. 9.2) is to treat the acoustic waveform as an “noigysion of the string of
words, i.e.. a version that has been passed through a naissngoications channel.
This channel introduces “noise” which makes it hard to reiogthe “true” string of
words. Our goal is then to build a model of the channel so tleatan figure out how
it modified this “true” sentence and hence recover it.

The insight of the noisy channel model is that if we know hoe thannel dis-
torts the source, we could find the correct source sentemae i@aveform by taking
every possible sentence in the language, running eachmsertteough our noisy chan-
nel model, and seeing if it matches the output. We then stéilediest matching source
sentence as our desired source sentence.

guess at
original
sentence

If music be the
food of love...

source “giﬂf)é ce
S n
Sente nce ?Alice was beginning to get.\

If music be the /\\ =4 ?Every happy family...

food of love...-=— — = ~ ?In a hole in the ground...
I~ e . 2If music be the food of love...
\.// ?If music be the foot of dove..,
NOISY CHANNEL

Figure 9.2 The noisy channel model. We search through a huge space @ftjzdt
“source” sentences and choose the one which has the higioestiility of generating the
“noisy” sentence. We need models of the prior probabilitg sburce sentencbl{grams),
the probability of words being realized as certain stringptmnes (HMM lexicons), and
the probability of phones being realized as acoustic ortspideatures (Gaussian Mixture
Models).

DECODER

Implementing the noisy-channel model as we have expressedrig. 9.2 re-
quires solutions to two problems. First, in order to pick $katence that best matches
the noisy input we will need a complete metric for a “best mat8ecause speech is
so variable, an acoustic input sentence will never exaclichnany model we have for
this sentence. As we have suggested in previous chaptevd|lwse probability as our
metric. This makes the speech recognition problem a speasd ofBayesian infer-
ence a method known since the work of Bayes (1763). Bayesiaménfze or Bayesian
classification was applied successfully by the 1950s todagg problems like optical
character recognition (Bledsoe and Browning, 1959) andtiocaship attribution tasks
like the seminal work of Mosteller and Wallace (1964) on d®iaing the authorship of
the Federalist papers. Our goal will be to combine varioobabilistic models to get a
complete estimate for the probability of a noisy acoustisesation-sequence given a
candidate source sentence. We can then search througtetteamall sentences, and
choose the source sentence with the highest probability.

Second, since the set of all English sentences is huge, vaeameefficient algo-
rithm that will not search through all possible sentencasphbly ones that have a good
chance of matching the input. This is tlecodingor searchproblem, which we have
already explored with the Viterbi decoding algorithm for W in Ch. 5 and Ch. 6.
Since the search space is so large in speech recognitiaeeffsearch is an important
part of the task, and we will focus on a number of areas in earc

In the rest of this introduction we will introduce the proliedic or Bayesian

Section 9.1.

Speech Recognition Architecture 5

(9.1

(9.2)

(9.3)

(9:4)

(9.9)

model for speech recognition (or more accurately re-intoedit, since we first used
the model in our discussions of part-of-speech tagging irb:H\Ve then introduce the
various components of a modern HMM-based ASR system.

We now turn to our probabilistic implementation of the notannel intuition,
which should be familiar from Ch. 5. The goal of the probaiiti noisy channel archi-
tecture for speech recognition can be summarized as fallows

“What is the most likely sentence out of all sentences indhguager
given some acoustic input O?”

We can treat the acoustic inpOtas a sequence of individual “symbols” or “ob-
servations” (for example by slicing up the input every 10lisglconds, and represent-
ing each slice by floating-point values of the energy or feggpies of that slice). Each
index then represents some time interval, and successivelicate temporally con-
secutive slices of the input (note that capital letters stdind for sequences of symbols
and lower-case letters for individual symbols):

O =01,02,03,...,0

Similarly, we treat a sentence as if it were composed of agtf words:

W:W13W27W37"' , Wh

Both of these are simplifying assumptions; for exampleding sentences into
words is sometimes too fine a division (we'd like to model$eatbout groups of words
rather than individual words) and sometimes too gross aidivi(we need to deal with
morphology). Usually in speech recognition a word is defibgdrthography (after
mapping every word to lower-casejakis treated as a different word thaaks but
the auxiliarycan(“can you tell me...") is treated as the same word as the caui("i
need acanof...”).

The probabilistic implementation of our intuition abovieen, can be expressed
as follows:

W = argmaP(W|0O)
WeL
Recall that the function argmak(x) means “the x such that f(x) is largest”.
Equation (9.3) is guaranteed to give us the optimal sentéfjage now need to make
the equation operational. That is, for a given sent&cend acoustic sequen€ewe
need to computB(W|O). Recall that given any probabili®(x|y), we can use Bayes’
rule to break it down as follows:

PLXY) =

We saw in Ch. 5 that we can substitute (9.4) into (9.3) asVialo

A P(O[W)P(W)

W = argmax
Wer P(O)

Chapter 9. Automatic Speech Recognition

(9.6)

LANGUAGE MODEL
ACOUSTIC MODEL

9.7)

(9.8)

The probabilities on the right-hand side of (9.5) are for ithast part easier to
compute tharP(W|O). For exampleP(W), the prior probability of the word string
itself is exactly what is estimated by timegram language models of Ch. 4. And we
will see below thatP(O|W) turns out to be easy to estimate as well. BYO), the
probability of the acoustic observation sequence, turnsmbe harder to estimate.
Luckily, we can ignord>(O) just as we saw in Ch. 5. Why? Since we are maximizing

over all possible sentences, we will be comput \VEI()DI)’(M for each sentence in the

language. BuP(O) doesn’'t change for each sentence! For each potential senten
we are still examining the same observati@svhich must have the same probability
P(O). Thus:

W = argmaxw = argmaP(O|W) P(W)
WeL P(O) WeL
To summarize, the most probable senteWitgiven some observation sequence

O can be computed by taking the product of two probabilitiessiach sentence, and
choosing the sentence for which this product is greatesé gémeral components of
the speech recognizer which compute these two terms haves)B), the prior
probability , is computed by théanguage model while P(O|W), the observation
likelihood, is computed by thacoustic model

likelihood prior

~ —
W = argmaxP(O|W) P(W)
WeL
The language model (LM) prioP(W) expresses how likely a given string of
words is to be a source sentence of English. We have alre@uyiseCh. 4 how to
compute such a language model pfiikV) by usingN-gram grammars. Recall that
anN-gram grammar lets us assign a probability to a sentencerpgtng:

P(WY) ~ [[POwi W, 1)
k=1

This chapter will show how the HMM we covered in Ch. 6 can bedusebuild
an Acoustic Model (AM) which computes the likeliho®dO|W). Given the AM and
LM probabilities, the probabilistic model can be operatitired in a search algorithm
S0 as to compute the maximum probability word string for @&giacoustic waveform.
Fig. 9.3 shows a rough block diagram of how the computatiothefprior and likeli-
hood fits into a recognizer decoding a sentence.

We can see further details of the operationalization in &ig, which shows the
components of an HMM speech recognizer as it processesla sittgrance. The fig-
ure shows the recognition process in three stages. Ifetitare extraction or signal
processingstage, the acoustic waveform is sampled ifnieones (usually of 10, 15,
or 20 milliseconds) which are transformed irgjgectral features Each time window
is thus represented by a vector of around 39 features raypnegehis spectral infor-
mation as well as information about energy and spectral gharsec. 9.3 gives an
(unfortunately brief) overview of the feature extracticogess.

Section 9.2.

Applying the Hidden Markov Model to Speech 7

P(OIW)

Acoustic Model
+ Lexicon
Decoding

Search
Language
Model

P(W)

Feature
Extraction

Figure 9.3 Ablock diagram of a speech recognizer decoding a single@seat showing
the integration oP(W) andP(O|W).

In the acoustic modelingor phone recognitionstage, we compute the likeli-
hood of the observed spectral feature vectors given litiguisits (words, phones,
subparts of phones). For example, we use Gaussian MixtudeMGMM) classifiers
to compute for each HMM statg corresponding to a phone or subphone, the likeli-
hood of a given feature vector given this phaie|q). A (simplified) way of thinking
of the output of this stage is as a sequence of probabilityovecone for each time
frame, each vector at each time frame containing the likelits that each phone or
subphone unit generated the acoustic feature vector alig@mat that time.

Finally, in thedecodingphase, we take the acoustic model (AM), which consists
of this sequence of acoustic likelihoods, plus an HMM dictiny of word pronuncia-
tions, combined with the language model (LM) (generallyNagram grammar), and
output the most likely sequence of words. An HMM dictionaag, we will see in
Sec. 9.2, is a list of word pronunciations, each pronurmiatepresented by a string of
phones. Each word can then be thought of as an HMM, where thegsh(or some-
times subphones) are states in the HMM, and the Gaussidih&ike estimators supply
the HMM output likelihood function for each state. Most ASfg&ms use the Viterbi
algorithm for decoding, speeding up the decoding with widgety of sophisticated
augmentations such as pruning, fast-match, and treetistegidexicons.

9.2 APPLYING THEHIDDEN MARKOV MODEL TO SPEECH

Let’s turn now to how the HMM model is applied to speech redtign. We saw in
Ch. 6 that a Hidden Markov Model is characterized by the foitgy components:

Chapter 9. Automatic Speech Recognition

B | -

‘ Cepstral Feature Extractio

|
B

- JiEdaEie -

TYTYy vy

|Gaussian Acoustic Model |

YYVYYYYYOYYY

o0 0
R ‘ HMM Lexicon I
YY Y VY VY VYUY VYYY
Viterbi Decoder '/‘ N-gram Grammar I
H###%%%%H% |
| J
if music be

Figure 9.4 Schematic architecture for a (simplified) speech recogmeeoding a sin-
gle sentence. A real recognizer is more complex since vaukinds of pruning and fast
matches are needed for efficiency. This architecture is famlgecoding; we also need a
separate architecture for training parameters.

Q=0102...0n a set ofstates

A=apjagy...an1...ann atransition probability matrix A, eacha;j rep-
resenting the probability of moving from state
to statej, s.t.>)& =1 Vi

O =01072...0N a set ofobservations each one drawn from a vo-
cabularyV = vy, Vo, ..., W.
B =hj(or) A set of observation likelihoods; also called

emission probabilities each expressing the
probability of an observation; being generated
from a state.

40, 9end a speciabtart and end statewhich are not asso-
ciated with observations.

Furthermore, the chapter introduced Witerbi algorithm for decoding HMMs,
and theBaum-Welch or Forward-Backward algorithm for training HMMs.
All of these facets of the HMM paradigm play a crucial role iSBR. We begin

Section 9.2.

Applying the Hidden Markov Model to Speech 9

DIGIT RECOGNITION

BAKIS NETWORK

here by discussing how the states, transitions, and olismrsanap into the speech
recognition task. We will return to the ASR applications dEvbi decoding in Sec. 9.6.
The extensions to the Baum-Welch algorithms needed to déaspoken language are
covered in Sec. 9.4 and Sec. 9.7.

Recall the examples of HMMs we saw earlier in the book. In ChthB hid-
den states of the HMM were parts-of-speech, the obsensti@re words, and the
HMM decoding task mapped a sequence of words to a sequenegtsfqi-speech. In
Ch. 6, the hidden states of the HMM were weather, the obdenstvere ‘ice-cream
consumptions’, and the decoding task was to determine tla¢heesequence from a
sequence of ice-cream consumption. For speech, the hidas sire phones, parts
of phones, or words, each observation is information albdweispectrum and energy
of the waveform at a point in time, and the decoding procegssitiais sequence of
acoustic information to phones and words.

The observation sequence for speech recognition is a seguéacoustic fea-
ture vectors. Each acoustic feature vector represents information as¢he amount
of energy in different frequency bands at a particular pwirtime. We will return in
Sec. 9.3 to the nature of these observations, but for now sigiply note that each
observation consists of a vector of 39 real-valued featndisating spectral informa-
tion. Observations are generally drawn every 10 milliseéspiso 1 second of speech
requires 100 spectral feature vectors, each vector ofte3@t

The hidden states of Hidden Markov Models can be used to nepaech in a
number of different ways. For small tasks, lidigit recognition, (the recognition of
the 10 digit wordgzerothroughnine), or for yes-norecognition (recognition of the two
wordsyesandno), we could build an HMM whose states correspond to entiredaor
For most larger tasks, however, the hidden states of the Hblkéspond to phone-like
units, and words are sequences of these phone-like units.

Let's begin by describing an HMM model in which each stateroHMM corre-
sponds to a single phone (if you've forgotten what a phongasyack and look again
at the definition in Ch. 7). In such a model, a word HMM thus éstssof a sequence
of HMM states concatenated together.

In the HMMs described in Ch. 6, there were arbitrary tranegibetween states;
any state could transition to any other. This was also ingipie true of the HMMs for
part-of-speech tagging in Ch. 5; although the probabilftg@me tag transitions was
low, any tag could in principle follow any other tag. Unlikethese other HMM appli-
cations, HMM models for speech recognition usually do nlewabrbitrary transitions.
Instead, they place strong constraints on transitionsthasehe sequential nature of
speech. Except in unusual cases, HMMs for speech don't athovgitions from states
to go to earlier states in the word; in other words, statesreansition to themselves or
to successive states. As we saw in Ch. 6, this kinkkftfto-right HMM structure is
called aBakis network.

The most common model used for speech is even more constraittewing
a state to transition only to itself (self-loop) or to a simglucceeding state. The use
of self-loops allows a single phone to repeat so as to covariable amount of the
acoustic input. Phone durations vary hugely, dependertt®@phone identify, the the
speaker’s rate of speech, the phonetic context, and thedepeosodic prominence of
the word. Looking at the Switchboard corpus, the phone [a&Es in length from 7

10

Chapter 9. Automatic Speech Recognition

MODEL
PHONE MODEL
HMM STATE

to 387 milliseconds (1 to 40 frames), while the the phone fjas in duration from
7 milliseconds to more than 1.3 seconds (130 frames) in sdtesnces! Self-loops
thus allow a single state to be repeated many times.

Fig. 9.5 shows a schematic of the structure of a basic phate-dMM, with
self-loops and forward transitions, for the waie.

Figure 9.5 An HMM for the wordsix, consisting of four emitting states and two non-
emitting states, the transition probabilities A, the oliadon probabilitieB, and a sample
observation sequence.

For very simple speech tasks (recognizing small numbersooflsvsuch as the
10 digits), using an HMM state to represent a phone is suffici;n general LVCSR
tasks, however, a more fine-grained representation is s&ged his is because phones
can last over 1 second, i.e., over 100 frames, but the 100eBare not acoustically
identical. The spectral characteristics of a phone, anéduheunt of energy, vary dra-
matically across a phone. For example, recall from Ch. 7 ¢t@gi consonants have
a closure portion, which has very little acoustic energitpfeed by a release burst.
Similarly, diphthongs are vowels whose F1 and F2 changefiigntly. Fig. 9.6 shows
these large changes in spectral characteristics over timeaich of the two phones in
the word “lke”, ARPAbet [ay k].

To capture this fact about the non-homogeneous nature aigshover time,
in LVCSR we generally model a phone with more than one HMMestakhe most
common configuration is to use three HMM states, a beginmiridglle, and end state.
Each phone thus consists of 3 emitting HMM states insteadnef (plus two non-
emitting states at either end), as shown in Fig. 9.7. It isroemto reserve the word
model or phone modelto refer to the entire 5-state phone HMM, and use the word
HMM state (or juststatefor short) to refer to each of the 3 individual subphone HMM
states.

To build a HMM for an entire word using these more complex gharodels,
we can simply replace each phone of the word model in Fig. &b av3-state phone
HMM. We replace the non-emitting start and end states foh gdmmne model with
transitions directly to the emitting state of the precedind following phone, leaving
only two non-emitting states for the entire word. Fig. 9.8wh the expanded word.

In summary, an HMM model of speech recognition is parameserby:

Section 9.2.

Applying the Hidden Markov Model to Speech

5000~

Frequency (Hz)

e

0
0.48152 ay k 0.937203
Time (s)

Figure 9.6 The two phones of the word "Ike”, pronounced [ay K]. Note tbhatmuous
changes in the [ay] vowel on the left, as F2 rises and F1 falid, the sharp difference$
between the silence and release parts of the [k] stop.

Figure 9.7 A standard 5-state HMM model for a phone, consisting of treestting
states (corresponding to the transition-in, steady staid,transition-out regions of thg
phone) and two non-emitting states.

Figure 9.8 A composite word model for “six”, [s ih k s], formed by concagting four
phone models, each with three emitting states.

Q=0102...0n a set ofstatescorresponding tsubphones

A=apjagy...an1...ann atransition probability matrix A, eacha;j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.

B=Dhi(a) A set of observation likelihoods; also called
emission probabilities each expressing the
probability of a cepstral feature vector (observa-
tion o;) being generated from subphone state

11

12 Chapter 9. Automatic Speech Recognition

Another way of looking at thé\ probabilities and the state3 is that together
they represent kexicon: a set of pronunciations for words, each pronunciationistns
ing of a set of subphones, with the order of the subphonesfiguEby the transition
probabilitiesA.

We have now covered the basic structure of HMM states foexagtting phones
and words in speech recognition. Later in this chapter wesei further augmenta-
tions of the HMM word model shown in Fig. 9.8, such as the usgiphone models
which make use of phone context, and the use of special phonssdel silence. First,
though, we need to turn to the next component of HMMs for speecognition: the
observation likelihoods. And in order to discuss obseovalikelihoods, we first need
to introduce the actual acoustic observations: featurtovecAfter discussing these in
Sec. 9.3, we turn in Sec. 9.4 the acoustic model and detadbservation likelihood
computation. We then re-introduce Viterbi decoding andrshow the acoustic model
and language model are combined to choose the best sentence.

9.3 FEATURE EXTRACTION

THIS SECTION STILL TO BE WRITTEN. IT WILL START FROM DIGITIZA'ION
AND WAVE FILE FORMATS AND GO THROUGH PRODUCTION OF MFCC
FILES.

9.4 (COMPUTING ACOUSTICLIKELIHOODS

The last section showed how we can extract MFCC featuressepting spectral infor-
mation from a wavefile, and produce a 39-dimensional veateryel0 milliseconds.
We are now ready to see how to compute the likelihood of thegeife vectors given
an HMM state. Recall from Ch. 6 that this output likelihoodcmmputed by thé3
probability function of the HMM. Given an individual statg and an observatiog,
the observation likelihoods iB matrix gave ugp(o:|qi), which we calledx (i).

For part-of-speech tagging in Ch. 5, each observaijads a discrete symbol (a
word) and we can compute the likelihood of an observatiorm# part-of-speech tag
just by counting the number of times a given tag generategemgibservation in the
training set. But for speech recognition, MFCC vectors add-valued numbers; we
can’t compute the likelihood of a given state (phone) getiregaan MFCC vector by
counting the number of times each such vector occurs (siacke ene is likely to be
unique).

In both decoding and training, we need an observation hkeld function that
can compute(o|g;) on real-valued observations. In decoding, we are given aareb
vationo; and we need to produce the probabilio:|q;) for each possible HMM state,
so we can choose the most likely sequence of states. Oncewsehia observation
likelihood B function, we need to figure out how to modify the Baum-Welaoakhm
of Ch. 6 to train it as part of training HMMs.

Section 9.4.

Computing Acoustic Likelihoods 13

VECTOR
QUANTIZATION
\

CODEBOOK

PROTOTYPE VECTOR
CODEWORD

CLUSTERING

K-MEANS
CLUSTERING

DISTANCE METRIC

EUCLIDEAN
DISTANCE

(9.9)

9.4.1 Vector Quantization

One way to make MFCC vectors look like symbols that we coulantds to build a
mapping function that maps each input vector into one of dlsmaanber of symbols.
Then we could just compute probabilities on these symbolsdunting, just as we
did for words in part-of-speech tagging. This idea of magpnput vectors to discrete
quantized symbols is callegctor quantization or VQ (Gray, 1984). Although vector
quantization is too simple to act as the acoustic model inanodVCSR systems, it is
a useful pedagogical step, and plays an important role iowsiareas of ASR, so we
use it to begin our discussion of acoustic modeling.

In vector quantization, we create the small symbol set bypimapeach training
feature vector into a small number of classes, and then wesept each class by a
discrete symbol. More formally, a vector quantization eystis characterized by a
codebook aclustering algorithm, and adistance metric

A codebookis a list of possible classes, a set of symbols constitutingcab-
ularyV = {v1,va,...,vn}. For each symboly in the codebook we list @arototype
vector, also known as aodeword, which is a specific feature vector. For example if
we choose to use 256 codewords we could represent each bgatoralue from 0 to
255; (this is referred to as 8-bit VQ, since we can represacti gector by a single 8-bit
value). Each of these 256 values would be associated withtatgpe feature vector.

The codebook is created by usinglastering algorithm to cluster all the feature
vectors in the training set into the 256 classes. Then weechaspresentative feature
vector from the cluster, and make it the prototype vectoroatesvork for that cluster.
K-means clusteringis often used, but we won'’t define clustering here; see Hutal e
(2001) or Duda et al. (2000) for detailed descriptions.

Once we've built the codebook, for each incoming featurg¢orewe compare it
to each of the 256 prototype vectors, select the one whidosest (by soméistance
metric), and replace the input vector by the index of this prototygetor. A schematic
of this process is shown in Fig. 9.9.

The advantage of VQ is that since there are a finite numbelaskek, for each
classv, we can compute the probability that it is generated by argi¥e|M state/sub-
phone by simply counting the number of times it occurs in sdraiming set when
labeled by that state, and normalizing.

Both the clustering process and the decoding process eegdistance metric
or distortion metric, that specifies how similar two acoustic feature ectre. The
distance metric is used to build clusters, to find a prototygaor for each cluster, and
to compare incoming vectors to the prototypes.

The simplest distance metric for acoustic feature vecsisiclidean distance
Euclidean distance is the distance in N-dimensional spateden the two points de-
fined by the two vectors. In practice what we refer to as Eeeliddistance is actually
the square of the distance. Thus given a vextmd a vectoy of length D, the (square
of the) Euclidean distance between them is defined as:

D
deuclidead®y) = (X —w)?
i—1

14

Chapter 9. Automatic Speech Recognition

(9.10)

Codebook of 256

[T 1

(MM 2

(MM 3
Input Feature Vector (MMM 4
L AT L
(I ..,
A
A

Compare to Codebook
(R b
of best vector
(R

Output index

Figure 9.9 Schematic architecture of the (trained) vector quantrafVQ) process
for choosing a symbolg for each input feature vector. The vector is compared to each
codeword in the codebook, the closest entry (by some distaratric) is selected, and the
index of the closest codeword is output.

The (squared) Euclidean distance described in (9.9) (aodrskfor two dimen-
sionsin Fig. 9.10) is also referred to as the sum-squared amd can also be expressed
using the vector transpose operator as:

deuclidea<y) = (X—=y) (x—)

A
y
Y,
d(x,y)
X
X
2
X, Y,
Figure 9.10 Euclidean distance in two dimensions; by the Pythagoreaorém,
the distance between two points in a plaxe= (x1,yl) andy = (x2,y2) d(x,y) =
V04 —%2)? + (y1—y2)2.

The Euclidean distance metric assumes that each of the diomesof a feature
vector are equally important. But actually each of the disi@ms have very different
variances. If a dimension tends to have a lot of variance) the'd like it to count
less in the distance metric; a large difference in a dimensith low variance should

Section 9.4.

Computing Acoustic Likelihoods 15

MAHALANOBIS
DISTANCE

(9.11)

(9.12)

(9.13)

PROBABILITY
DENSITY FUNCTION

GAUSSIAN MIXTURE
MODEL

GMM

GAUSSIAN

NORMAL
DISTRIBUTION

count more than a large difference in a dimension with higianee. A slightly more
complex distance metric, tHdahalanobis distance takes into account the different
variances of each of the dimensions.

If we assume that each dimensiioof the acoustic feature vectors has a variance
02, then the Mahalanobis distance is:

D
(X —¥i)?
dmahalanobi€¥) = D o2
i=1 [
For those readers with more background in linear algebmridire general form
of Mahalanobis distance, which includes a full covarianegrin (covariance matrices
will be defined below):

dmahalanobigy) = (X—y)TZ 1(x—y)

In summary, when decoding a speech signal, to compute arstictkelihood
of a feature vectoo; given an HMM statey; using VQ, we compute the Euclidean or
Mahalanobis distance between the feature vector and edbb df codewords, choose
the closest codeword, getting the codeword indexVe then look up the likelihood of
the codeword index given the HMM statg in the pre-computeB likelihood matrix
defined by the HMM:

Bj (or) = bj(v) s.t. v is codeword of closest vector tp

Since VQ is so rarely used, we don’t use up space here givimgdhations for
modifying the EM algorithm to deal with VQ data; instead, wefet discussion of
EM training of continuous input parameters to the next sectivhen we introduce
Gaussians.

9.4.2 Gaussian PDFs

Vector quantization has the advantage of being extremslyecompute and requires
very little storage. Despite these advantages, vectortadion is simply not a good
model of speech. A small number of codewords is insufficientapture the wide
variability in the speech signal. Speech is simply not agm@teal, symbolic process.

Modern speech recognition algorithms therefore do not estov quantization
to compute acoustic likelihoods. Instead, they are basedoamputing observation
probabilities directly on the real-valued, continuousibfeature vector. These acous-
tic models are based on computing@bability density function or pdf over a con-
tinuous space. By far the most common method for computingsti likelihoods is
the Gaussian Mixture Model (GMM) pdfs, although neural networks, support vector
machines (SVMs) and conditional random fields (CRFs) a @sd.

Let's begin with the simplest use of Gaussian probabilitimestors, slowly
building up the more sophisticated models that are used.

Univariate Gaussians

The Gaussiandistribution, also known as theormal distribution , is the bell-curve

16 Chapter 9. Automatic Speech Recognition

function familiar from basic statistics. A Gaussian dlsfition is a function parame-
mean terized by amean, or average value, andvariance, which characterizes the average
wriance spread or dispersal from the mean. We will yséo indicate the mean, anof to
indicate the variance, giving the following formula for audaian function:

1 (x—p?
() (“J'a) \/W F(20-2)
1.6 T ‘
= m=0,s=.5

= = =m=1,s=1
14 I m=-1,s=0.2

----- m=0,s=0.3
1.2t i

0.8

0.6

0.4}

0.2f

Figure 9.11 Gaussian functions with different means and variances.

Recall from basic statistics that the mean of a random vigriélis the expected
value ofX. For a discrete variabl¥, this is the weighted sum over the values<offor
a continuous variable, it is the integral):

N
(9.15) U=E(X) =) p(X%)X
i=1

The variance of a random variableis the squared average deviation from the
mean:

N
(9.16) 0? =E(X —E(X))?) = > p(X)(X —E(X))?
i=1

When a Gaussian function is used as a probability densitgtiom the area
under the curve is constrained to be equal to one. Then tHmpiidy that a random
variable takes on any particular range of values can be ctadgy summing the area

Section 9.4.

Computing Acoustic Likelihoods 17

(9.17)

o
IS

o
w
@

« P(shaded region) = .341

Probability Density
o
I N o
N o1 w

=}
s
a

Figure 9.12 A Gaussian probability density function, showing a regi@mf 0 to 1 with
a total probability of .341. Thus for this sample Gaussias,grobability that a value on
the X axis lies between O and 1 is .341.

under the curve for that range of values. Fig. 9.12 shows tthlegbility expressed by
the area under an interval of a Gaussian.

We can use a univariate Gaussian pdf to estimate the prdigdbdt a particular
HMM state j generates the value of a single dimension of a feature vbgtassuming
that the possible values of (this one dimension of the) alagien feature vecton, are
normally distributed. In other words we represent the oleg@n likelihood function
bj (o) for one dimension of the acoustic vector as a Gaussian. akinthe moment,
our observation as a single real valued number (a singléregfsature), and assuming
that each HMM statg has associated with it a mean valueand variances?, we
compute the likelihooth;(o) via the equation for a Gaussian pdf:

1 (o —j)°
bj(or) = eXD(—
202 20%

Equation (9.17) shows us how to compbiéo;), the likelihood of an individual
acoustic observation given a single univariate Gauss@n Btatej with its mean and
variance. We can now use this probability in HMM decoding.

But first we need to solve the training problem; how do we cot@plis mean
and variance of the Gaussian for each HMM stp®elLet’s start by imagining the sim-
pler situation of a completely labeled training set, in whéach acoustic observation
was labeled with the HMM state that produced it. In such aning set, we could
compute the mean of each state just taking the average ofthes/for eaclo; that
corresponded to stateas show in (9.18). The variance could just be computed from

18 Chapter 9. Automatic Speech Recognition
the sum-squared error between each observation and the asestmown in (9.19).
1 T
(9.18) b= =) o st.q s statei
t=1
1T
(9.19) 62 = TZ(OI_M)Z s.t.q is statel

(9.20)

(9.21)

(9.22)

(9.23)

t=1

But since states are hidden in an HMM, we don’t know exactlycwlobser-
vation vectoro; was produced by which state. What we would like to do is assign
each observation vectoy to every possible stafeprorated by the probability that the
HMM was in state at timet. Luckily, we already know how to do this prorating; the
probability of being in statéat timet was defined in Ch. 6 &&(i), and we saw how
to compute; (i) as part of the Baum-Welch algorithm using the forward andvacd
probabilities. Baum-Welch is an iterative algorithm, anel will need to do the prob-
ability computation o€ (i) iteratively since getting a better observation probabbit
will also help us be more sure of the probabiftyf being in a state at a certain time.
Thus we give equations for computing an updated mean ananesiiando?:

- zLTlmi)_ot
Y&l

52 — L& —w?

| Y& ()

Equations (9.20) and (9.21) are then used in the forwar#+bac (Baum-Welch)
training of the HMM. As we will see, the values gfanda; are first set to some initial
estimate, which is then re-estimated until the numbers eqe:

Multivariate Gaussians

Equation (9.17) shows how to use a Gaussian to compute astactkelihood for a
single cepstral feature. Since an acoustic observatiowvéstr of 39 features, we'll
need to use a multivariate Gaussian, which allows us to mssjgrobability to a 39-
valued vector. Where a univariate Gaussian is defined by a mead a variance
02, a multivariate Gaussian is defined by a mean vegtof dimensionality D and a
covariance matrix, defined below. For a typical cepstral feature vector in LYRCB
is 39:

f(RRE) = ﬁln_'z'exp((x—ufﬂ(ot—uo)

The covariance matriX captures the variance of each dimension as well as the
covariance between any two dimensions.

Recall again from basic statistics that the covariance oframdom variableX
andY is the expected value of the product of their average deviatirom the mean:

N
Z=E[X-EMX))(Y=EY)]) =D PaY) (X —E(X))(Y —E(Y))

i=1

Section 9.4. Computing Acoustic Likelihoods 19

Thus for a given HMM state with mean vecigrand covariance matrix;, and
a given observation vectay, the multivariate Gaussian probability estimate is:

(9.24) (0 —)" Mo —wy))

1
b; =———ex (

The covariance matri¥; expresses the variance between each pair of feature
dimensions. Suppose we made the simplifying assumptianféasures in different
dimensions did not covary, i.e., that there was no cor@iatetween the variances of
different dimensions of the feature vector. In this case caeld simply keep a dis-
tinct variance for each feature dimension. It turns out Ke@ping a separate variance
pneonat for each dimension is equivalent to having a covarianceimttat is diagonal, i.e.
non-zero elements only appear along the main diagonal ofndteéx. The main di-
agonal of such a diagonal covariance matrix contains thawvegs of each dimension,
02,03,...0%;

Let’s look at some illustrations of multivariate Gaussidonsusing on the role of
the full versus diagonal covariance matrix. We'll explorsimple multivariate Gaus-
sian with only 2 dimensions, rather than the 39 that are &}jincASR. Fig. 9.13 shows
three different multivariate Gaussians in two dimensionke leftmost figure shows
a Gaussian with a diagonal covariance matrix, in which thieamaes of the two di-
mensions are equal. Fig. 9.14 shows 3 contour plots comelipgto the Gaussians in
Fig. 9.13; each is a slice through the Gaussian. The leftgragth in Fig. 9.14 shows
a slice through the diagonal equal-variance Gaussian. [ideeis circular, since the
variances are equal in both the X and Y directions.

(@) (b) (c)

Figure 9.13 Three different multivariate Gaussians in two dimensionshe first
two have diagonal covariance matrices, one with equal negian the two dimensions

[é 2] the second with different variances in the two dimensi({n%3 (2)} , and the

third with non-zero elements in the off-diagonal of the atvace matrix:[%3 f } .

The middle figure in Fig. 9.13 shows a Gaussian with a diagooahriance
matrix, but where the variances are not equal. It is cleanfitus figure, and especially
from the contour slice show in Fig. 9.14, that the varianaadse than 3 times greater
in one dimension than the other.

20

Chapter 9. Automatic Speech Recognition

(9.25)

2|
|
o .O
4
2

(@) (b) (c)

Figure 9.14 The same three multivariate Gaussians as in the previougfiguom left
to right, a diagonal covariance matrix with equal variamiagonal with unequal variance
and and nondiagonal covariance. With non-diagonal caveeiaknowing the value on
dimension X tells you something about the value on dimengion

The rightmost graph in Fig. 9.13 and Fig. 9.14 shows a Gawssith a non-
diagonal covariance matrix. Notice in the contour plot ig.F.14 that the contour is
not lined up with the two axes, as it is in the other two plotsc&use of this, knowing
the value in one dimension can help in predicting the valtledérother dimension. Thus
having a non-diagonal covariance matrix allows us to modsailetations between the
values of the features in multiple dimensions.

A Gaussian with a full covariance matrix is thus a more poulenfodel of acous-
tic likelihood than one with a diagonal covariance matribndAndeed, speech recog-
nition performance is better using full-covariance Gaarssithan diagonal-covariance
Gaussians. But there are two problems with full-covaridbaassians that makes them
difficult to use in practice. First, they are slow to compugefull covariance matrix
hasD? parameters, where a diagonal covariance matrix has@niyhis turns out to
make a large difference in speed in real ASR systems. Seaduolicovariance matrix
has many more parameters and hence requires much more thaia than a diagonal
covariance matrix. Using a diagonal covariance model meansan save room for
using our parameters for other things like triphones.

For this reason, in practice most ASR systems use diagowatience. We will
assume diagonal covariance for the remainder of this sectio

Equation (9.24) can thus be simplified to the version in (Ri2@hich instead of
a covariance matrix, we simply keep a mean and variance ébraienension. Equation
(9.25) thus describes how to estimate the likelihbp@:) of a D-dimensional feature
vectoro; given HMM statej, using a diagonal-covariance multivariate Gaussian.

1

D
by(0) = T —=-exp(5112 e

Training a diagonal-covariance multivariate Gaussiangsrgle generalization
of training univariate Gaussians. We’'ll do the same BaunteWéaining, where we
use the value of; (i) to tell us the likelihood of being in stateat timet. Indeed, we’ll
use exactly same equation as in (9.21), except that now wdealing with vectors
instead of scalars; the observatigris a vector of cepstral features, the mean vegtor

Section 9.4. Computing Acoustic Likelihoods 21
is a vector of cepstral means, and the variance v&-&tt}ra vector of cepstral variances.
T .
(9.26) p = 2eblo
2 =2 &)
T i U _\T
(9.27) & = Zt:lzt(')(? M?(Ot H)
2= &)

GAUSSIAN MIXTURE
MODEL

GMM

(9.28)

(9.29)

Gaussian Mixture Models

The previous subsection showed that we can use a multigdBiatissian model to as-
sign a likelihood score to an acoustic feature vector oladiemr. This models each
dimension of the feature vector as a normal distributiont ®8particular cepstral fea-
ture might have a very non-normal distribution; the assumnpdf a normal distribu-
tion may be too strong an assumption. For this reason, wa oftelel the observation
likelihood not with a single multivariate Gaussian, butwatweighted mixture of mul-
tivariate Gaussians. Such a model is calle@aussian Mixture Model or GMM .
Equation (9.28) shows the equation for the GMM function;résulting function is the
sum ofM Gaussians. Fig. 9.15 shows an intuition of how a mixture aisS&ns can
model arbitrary functions.

Figure 9.15 Add figure here showing a mixture of 3 guassians covering etiom with
3 lumps; SHOW differences in VARIANCE, MEAN, AND WEIGHT.

M

f(Xp,) kZ e |zk expi(x— p) T Z (X —)]

Equation (9.29) shows the definition of the output likelildanctionbj (o)

Z i — e ©XF (X Hjm) " Z ey (O — jm)]
V21 |z | :

Let’s turn to training the GMM likelihood function. This maeem hard to do;
how can we train a GMM model if we don’t know in advance whicktaie is sup-
posed to account for which part of each distribution? Reball a single multivariate
Gaussian could be trained even if we didn’t know which stat®anted for each out-
put, simply by using the Baum-Welch algorithm to tell us thelihood of being in
each statg at timet. It turns out the same trick will work for GMMs; we can use
Baum-Welch to tell us the probability of a certain mixtureawenting for the observa-
tion, and iteratively update this probability.

We used thé& function above to help us compute the state probability. Bal-a
ogy with this function, let’s defin&m,(j) to mean the probability of being in stajet
timet with the mth mixture component accounting for the output observationVe
can computéim(j) as follows:

22

Chapter 9. Automatic Speech Recognition

(9.30)

(9.31)

(9.32)

(9.33)

LOGPROB

(9.34)

(9.35)

(9.36)

Eunlj) = >_i—1 Nat—1(j)aij Cjmbjm(0t) Bt ()
ar(F)
Now if we had the values df from a previous iteration of Baum-Welch, we can
use&im(]) to recompute the mean, mixture weight, and covariance usmpllowing
equations:

By — _ia&m()o
Y1 Yme &m(i)
G = _ Siakm()
PONED ST D)
o L& ()(0 — pim) (0 — pim)T
Zim = T M -
> =12 k1 &tm(i)

9.4.3 Probabilities, log probabilities and distance funabns

Up to now, all the equations we have given for acoustic moddtiave used probabil-
ities. It turns out, however, thatlag probability (or logprob) is much easier to work
with than a probability. Thus in practice throughout speestognition (and related
fields) we compute log-probabilities rather than probébdi

One major reason that we can’t use probabilities is numerietflow. To com-
pute a likelihood for a whole sentence, say, we are multigiyinany small proba-
bility values, one for each 10ms frame. Multiplying many lpabilities results in
smaller and smaller numbers, leading to underflow. The log sifmall number like
.0000000%= 108, on the other hand, is a nice easy-to-work-with-numberdiige A
second reason to use log probabilities is computationadspkstead of multiplying
probabilities, we add log-probabilities, and adding isdaghan multiplying. Log-
probabilities are particularly efficient when we are usingu&sian models, since we
can avoid exponentiating.

Thus for example for a single multivariate diagonal-coaace Gaussian model,
instead of computing:

D 2
o T 307
j

we would compute

D 2

1 o L

logbj (o) = -3 > llog(Zn) +02+ (dcizu’d)]
d=1 id

With some rearrangement of terms, we can rewrite this egu#di pull out a constant
C:

1 D .)\2
|Ogbj(0[):C—5272

Section 9.5. The Lexicon and Language Model 23
where C can be precomputed:
1 D
(9.37) C= _EZ (log(2m0) + 0%y)
d=1

In summary, computing acoustic models in log domain meansiehmimpler
computation, much of which can be precomputed for speed.

The perceptive reader may have noticed that equation (8088&% very much
like the equation for Mahalanobis distance (9.11). Indemd way to think about
Gaussian logprobs is as just a weighted distance metric.

A further point about Gaussian pdfs, for those readers vatbutus. Although
the equations for observation likelihood such as (9.17)maogivated by the use of
Gaussian probability density functions, the values théyrrefor the observation like-
lihood, bj(o), are not technically probabilities; they may in fact be geeshan one.
This is because we are computing the valuebfy) at a single point, rather than
integrating over a region. While the total area under thesSiam PDF curve is con-
strained to one, the actual value at any point could be gréaam one. (Imagine a
very tall skinny Gaussian; the value could be greater thanairthe center, although
the area under the curve is still 1.0). If we were integratingr a region, we would be
multiplying each point by its widtllx, which would bring the value down below one.
The fact that the Gaussian estimate is not a true probabtdign’'t matter for choosing
the most likely HMM state, since we are comparing differeati€sians, each of which
is missing this dx factor.

In summary, the last few subsections introduced Gaussiatelndor acoustic
training in speech recognition. Beginning with simple wmigte Gaussian, we ex-
tended first to multivariate Gaussians to deal with the mintensionality acoustic
feature vectors. We then introduced the diagonal covagiaimaplification of Gaus-
sians, and then introduced Gaussians mixtures (GMMSs).

9.5 THE LEXICON AND LANGUAGE MODEL

Since previous chapters had extensive discussions dbfgram language model (Ch. 4)
and the pronunciation lexicon (Ch. 7), in this section we prgfly recall them to the
reader.

Language models for LVCSR tend to be trigrams or even foungrgood toolk-
its are available to build and manipulate them (Stolcke 230ung et al., 2005). Bi-
grams and unigram grammars are rarely used for large-vtargtapplications. Since
trigrams require huge amounts of space, however, languadelsifor memory-constrained
applications like cell phones tend to use smaller contégsve will discuss in Ch. 23,
some simple dialogue applications take advantage of timgiteld domain to use very
simple finite state or weighted-finite state grammars.

Lexicons are simply lists of words, with a pronunciationéaich word expressed
as a phone sequence. Publicly available lexicons like théJGNttionary (CMU,
1993) can be used to extract the 64,000 word vocabulariemomty used for LVCSR.
Most words have a single pronunciation, although some wswdl as homonyms and

24

Chapter 9. Automatic Speech Recognition

frequent function words may have more; the average numbprasfunciations per
word in most LVCSR systems seems to range from 1 to 2.5. SE2.®discusses the
issue of pronunciation modeling.

9.6 SEARCH AND DECODING

DECODING

(9.38)

LMSF

(9.39)

We are now very close to having described all the parts of apbete speech recog-
nizer. We have shown how to extract cepstral features farad; and how to compute
the acoustic likelihood; (o) for that frame. We also know how to represent lexical
knowledge, that each word HMM is composed of a sequence aigty@nd each of
phone of set of subphone states. Finally, in Ch. 4 we showedthaseN-grams to
build a model of word predictability.

In this section we show how to combine all of this knowledgedtve the prob-
lem ofdecoding combining all these probability estimators to producerttost prob-
able string of words. We can phrase the decoding questioriGigen a string of
acoustic observations, how should we choose the string afswshich has the highest
posterior probability?’

Recall from the beginning of the chapter the noisy channadehfor speech
recognition. In this model, we use Bayes rule, with the rtetbiait the best sequence of
words is the one that maximizes the product of two factorangliage model prior and
an acoustic likelihood:

likelihood prior
~ ——
W = argmaxP(O|W) P(W)
WeL
Now that we have defined both the acoustic model (in this @rpphd language
model (in Ch. 4), we are ready to see how to find this maximurbgiodity sequence
of words. First, though, it turns out that we’'ll need to makeadification to Equa-
tion (9.38), because it relies on some incorrect indeperelassumptions. Recall that
we trained a multivariate Gaussian mixture classifier to pota the likelihood of a
particular acoustic observation (a frame) given a paricstate (subphone). By com-
puting separate classifiers for each acoustic frame andpiyirtig these probabilities
to get the probability of the whole word, we are severely uasgémating the proba-
bility of each subphone. This is because there is a lot oficoity across frames; if
we were to take into account the acoustic context, we would hayreater expectation
for a given frame and hence could assign it a higher proltgbMe must therefore
reweight the two probabilities. We do this by add ilaaguage model scaling factor
or LMSF, also called théanguage weight This factor is an exponent on the language
model probabilityP(W). Becausd®(W) is less than one and the LMSF is greater than
one (between 5 and 15, in many systems), this has the effdetonéasing the value of
the LM probability:

W = argmaP(OW)P(W)-MSF
WeL

Section 9.6.

Search and Decoding 25

WORD INSERTION
PENALTY

(9.40)

(9.41)

Reweighting the language model probabilR{W) in this way requires us to
make one more change. This is beca@#) has a side-effect as a penalty for inserting
words. It's simplest to see this in the case of a uniform laggumodel, where every
word in a vocabulary of sizf/| has an equal probabilitﬁ. In this case, a sentence

with N words will have a language model probability‘éf for each of theN words,
for a total penalty of of‘\'\,‘—‘. The largeN is (the more words in the sentence), the more

times this& penalty multiplier is taken, and the less probable the seetevill be. Thus
if (on average) the language model probability decreasass(ng a larger penalty), the
decoder will prefer fewer, longer words. If the language slquobability increases
(larger penalty), the decoder will prefer more shorter vgoithus our use of a LMSF to
balance the acoustic model has the side-effect of decigptistrword insertion penalty.
To offset this, we need to add back in a sepavaied insertion penalty:

W = argmaP(OW)P(W)-MSFwpN
WeL

Since in practice we use logprobs, the goal of our decoder is:

W = argmaxogP(O[W) + LMSFx logP(W) + N x logWIP
WeL

Now that we have an equation to maximize, let’s look at howeoadie. It's the
job of a decoder to simultaneously segment the utteranoaniatds and identify each
of these words. This task is made difficult by variation, biatterms of how words are
pronounced in terms of phones, and how phones are artidulatgcoustic features.
Just to give an intuition of the difficulty of the problem imag a massively simplified
version of the speech recognition task, in which the decisdgven a series of discrete
phones. In such a case, we would know what each phone was eviidfcpaccuracy,
and yet decoding is still difficult. For example, try to deeatie following sentence
from the (hand-labeled) sequence of phones from the Swasntabcorpus (don’t peek
ahead!):

[aydihshherdsahmthihngaxbawmuhvihngrihsenlih]

The answer is in the footnofeThe task is hard partly because of coarticulation
and fast speech (e.g., [d] for the first phongusit). But it’s also hard because speech,
unlike English writing, has no spaces indicating word banes. The true decoding
task, in which we have to identify the phones at the same timmera identify and
segment the words, is of course much harder.

For decoding, we will start with the Viterbi algorithm thagwntroduced in Ch. 6,
in the domain ofligit recognition, a simple task with with a vocabulary size of 11 (the
numberoonethroughnine pluszeroandoh).

Recall the basic components of an HMM model for speech ratiogn

1 |just heard something about moving recently.

26

Chapter 9. Automatic Speech Recognition

Q=0102...0n a set ofstatescorresponding tsubphones

A=apjagy...an1...ann atransition probability matrix A, eacha;j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.
Together,Q and A implement apronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

B =hi(or) A set of observation likelihoods; also called
emission probabilities each expressing the
probability of a cepstral feature vector (observa-
tion o) being generated from subphone siate

The HMM structure for each word comes from a lexicon of woraiumciations.
Generally we use an off-the-shelf pronunciation dictigreurch as the free CMUdict
dictionary described in Ch. 7. Recall from page 9 that the HstMicture for words in
speech recognition is a simple concatenation of phone HM¥dsh phone consisting
of 3 subphone states, where every state has exactly twatioass a self-loop and a
loop to the next phones. Thus the HMM structure for each eligitd in our digit rec-
ognizer is computed simply by taking the phone string fromdittionary, expanding
each phone into 3 subphones, and concatenating togethaddition, we generally
add an optional silence phone at the end of each word, alipthie possibility of paus-
ing between words. We usually define the set of st@ideom some version of the
ARPADbet, augmented with silence phones, and expandedatedtaee subphones for
each phone.

The A andB matrices for the HMM are trained by the Baum-Welch algorithm
in theembedded trainingprocedure that we will describe in Sec. 9.7. For now we'll
assume that these probabilities have been trained.

Fig. 9.16 shows the resulting HMM for digit recognition. Mdhat we've added
non-emitting start and end states, with transitions froengthd of each word to the end
state, and a transition from the end state back to the stdae &t allow for sequences
of digits. Note also the optional silence phones at the erghol word.

Digit recognizers often don’t use word probabilities, sirin most digit situa-
tions (phone numbers or credit card numbers) each digit hasjaal probability of
appearing. But we've included transition probabilitieieach word in Fig. 9.16,
mainly to show where such probabilities would be for othadisi of recognition tasks.
As it happens, there are cases where digit probabilitiesaltem such as in addresses
(which are often likely to end in 0 or 00) or in cultures wheoen® numbers are lucky
and hence more frequent, such as the lucky number ‘8’ in Gkine

Now that we have an HMM, we can use the same forward and Vigégbrithms
that we introduced in Ch. 6. Let's see how to use the forwagdrithm to generate
P(O|W), the likelihood of an observation sequer@eiven a sequence of wordlg;
we’ll use the single word “five”. In order to compute this likeood, we need to sum
over all possible sequences of states; assurimedas the states [f], [ay], and [v], a
10-observation sequence includes many sequences suahfafidtving:

f ayayay ay v v v v v

Section 9.6. Search and Decoding 27

Lexicon

one wahn

two tuw

three thriy

four faor

five fayv Phone HMM

six sihks

seven sehvaxn

eight eyt O O O

nine nayn .,‘,‘,‘,.

zero z iyyr ow . @ @ @ .

o [Wik 14
B-5-5-8-8-8-5-B-H~8

“2ero” o 0 0 ‘IV
88555855888
¢)
(Hohl!) @ é é @

Figure 9.16 An HMM for the digit recognition task. A lexicon specifies tiphone
sequence, and each phone HMM is composed of three subphaclesvéh a Gaussian
emission likelihood model. Combining these and adding diopal silence at the end of
each word, results in a single HMM for the whole task. Notetthasition from the End
state to the Start state to allow digit sequences of arpitesugth.

— —h —h —h —h

ay
f

ay
ay

— —h —h —h —h

ay

ay
f

ay
ay
ay

ay
ay
ay
ay
ay

ay
ay
ay
ay
ay

\Y

\Y

\Y

ay ay Vv
ay ay Vv
ay ay ay

ay v

\Y

< <K < < <

The forward algorithm efficiently sums over this large numbfesequences in
O(N?T) time.

Let’s quickly review the forward algorithm. It is a dynamioogramming algo-
rithm, i.e. an algorithm that uses a table to store interatedialues as it builds up the
probability of the observation sequence. The forward dtigor computes the obser-
vation probability by summing over the probabilities of ptissible paths that could
generate the observation sequence.

Each cell of the forward algorithm trellig;(j) or forwardft, j] represents the
probability of being in statg after seeing the firgtobservations, given the automaton

28

Chapter 9. Automatic Speech Recognition

(9.42)

(9.43)

A. The value of each celi(j) is computed by summing over the probabilities of
every path that could lead us to this cell. Formally, eachegiresses the following
probability:

at(j) = P(01,02...0,G = jIN)

Hereq: = j means “the probability that thi¢h state in the sequence of states is
statej”. We compute this probability by summing over the extensiohall the paths
that lead to the current cell. For a given stqjet timet, the valuent(j) is computed
as:

N-1
ai(j) = Zat—l(i)aij bj(or)
i—1

The three factors that are multiplied in Eq" 9.43 in extegdhre previous paths
to compute the forward probability at timere:

ot—1(i) theprevious forward path probability from the previous time step
ajj thetransition probability from previous statej to current state;

bj(or) thestate observation likelihoodof the observation symbat given
the current statg

The algorithm is described in Fig. 9.17.

function FORWARD(observation®f len T,state-graph returns forward-probability

num-states—- NUM-OF-STATEYstate-graph
Create a probability matriforward[num-states+2,T+2]
forward[0,0]<— 1.0
for each time stepfrom 1to T do
for each statsfrom 1 to num-statesio
forwards,t] — Z forwardis,t — 1] « ags * bs(or)

1 < §< num-states
return the sum of the probabilities in the final columnfofward

Figure 9.17 The forward algorithm for computing likelihood of obserieat sequence
given a word modela[s, §'] is the transition probability from current statéo next states,
andb[s’, o] is the observation likelihood & giveno:. The observation likelihooH[s', o]
is computed by thacoustic model

Let's see a trace of the forward algorithm running on a sifigadi HMM for
the single wordive given 10 observations; assuming 10ms per frame, this comes t
100ms. The HMM structure is shown vertically along the IéfEiy. 9.18, followed by
the first 3 time-steps of the forward trellis. The completdlis is shown in Fig. 9.19,
together withB values giving a vector of observation likelihoods for eawmfe. These
likelihoods could be computed by any acoustic model (GanssiHMMs, etc); in this
example we've hand-created simple values for pedagogicpbses.

Section 9.6.

Search and Decoding 29

Figure 9.18 The first 3 time-steps of the forward trellis computation tfee wordfive
TheA transition probabilities are shown along the left edge Blubservation likelihoods
are shown in Fig. 9.19.

\% 0 0 0.008| 0.0093| 0.0114 | 0.00703| 0.00345| 0.00306| 0.00206| 0.00117
AY 0 0.04 | 0.054| 0.0664| 0.0355 0.016 0.00676 | 0.00208| 0.000532| 0.000109
F 0.8 | 0.32| 0.112| 0.0224| 0.00448| 0.000896 0.000179| 4.48e-05| 1.12e-05| 2.8e-06
Tme[[1 | 2] 3] 4 | 5 | 6 | 7] 8 | 9] 10]
f 08 f 08 f 0.7f 04°f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0. ay 0. ay 0.3 ay 0.8ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4
B v 06gv 06v 04v 03vVv 0.3 v 0.3 v 0.3 v 0.6/ v 0.8 v 0.9
p 04p 04p 02p O01p 0.4 p 0.1 p 0.4 p 0.1 p 0.3 p 0.3
iy 0.1l iy 0.1 iy 0.3/ iy 0.6/iy 0.6 iy 0.6| iy 0.6| iy 0.5| iy 0.5 iy 0.4

Figure 9.19 The forward trellis for 10 frames of the wofite, consisting of 3 emitting statef &y, v), plus non-
emitting start and end states (not shown). The bottom halie@table gives part of thB observation likelihood
vector for the observation at each framep(o|q) for each phone. B values are created by hand for pedagodical
purposes. This table assumes the HMM structurefif@shown in Fig. 9.18, each emitting state having @ .5
loopback probability.

(9.44)

Let's now turn to the question of decoding. Recall the Vitedroding algorithm
from our description of HMMs in Ch. 6. The Viterbi algorithraturns the most likely
state sequence (which is not the same as the most likely vegruaesice, but is often a
good enough approximation) in tin@N2T).

Each cell of the Viterbi trellisy; () represents the probability that the HMM is
in statej after seeing the firgtobservations and passing through the most likely state
sequence;...qi—1, given the automatok. The value of each celf(j) is computed by
recursively taking the most probable path that could leat tisis cell. Formally, each
cell expresses the following probability:

Vt(j) =P(0o,q1...0t—1,01,02...0t, G = J|A)

Like other dynamic programming algorithms, Viterbi fillsokacell recursively.
Given that we had already computed the probability of beireyery state at time— 1,
We compute the Viterbi probability by taking the most proleatf the extensions of

30 Chapter 9. Automatic Speech Recognition

the paths that lead to the current cell. For a given sjatat timet, the valuew(j) is
computed as:

(9.45) w(i) = max v-a(i) aj bj(or)

The three factors that are multiplied in Eq. 9.45 for extegdhe previous paths
to compute the Viterbi probability at timeare:

vi—1(i) theprevious Viterbi path probability from the previous time step
ajj thetransition probability from previous state; to current statej;

bj(o) thestate observation likelihoodof the observation symbat given
the current stat¢

Fig. 9.20 shows the Viterbi algorithm, repeated from Ch. 6.

function VITERBI(observation®f len T,state-graph returns best-path

num-states—- NUM-OF-STATEYstate-graph
Create a path probability matrisiterbi[num-states+2,T+2]
viterbi[0,0]— 1.0
for each time stepfrom 1to T do
for each statsfrom 1 to num-statesio
viterbi[s,t] — max viterbi[s,t — 1] x ags * bs(0r)

1 < < num-states
back-pointefs,tj«— argmax viterbi[s,t—1] * ag s
1 < ¢< num-states)
Backtrace from highest probability state in final columrvidérbi[] and return path

Figure 9.20 Viterbi algorithm for finding optimal sequence of hiddentsta Given
an observation sequence of words and an HMM (as defined by thed B matrices),
the algorithm returns the state-path through the HMM whiggigns maximum likelihood
to the observation sequencals’, g is the transition probability from previous stafeto

current state, andbs(oy) is the observation likelihood afgiveno;. Note that states 0 and
N+1 are non-emitting start and end states.

Recall that the goal of the Viterbi algorithm is to find the bstte sequence
g=(010203. . - G) given the set of observations= (010203...0). It needs to also find
the probability of this state sequence. Note that the Vit@idorithm is identical to the
forward algorithm except that it takes the MAX over the poaid path probabilities
where forward takes the SUM.

Fig. 9.21 shows the computation of the first three time-siefise Viterbi trellis
corresponding to the forward trellis in Fig. 9.18. We havaiagised the made-up
probabilities for the cepstral observations; here we a#lo common convention in
not showing the zero cells in the upper left corner. Note ¢iméy the middle cell in the
third column differs from Viterbi to forward. Fig. 9.19 shewhe complete trellis.

Section 9.6. Search and Decoding 31

Figure 9.21 The first 3 time-steps of the viterbi trellis computation fbe wordfive
TheA transition probabilities are shown along the left edge;Blabservation likelihoods
are shown in Fig. 9.22.

\% 0 0 0.008| 0.0072| 0.00672| 0.00403| 0.00188| 0.00161| 0.000667| 0.000493
AY 0 0.04 | 0.048| 0.0448| 0.0269| 0.0125 | 0.00538| 0.00167| 0.000428| 8.78e-05
F 0.8 | 0.32| 0.112| 0.0224| 0.00448| 0.000896| 0.000179| 4.48e-05| 1.12e-05| 2.8e-06
Time| 1] 2] 3] 4 | 5] 6 | 7] 8] 9 | 10]

f 0.8 f 08 f 07 f 04f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5

ay 0. ay 0. ay 0.3 ay 0.8ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4
B v 0gv 06v 04v 03V 0.3 v 0.3 v 0.3 v 0.6| v 0.8 v 0.9
p 04p 04p 02p O04p 0.4 p 0.4 p 0.4 p 0.4 p 0.3 p 0.3
iy 0.1l iy 0.1 iy 0.3/iy 0.6/iy 0.6 iy 0.6| iy 0.6| iy 0.5| iy 0.5 iy 0.4

Figure 9.22 The Viterbi trellis for 10 frames of the woffil’e, consisting of 3 emitting statef @y, v), plus non-
emitting start and end states (not shown). The bottom halie@table gives part of thB observation likelihood
vector for the observation at each framep(o|q) for each phone. B values are created by hand for pedagodical
purposes. This table assumes the HMM structurefif@shown in Fig. 9.18, each emitting state having a .5
loopback probability.

Note the difference between the final values from the Vitad forward al-
gorithms for this (made-up) example. The forward algorittires the probability of
the observation sequence as .00128, which we get by sumivérfgnal column. The
Viterbi algorithm gives the probability of the observatigeguence given the best path,
which we get from the Viterbi matrix as .000493. The Viterbolpability is much
smaller than the forward probability, as we should expeutesiviterbi comes from a
single path, where the forward probability is the sum oviepaths.

The real usefulness of the Viterbi decoder, of course, hettsi ability to de-
code a string of words. In order to do cross-word decodingneed to augment the
A matrix, which only has intra-word state transitions, witle inter-word probability
of transitioning from the end of one word to the beginning méter word. The digit
HMM model in Fig. 9.16 showed that we could just treat eachdnas independent,
and use only the unigram probability. Higher-ortkegrams are much more common.

32

Chapter 9. Automatic Speech Recognition

PRUNING

BEAM SEARCH

BEAM WIDTH

p(one | one)

two | zero)

p(zero | one)

p(zero | two)

8-5-8-9-8-8-0-0-0-8-8-8

p(zero | zero)

Figure 9.23 A bigram grammar network for the digit recognition task. Thigrams

give the probability of transitioning from the end of one wao the beginning of the next

Fig. 9.23, for example, shows an augmentation of the digitMiivith bigram proba-
bilities.

A schematic of the HMM trellis for such a multi-word decoditagk is shown
in Fig. 9.24. The intraword transitions are exactly as shawhig. 9.21. But now
between words we've added a transition. The transition gty on this arc, rather
than coming from theA matrix inside each word, comes from the language model
P(W).

Once the entire Viterbi trellis has been computed for therattce, we can start
from the most-probable state at the final time step and fotlmvbacktrace pointers
backwards to get the most probable string of states, ancehitberenost probable string
of words. Fig. 9.25 shows the backtrace pointers beingvatbback from the best
state, which happens to bewt, eventually throughvy andw;, resulting in the final
word stringwiwy - - - Wa.

The Viterbi algorithm is much more efficient than expondhtiainning the for-
ward algorithm for each possible word string. Nonethelids,still slow, and much
modern research in speech recognition has focused on sgagulithe decoding pro-
cess. For example in practice in large-vocabulary recegnitve do not consider all
possible words when the algorithm is extending paths from state-column to the
next. Instead, low-probability paths geeuned at each time step and not extended to
the next state column.

This pruning is usually implemented vi@am search(Lowerre, 1968). In beam
search, at each time we first compute the probability of the best (most-probpble
state/pathD. We then prune away any state which is worse tBahy some fixed
threshold beam width) 6. We can talk about beam-search in both the probability
and negative log probability domain. In the probability domany path/state whose

Section 9.6. Search and Decoding 33

QO e o)
W, GO e °

D

Q
w, ©

D

Q
w,

D

’ P :

Figure 9.24 The HMM Viterbi trellis for a bigram language model. The @ntrord

transitions are exactly as shown in Fig. 9.21. Between waoadgotential transition is
added (shown as a dotted line) from the end state of each wditktbeginning state of]
every word, labeled with the bigram probability of the wourp

[]
WN
[]
W2
[J
W
1
0 1 2 3 4 T

Time

Figure 9.25 Viterbi backtrace in the HMM trellis. The backtrace start¢tie final state,
and results in a best phone string from which a word stringrévdd.

probability is less thafi= D is pruned away; in the negative log domain, any path whose
cost is greater the@+ D is pruned. Beam search is implemented by keeping for each

34

Chapter 9. Automatic Speech Recognition

ACTIVE LIST

time step aractive list of states. Only transitions from these words are extendedhwh
moving to the next time step.

Making this beam search approximation allows a significpaes-up at the cost
of a degradation to the decoding performance. Huang et @01(Psuggest that em-
pirically a beam size of 5-10% of the search space is sufficBh95% of the states
are thus not considered. Because in practice most impleiemns of Viterbi use beam
search, some of the literature uses the tbeam searchor time-synchronous beam
searchinstead of Viterbi.

9.7 BVIBEDDED TRAINING

We turn now to see how an HMM-based speech recognition syistér@ined. We've
already seen some aspects of training. In Ch. 4 we showed d¢raih a language
model. In Sec. 9.4, we saw how GMM acoustic models are traiyerligmenting the
EM algorithm to deal with training the means, variances, aetjhts. We also saw
how posterior AM classifiers like SVMs or neural nets coulditaéned, although for
neural nets we haven't yet seen how we get training data inlwdech frame is labeled
with a phone identity.

In this section we complete the picture of HMM training by slirtg how this
augmented EM training algorithm fits into the whole procddsaining acoustic mod-
els. For review, here are three components ofitwustic model

Q=0102...0n a set ofstatescorresponding tsubphones

A=apjagy...an1...ann atransition probability matrix A, eacha;j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.
Together,Q and A implement apronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

B = bi(or) A set of observation likelihoods; also called
emission probabilities each expressing the
probability of a cepstral feature vector (observa-
tion o;) being generated from subphone state

We will assume that the pronunciation lexicon, and thus #EdHMM state
graph structure for each word, is pre-specified as the sitim@ar HMM structures
with loopbacks on each state that we saw in Fig. 9.8 and Fl@. 9n general, speech
recognition systems do not attempt to learn the structutteedhdividual word HMMs.
Thus we only need to train tH& matrix, and we need to train the probabilities of the
non-zero (self-loop and next-subphone) transitions intheatrix.

The simplest possible training methodhisnd-labeled isolated wordtraining,
in which we train separate tH@ and A matrices for the HMMs for each word based
on hand-aligned training data. We are given a training cagfudigits, where each
instance of a spoken digitis stored in a wavefile, and wittstag and end of each word

Section 9.7.

Embedded Training 35

EMBEDDED
TRAINING

FLAT START

and phone hand-segmented. Given such a hand-labeled siataleecan compute tiige
Gaussians observation likelihoods andAtteansition probabilities by merely counting
in the training data! The transition probability are specific to each word, but Bie
Gaussians would be shared across words if the same phorreestizumultiple words.

Unfortunately, hand-segmented training data is rarelyl uisdraining systems
for continuous speech. One reason is that it is very expensiuse humans to hand-
label phonetic boundaries; it can take up to 400 times red i.e. 400 labeling hours
to label each 1 hour of speech). Another reason is that humam's do phonetic
labeling very well for units smaller than the phone; people bad at consistently
finding the boundaries of subphones.

For this reason, speech recognition systems train eachegdvtM embedded
in an entire sentence, and the segmentation and phone &igrare done automat-
ically as part of the training procedure. This entire acioustodel training process
is therefore calle@mbedded training Hand phone segmentation do still play some
role, however, for example for bootstrapping initial syssefor discriminative (SVM;
non-Gaussian) likelihood estimators.

In order to train a simple digits system, we’ll need a trainaorpus of spoken
digit sequences. For simplicity assume that the trainimgu®is separated into sepa-
rate wavefiles, each containing a sequence of spoken digpiseach wavefile, we'll
need to know the correct sequence of digit words. We'll trasoaiate with each wave-
file a transcription (a string of words). We'll also need amirnciation lexicon and a
phoneset, defining a set of (untrained) phone HMMs. Fromrdrestription, lexicon,
and phone HMMs, we can build a “whole sentence” HMM for eactiesgce, as shown
in Fig. 9.26.

We are now ready to train the transition matrix A and outkglihood estimator
B for the HMMs. The beauty of the Baum-Welch-based paradignefbedded train-
ing of HMMs is that this is all the training data we need. Intmadar, we don’t need
phonetically transcribed data. We don’t even need to knoere/leach word starts and
ends. The Baum-Welch algorithm will sum over all possiblgrnsentations of words
and phones, using; (t), the probability of being in statpat timet and generating the
observation sequence O.

We will, however, need an initial estimate for the transitamd observation prob-
abilitiesa;; andbj(o;). The simplest way to do this is withfat start. In flat start, we
first set to zero any HMM transitions that we want to be ‘stuually zero’; transitions
from later phones to earlier phones, for example, Yhgrobability computation in
Baum-Welch includes the previous valuesgf, so those zero values will never change.
Then we make all the rest of the (non-zero) HMM transitionsigigpbable. Thus the
two transitions out of each state (the self-loop and thesttam to the following sub-
phone) each would have a probability of 0.5. For the Gaussifiat start initializes
the mean and variance for each Gaussian identically, toltdtmbmean and variance
for the entire training data.

Now we have initial estimates for th& and B probabilities. For a standard
Gaussian HMM system, we now run multiple iterations of the@aWelch algorithm
on the entire training set. Each iteration modifies the HMMapaeters, and we stop
when the system converges. During each iteration, as disdua Ch. 6, we compute
the forward and backward probabilities for each senteneengihe initial A and B

36 Chapter 9. Automatic Speech Recognition

Transcription \ Nine four oh two two Wavefil

v Y
one wahn
two tuw

three thriy BT T T T

_13_1 Lk
eight eyt VvVvVvVvVnyVy
nne nayn
zero ziyrow
oh ow

Lexicon

Feature Extraction

1

‘ naynfaorowtuwtuw Trrrrvvre

- §38458446-450888 & ||||11111111

Figure 9.26 The input to the embedded training algorithm; a wavefile aksp digits with a corresponding
transcription. The transcription is converted into a rawMMeady to be aligned and trained against the cepstral
features extracted from the wavefile.

probabilities, and use them to re-estimate ArendB probabilities. We also apply the
various modifications to EM discussed in the previous sadtiocorrectly update the
Gaussian means and variances for multivariate GaussiamsuiNdiscuss in Sec. 9.10
how to modify the embedded training algorithm to handle omgtGaussians.

In summary, the basiembedded training procedureis as follows:

Given: phoneset, pronunciation lexicon, and the tranedriiavefiles
1. Build a“whole sentence” HMM for each sentence, as showAign9g.26.

2. Initialize A probabilities to 0.5 (for loop-backs or for the correct next
subphone) or to zero (for all other transitions).

3. Initialize B probabilities by setting the mean and variance for each
Gaussian to the global mean and variance for the entirdricpget.

4. Run multiple iterations of the Baum-Welch algorithm.

The Baum-Welch algorithm is used repeatedly as a compoifitie @mbedded
training process. Baum-Welch computgéi), the probability of being in stateat
time t, by using forward-backward to sum over all possible patlas were in state
i emitting symbolo; at timet. This lets us accumulate counts for re-estimating the
emission probabilityj(o;) from all the paths that pass through statat timet. But
Baum-Welch itself can be time-consuming.

There is an efficient approximation to Baum-Welch trainimatimakes use of the

vitersi TRANING Viterbi algorithm. InViterbi training , instead of accumulating counts by a sum over

Section 9.8.

Evaluation: Word Error Rate 37

FORCED ALIGNMENT

(9.46)

(9.47)

all paths that pass through a statat timet, we approximate this by only choosing
the Viterbi (most-probable) path. Thus instead of running & every step of the
embedded training, we repeatedly run Viterbi.

Running the Viterbi algorithm over the training data in thigy is calledforced
Viterbi alignment or justforced alignment In Viterbi training (unlike in Viterbi
decoding on the test set) we know which word string to assigeatch observation
sequence, So we can ‘force’ the Viterbi algorithm to paseubh certain words, by
setting theajjs appropriately. A forced Viterbi is thus a simplificationtbk regular
Viterbi decoding algorithm, since it only has to figure o ttorrect state (subphone)
sequence, but doesn't have to discover the word sequenegesilt is dorced align-
ment: the single best state path corresponding to the trainirsgmation sequence.
We can now use this alignment of HMM states to observatiorsctumulate counts
for re-estimating the HMM parameters.

The equations for retraining a (non-mixture) Gaussian feoYfiterbi alignment
are as follows:

T
1

b = = s.t.q is statel

Hi T ;:lot O

-
67 = =) (0 —p)? s.t.q is statel

t=1

=~

We saw these equations already, as (9.18) and (9.19) on gagéé&n we were
‘imagining the simpler situation of a completely labelegining set'.

It turns out that this forced Viterbi algorithm is also usadtie embedded train-
ing of hybrid models like HMM/MLP or HMM/SVM systems. We begivith an
untrained MLP, and using its noisy outputs as Bhealues for the HMM, perform a
forced Viterbi alignment of the training data. This aligrmevill be quite errorful,
since the MLP was random. Now this (quite errorful) Viterbgament give us a la-
beling of feature vectors with phone labels. We use thisliafyeo retrain the MLP.
The counts of the transitions which are taken in the forcaghaients can be used to
estimate the HMM transition probabilities. We continuesthill-climbing process of
neural-net training and Viterbi alignment until the HMM pareters begin to converge.

9.8 EVALUATION: WORD ERRORRATE

WORD ERROR

The standard evaluation metric for speech recognitioresystis thavord error rate.
The word error rate is based on how much the word string retlhy the recognizer
(often called theéhypothesizedword string) differs from a correct aeferencetran-
scription. Given such a correct transcription, the firspstecomputing word error is
to compute thaninimum edit distance in words between the hypothesized and cor-
rect strings, as described in Ch. 3. The result of this coatfmrt will be the minimum
number of wordsubstitutions, wordinsertions, and worddeletionsnecessary to map
between the correct and hypothesized strings. The word ext® (WER) is then de-

38 Chapter 9. Automatic Speech Recognition

fined as follows (note that because the equation includestioss, the error rate can
be greater than 100%):

Insertionst+ Substitutions- Deletions

Word Error Rate=100x Total Words in Correct Transcript

We sometimes also talk about the SER (Sentence Error Rdi@htells us how
many sentences had at least one error:

of sentences with at least one word error

Sentence Error Rate= 100x
total # of sentences

ALIGNMENTS Here is an example of thalignmentsbetween a reference and a hypothesized
utterance from the CALLHOME corpus, showing the counts usedmpute the word
error rate:

REF: i ** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTRIRS last night
HYP: i GOT IT TO the **** FULLEST i LOVE TO portable FORM OF ST®ES last night
Eval: | I S D S S S I S S

This utterance has six substitutions, three insertiors ome deletion:

Word Error Rate — 100%;1 — 76.9%

The standard method for implementing minimum edit distagmog computing
word error rates is a free script called! i t e, available from the National Institute
of Standards and Technologies (NIST) (NIST, 2005kl i t e is given a series of
reference (hand-transcribed, gold-standard) sentemzka aatching set of hypothe-
sis sentences. Besides performing alignments, and congpwtird error rate, sclite
performs a number of other useful tasks. For example, itsgirgeful information for
error analysis, such as confusion matrices showing which words are oftanendg-
nized for others, and gives summary statistics of words whie often inserted or
deletedscl i t e also gives error rates by speaker (if sentences are labmisgéaker

SENTENCEERROR jd), as well as useful statistics like tkentence error rate the percentage of sentences
with at least one word error.

Finally,scl i t e can be used to compute significance tests. Suppose we make
some changes to our ASR system and find that our word errohestelecreased by
1%. In order to know if our changes really improved things,need a statistical test
to make sure that the 1% difference is not just due to chanke.sfandard statistical
test for determining if two word error rates are differentie Matched-Pair Sentence
Segment Word Error (MAPSSWE) test, which is also availabkedl i t e.

The MAPSSWE test is a parametric test that looks at the @éiffez between the
number of word errors the two systems produce, averagedsanmumber of segments.
The segments may be quite short or as long as an entire wt&eliargeneral we want to
have the largest number of (short) segments in order tdyuk# normality assumption
and for maximum power. The test requires that the errorsérsegment be statistically
independent of the errors in another segment. Since ASRmgdend to use trigram

Section 9.9.

Advanced Search Algorithms 39

(9.48)

(9.49)

LMs, this can be approximated by defining a segment as a rdgianded on both
sides by words that both recognizers get correct (or tuerance boundaries).

Here's an example from (?) with four segments, labeled inalomumerals:
EXAMPLE TO BE REPLACED

| Il 111 IV
REF: |it was|the best|of|[times it|was the worst|of tines| |it was

I I I I I (.
SYS A |ITS |the best|of|tines it|IS the worst |of times|ORlit was

I I I I I (.
SYS B:|it was|the best| |times it|WON the TEST |[of tinmes| |it wa

In region |, system A has 2 errors (a deletion and an insérém system B
has O; in region Il system A has 1 (substitution) error anstaym B has 2. Let's
defineN}\ is the number of errors made on segmieby systemA, N,i3 is the number
of errors made on segmenby systemB, andZ = N, — Ng,i = 1,2,---,n wheren
is the number of segments. For example we can see above thaetluence of
values is{2,—1,—1,1}. Intuitively, if the two systems are identical, we would exp
the average difference, i.e. the average ofzhalues, to be zero. If we call the true
average of the differencesw, we would thus like to know whethenu, = 0. Following
closely the original proposal and notation of Gillick andxQ@989), we can estimate
the true average from our limited samplepas="> "' , Z;/n.

The estimate of the variance of tAgs is:

1 n
2 _ : 2
0z2=h"1 i§=1 (Z — 1)

Let

Hz
0z/y/N
For a large enough (> 50) W will approximately have a normal distribution with tini
variance. The null hypothesis Ky : Y4, = 0, and it can thus be rejected i&®(Z >
|w|) < 0.05 (two-tailed) oiP(Z > |w|) < 0.05 (one-tailed). wherg is standard normal
andw is the realized valu®V; these probabilities can be looked up in the standard
tables of the normal distribution.

Could we improve on word error rate as a metric? It would be nfior exam-
ple, to have something which didn’t give equal weight to gweord, perhaps valuing
content words likeTuesdaymore than function words lika or of. While researchers
generally agree that this would be a good idea, it has proiféidult to agree on a
metric that works in every application of ASR. For dialogystems, however, where
the desired semantic output is more clear, a metric catbedept error ratédhas proved
extremely useful, and will be discussed in Ch. 23 on pf2@e

9.9 ADVANCED SEARCHALGORITHMS

There are two main limitations of the Viterbi decoder. Fitke Viterbi decoder does
not actually compute the sequence of words which is mostgtriebgiven the input

40

Chapter 9. Automatic Speech Recognition

(9.50)

(9.51)

VITERBI
APPROXIMATION

STACK DECODER

A*

A* SEARCH

acoustics. Instead, it computes an approximation to this:sequence dftates(i.e.,
phonesor subphoneswhich is most probable given the input. More formally, léca
that the true likelihood of an observation seque®de computed by the forward algo-
rithm by summing over all possible paths:

P(OW) = > P(O,SW)
Ses]

The Viterbi algorithm only approximates this sum by using gnobability of the best
path:

P(OW) =~ gnengxP(O, S\w)

It turns out that thig/iterbi approximation is not too bad, since the most prob-
able sequence of phones usually turns out to correspond tadist probable sequence
of words. But not always. Consider a speech recognitioregsysthose lexicon has
multiple pronunciations for each word. Suppose the comect sequence includes a
word with very many pronunciations. Since the probabditieaving the start arc of
each word must sum to 1.0, each of these pronunciation-giaitisgh this multiple-
pronunciation HMM word model will have a smaller probalyilihan the path through
a word with only a single pronunciation path. Thus becauseviterbi decoder can
only follow one of these pronunciation paths, it may igndvie tvord in favor of an in-
correct word with only one pronunciation path. In esserve Miterbi approximation
penalizes words with many pronunciations.

A second problem with the Viterbi decoder is that it is impbkesor expensive
for it to take advantage of many useful knowledge sources.ekample the Viterbi
algorithm as we have defined it cannot take complete advaitfaany language model
more complex than a bigram grammar. This is because of therfantioned earlier
that a trigram grammar, for example, violates tty@mamic programming invariant.
Recall that this invariant is the simplifying (but incortpassumption that if the ulti-
mate best path for the entire observation sequence happgodgtirough a statg, that
this best path must include the best path up to and includatg®. Since a trigram
grammar allows the probability of a word to be based on thepwmewious words, it is
possible that the best trigram-probability path for theteece may go through a word
but not include the best path to that word. Such a situatiahdcoccur if a particular
word wy has a high trigram probability givemy, w;, but that conversely the best path
to wy didn't includews (i.e., P(wy|wg, w;) was low for allg). Advanced probabilistic
LMs like SCFGs also violate the same dynamic programmingrapsions.

There are two solutions to these problems with Viterbi d@ugpdrhe most com-
mon is to modify the Viterbi decoder to return multiple pdiaehutterances, instead
of just the single best, and then use other high-level laggmaodel or pronunciation-
modeling algorithms to re-rank these multiple outputs ¢hvigartz and Austin, 1991;
?; Murveit et al., 1993).

The second solution is to employ a completely different d@ug algorithm,
such as thetack decoder or A* decoder (Jelinek, 1969; Jelinek et al., 1975). This is
an example of th&* searchdeveloped in artificial intelligence, although stack decod

Section 9.9.

Advanced Search Algorithms 41

N-BEST

RESCORED

ing actually came from the information theory literatureldhe link with Al best-first
search was noticed only later (Jelinek, 1976).

9.9.1 Multipass Decoding:N-best lists and lattices

In multiple-pass decodingwe break up the decoding process into two stages. In the
first stage we use fast, efficient knowledge sources or dlgos to perform a non-
optimal search. So for example we might use an unsophistidait time-and-space
efficient language model like a bigram, or use simplified aticunodels. In the second
decoding pass we can apply more sophisticated but sloweddegalgorithms on a
reduced search space. The interface between these passeN-Isest list or word
lattice.

The simplest algorithm for multipass decoding is to modify Viterbi algorithm
to return theN-bestsentences (word sequences) for a given speech input. Sufigos
example a bigram grammar is used with suchNabest-Viterbi algorithm to return
the 1000 most highly-probable sentences, each with theitikélihood and LM prior
score. This 1000-best list can now be passed to a more siophést language model
like a trigram grammar. This new LM is used to replace the diigiLM score of
each hypothesized sentence with a new trigram LM probgbilihese priors can be
combined with the acoustic likelihood of each sentence ttergte a new posterior
probability for each sentence. Sentences are tessoredand re-ranked using this
more sophisticated probability. Fig. 9.27 shows an iruifior this algorithm.

Simple Smarter
Knowledge Knowledge
Source Source
N-Best List
h = - —IN\ 1-Best Utterance
Speec N ?Alice was beginning to get.)
inpUt > N-Best ;:Eruv:rr{orl]:?rﬁhf:ngq:gﬁ'ﬁd___ . ' If music be the
. Decoder ?If music be the food of love... Rescorlng ' food of love...
If Toliastljco?tleot\?ee 4 2If music be the foot of dove.., ¥

Figure 9.27 The use olN-best decoding as part of a two-stage decoding model. Effi-
cient but unsophisticated knowledge sources are useduimriteN-best utterances. This
significantly reduces the search space for the second padsisnavhich are thus free tg
be very sophisticated but slow.

There are a number of algorithms for augmenting the Viteldgi@thm to gen-
erateN-best hypotheses. It turns out that there is no polynonma-aidmissible al-
gorithm for finding theN most likely hypotheses (?). There are however, a number
of approximate (non-admissible) algorithms; we will irdte just one of them, the
“Exact N-best” algorithm of Schwartz and Chow (1990). In ExBebest, instead of
each state maintaining a single path/backtrace, we mainfatoN different paths for
each state. But we'd like to insure that these paths corresfodifferent word paths;
we don’t want to waste ouX paths on different state sequences that map to the same

42

Chapter 9. Automatic Speech Recognition

WORD LATTICE

words. To do this, we keep for each path therd history, the entire sequence of
words up to the current word/state. If two paths with the sam history come to a
state at the same time, we merge the paths and sum the pa#bpitads. To keep the
N best word sequences, the resulting algorithm req@X@$ times the normal Viterbi
time.

AM LM

Rank Path logprob logproh
1. it's an area that's naturally sort of mysterious -7193.53 -20.25
2. that’s an area that's naturally sort of mysterious -7292. -21.11
3. it's an area that's not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189. -22.08
5. there’s an area that's naturally sort of mysterious -7398 -21.34
6. that's an area that’s not really sort of mysterious -7220. -19.77
7. the scenario that’s naturally sort of mysterious -72p5.4 -21.50
8. so it's an area that's naturally sort of mysterious -7995. -21.71
9. that scenario that's not really sort of mysterious -7247. -20.70
10. there’s an area that's not really sort of mysterious 6/2P -20.01

Figure 9.28 An example 10-Best list from the Broadcast News corpus,ywed by the

CU-HTK BN system (thanks to Phil Woodland). Logprobs use dothe language model

scale factor (LMSF) is 15.

The result of any of these algorithms is Biabest list like the one shown in
Fig. 9.28. In this case the correct hypothesis is the first bueof course the reason
to useN-best lists is that isn’t always the case. Each sentence Mrbest list is also
annotated with an acoustic model probability and a languaggel probability. This
allows a second-stage knowledge source to replace oness tho probabilities with
an improved estimate.

One problem with amN-best list is that whel is large, listing all the sentences
is extremely inefficient. Another problem is thidtbest lists don’t give quite as much
information as we might want for a second-pass decoder. x@mple, we might want
distinct acoustic model information for each word hypotbes that we can reapply a
new acoustic model for the word. Or we might want to have atédl different start
and end times of each word so that we can apply a new duratidieimo

For this reason, the output of a first-pass decoder is usaatigre sophisticated
representation called word lattice (Murveit et al., 1993; Aubert and Ney, 1995).
A word lattice is a directed graph that efficiently represemuich more information
about possible word sequences.In some systems, nodegjrajiteare words and arcs
are transitions between words. In others, arcs represaudthypotheses and nodes are
pointsin time. Let's use this latter model, and so each gnesents lots of information
about the word hypothesis, including the start and end tthee acoustic model and
language model probabilities, the sequence of phones {tmeipciation of the word),
or even the phone durations. Fig. 9.29 shows a sample latticesponding to thisl-
best list in Fig. 9.28. Note that the lattice contains marsjid¢t links (records) for the
same word, each with a slightly different starting or endinge. Such lattices are not
produced fromN-best lists; instead, a lattice is produced during firsisglecoding by

Section 9.9.

Advanced Search Algorithms 43

LATTICE ERROR
RATE

ORACLE

LATTICE DENSITY

including some of the word hypotheses which were activehignlteam) at each time-
step. Since the acoustic and language models are contegident, distinct links
need to be created for each relevant context, resultingange Inumber of links with
the same word but different times and contesbest lists like Fig. 9.28 can also be
produced by first building a lattice like Fig. 9.29 and theating through the paths to
produceN word strings.

SO IT'S
—

ms .
TH.@. NATURALLY,

THAT'S

_NOT . SORT

[l e Sv—w
gy =eREALLYT
s S ' OF

o—2 Pdd — o A
— e = — ="
SCENARIO P MYSTERIOUS

[—
es————————ge

Figure 9.29 Word lattice corresponding to tié-best list in Fig. 9.28. The arcs beneath
each word show the different start and end times for each Wwegpdthesis in the lattice;
for most of these we've shown schematically how each wordthgsis must start at the
end of a previous hypothesis. Not shown in this figure aretbestic and language model|
probabilities that decorate each arc.

The fact that each word hypothesis in a lattice is augmergpdrately with its
acoustic model likelihood and language model probabilitpwes us to rescore any
path through the lattice, using either a more sophisticleguage model or a more
sophisticated acoustic model. As wiltbest lists, the goal of this rescoring is to
replace thel-best utterancewith a different utterance that perhaps had a lower score
on the first decoding pass. For this second-pass knowledgessto get perfect word
error rate, the actual correct sentence would have to besifattice orN-best list. If
the correct sentence isn't there, the rescoring knowledgecs can't find it. Thus it
is important when working with a lattice &-best list to consider the baselifedtice
error rate (Woodland et al., 1995; Ortmanns et al., 1997): the lowemnidomord error
rate from the lattice. The lattice error rate is the word erete we get if we chose
the lattice path (the sentence) that has the lowest word exte. Because it relies on
perfect knowledge of which path to pick, we call this @macle error rate, since we
need some oracle to tell us which sentence/path to pick.

Another important lattice concept is thadtice density, which is the number of
edges in a lattice divided by the number of words in the refeedranscript. As we saw
schematically in Fig. 9.29, real lattices are often extrigrdense, with many copies of
individual word hypotheses at slightly different start sl times. Because of this

44

Chapter 9. Automatic Speech Recognition

WORD GRAPH

(9.52)

density, lattices are often pruned (?, ?).

Besides pruning, lattices are often simplified into a défeay more schematic
kind of lattice that is sometimes calledvweord graph or finite state machine al-
though often it’s still just referred to as a word lattice these word graphs, the timing
information is removed and multiple overlapping copieshaf same word are merged.
The timing of the words is left implicit in the structure ofatlyraph. In addition, the
acoustic model likelihood information is removed, leavimgy the language model
probabilities. The resulting graph is a weighted FSA, which natural extension of
an N-gram language model; the word graph corresponding to F& B shown in
Fig. 9.30. This word graph can in fact be used as the languagkehfor another de-
coding pass. Since such a wordgraph language model vastiicts the search space,
it can make it possible to use a complicated acoustic modiehnt too slow to use in
first-pass decoding.

SO IT's

AREA THAT’S NATURALLY

SORT OF MYSTERIOUS

REALLY

THAT SCENARIO

Figure 9.30 Word graph corresponding to ti-best list in Fig. 9.28. Each word hy
pothesis in the lattice also has language model proba&sil{tiot shown in this figure).

A final type of lattice is used when we need to represent theepos probabil-
ity of individual words in a lattice. It turns out that in spderecognition, we almost
never see the true posterior probability of anything, destie fact that the goal of
speech recognition is to compute the sentence with the mamia posteriori proba-
bility. This is because in the fundamental equation of sheecognition we ignore the
denominator in our maximization:

W= argmaxw = argma®(O|W) P(W)
WeL P(O) WeL

The product of the likelihood and the priomst the posterior probability of the
utterance. Why does it matter that we don’t have a true pribty@bThe reason is that
without having true probability, we can choose the best tiypsis, but we can’t know
how good it is. Perhaps the best hypothesis is still realty, bad we need to ask the
user to repeat themselves. If we had the posterior probabfla word it could be used
as a confidence metric, since the posterior is an absoluterrtitan relative measure.
We'll return to the use of confidence in Ch. 23.

In order to compute the posterior probability of a word, Wwe#8ed to normalize
over all the different word hypotheses available at a paldicpoint in the utterances.
At each point we’ll need to know which words are competing onfasable. The

Section 9.9. Advanced Search Algorithms 45

GFHSION - lattices that show these sequences of word confusions Bee canfusion networks
MESHES meshessausagesor pinched lattices A confusion network consists of a sequence of
sausaces word positions. At each position is a set of mutually exalasivord hypotheses. The
pincHEDLATTICES hetwork represents the set of sentences that can be crgatbddsing one word from
each position.

.98

AN 99 AREA THAT'S NATURALLY SORT OF MYSTERIOUS

007 THAT

Figure 9.31 Confusion network corresponding to the word lattice in B@9. Each
word is associated with a posterior probability. Note th@ne of the words from the
lattice have been pruned away. (Probabilities computeth®BRI-LM toolkit).

Note that unlike lattices or word graphs, the process ofttooting a confusion
network actually adds paths that were not in the origingicket Confusion networks
have other uses besides computing confidence. They werimallygproposed for
use in minimizing word error rate, by focusing on maximizingproving the word
posterior probability rather than the sentence likelihd@dcently confusion networks
have been used to train discriminative classifiers thaingjstsh between words.

Roughly speaking, confusion networks are built by takirgdiferent hypothe-
sis paths in the lattice and aligning them with each othee fdsterior probability for
each word is computing by first summing over all paths passingugh a word, and
then normalizing by the sum of the probabilities of all cortiqpg words. For further
details see Mangu et al. (2000), Evermann and Woodland {26@@nar and Byrne
(2002), Doumpiotis et al. (2003b).

Standard publicly available language modeling toolkike ISRI-LM (Stolcke,
2002) htt p: / / www. speech. sri.com proj ects/sril nm)andthe HTK lan-
guage modeling toolkit (Young et al., 2009t p: / / ht k. eng. cam ac. uk/)
can be used to generate and manipulate lattNdsgst lists, and confusion networks.

P There are many other kinds of multiple-stage search, suttteésrward-backward
search algorithm (not to be confused with fevard-backward algorithm for HMM
parameter setting) (Austin et al., 1991) which performsnapse forward search fol-
lowed by a detailed backward (i.e., time-reversed) search.

9.9.2 A Decoding

Recall that the Viterbi algorithm approximated the forwaaimputation, computing
the likelihood of the single best (MAX) path through the HMMhile the forward al-
gorithm computes the likelihood of the total (SUM) of all thaths through the HMM.
The A" decoding algorithm allows us to use the complete forwardaldity, avoiding

46

Chapter 9. Automatic Speech Recognition

PRIORITY QUEUE

FAST MATCH

the Viterbi approximation. Adecoding also allows us to use any arbitrary language
model.

The A* decoding algorithm is a best-first search of the tree thaliditly defines
the sequence of allowable words in a language. Considerdbét Fig. 9.32, rooted in
the START node on the left. Each leaf of this tree defines ontesee of the language;
the one formed by concatenating all the words along the path START to the leaf.
We don't represent this tree explicitly, but the stack déegdlgorithm uses the tree
implicitly as a way to structure the decoding search.

1S can't—— helieve

2 .
underwrlter\
typically lives

START:

Figure 9.32 A visual representation of the implicit lattice of allowatlword sequences
that defines a language. The set of sentences of a languagetiflarge to represen
explicitly, but the lattice gives a metaphor for exploringfixes.

The algorithm performs a search from the root of the tree tdvibe leaves,
looking for the highest probability path, and hence the &&ilprobability sentence.
As we proceed from root toward the leaves, each branch Igavigiven word node
represents a word which may follow the current word. Eachhebé branches has
a probability, which expresses the conditional probabdit this next word given the
part of the sentence we've seen so far. In addition, we wél the forward algorithm
to assign each word a likelihood of producing some part obtheerved acoustic data.
The A* decoder must thus find the path (word sequence) from the eaotdaf which
has the highest probability, where a path probability isrdefias the product of its
language model probability (prior) and its acoustic matchhe data (likelihood). It
does this by keeping riority queue of partial paths (i.e., prefixes of sentences, each
annotated with a score). In a priority queue each elemerd Basre, and theopoper-
ation returns the element with the highest score. Thdécoding algorithm iteratively
chooses the best prefix-so-far, computes all the possiltenmeds for that prefix, and
adds these extended sentences to the queue. Fig. 9.33 $leopmriplete algorithm.

Let's consider a stylized example of ari Aecoder working on a waveform for
which the correct transcription imusic be the food of lovéig. 9.34 shows the search
space after the decoder has examined paths of length onéHeroot. Afast match
is used to select the likely next words. A fast match is one ofaas of heuristics
designed to efficiently winnow down the number of possibléofaing words, often
by computing some approximation to the forward probabil#ge below for further
discussion of fast matching).

At this point in our example, we've done the fast match, gekka subset of the

Section 9.9.

Advanced Search Algorithms a7

function STACK-DECODING) returns min-distance

Initialize the priority queue with a null sentence.

Pop the best (highest score) sentesoff the queue.

If (sis marked end-of-sentence (EOS)) outpand terminate.

Get list of candidate next words by doing fast matches.

For each candidate next wowd
Create a new candidate sentesgew.
Use forward algorithm to compute acoustic likelihdodf s+ w
Compute language model probabilyof extended sentenset+ w
Compute “score” fos+w (a function ofL, P, and ??7?)
if (end-of-sentence) set EOS flag o+ w.
Inserts+ w into the queue together with its score and EOS flag

Figure 9.33 The A* decoding algorithm (modified from Paul (1991) and Jelin
(1997)). The evaluation function that is used to computestt@e for a sentence is nat
completely defined here; possible evaluation functiongleeussed below.

14
~

possible next words, and assigned each of them a score. TrideAlice has the highest
score. We haven't yet said exactly how the scoring works.

P(acoustic | "if*) =
forward probability

If
P("if" | START) 30
Alice
4
(none) Every
1 21
P(in|START)
In
4

Figure 9.34 The beginning of the search for the senteliaausic be the food of love
At this early stageiliceis the most likely hypothesis. (It has a higher score tharother
hypotheses.)

Fig. 9.35a show the next stage in the search. We have expémelatice node.
This means that thalice node is no longer on the queue, but its children are. Note that
now the node labelei actually has a higher score than any of the childreAlafe.
Fig. 9.35b shows the state of the search after expanding ttegle, removing it, and
addingif musig if muscle andif messyon to the queue.

We clearly want the scoring criterion for a hypothesis todlated to its proba-
bility. Indeed it might seem that the score for a string of é&®, given an acoustic

48

Chapter 9. Automatic Speech Recognition

P(acoustics| "if") =
forward probability

P(acoustic | music) =
forward probability

if
P("if" [START) 30 was
y wants
b 24
(none) Every walls
1 24 2
In
4
(a) (b)

Figure 9.35 The next steps of the search for the sentdhiorisic be the food of lovén
(a) we've now expanded thlice node and added three extensions which have a relatiyely
high score; the highest-scoring nodeSIBART if which is not along th&TART Alicgoath
at all. In (b) we've expanded thié& node. The hypothesiSTART if musithen has the
highest score.

stringyi should be the product of the prior and the likelihood:
P(y; W) P(wy)

Alas, the score cannot be this probability because the pilityavill be much
smaller for a longer path than a shorter one. This is due tenplsifact about prob-
abilities and substrings; any prefix of a string must havegadr probability than the
string itself (e.g., P(START the ...) will be greater tharSsPART the book)). Thus
if we used probability as the score, thé decoding algorithm would get stuck on the
single-word hypotheses.

Instead, we use the*fevaluation function (Nilsson, 1980; Pearl, 1984) p),
given a partial patfp:

f*(p) = g(p) +h*(p)

f*(p) is theestimatedscore of the best complete path (complete sentence) which
starts with the partial path. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. Thieaigorithm builds this
estimate from two components:

e g(p) is the score from the beginning of utterance to the end of drégh path
p. This g function can be nicely estimated by the probabilitypfiven the
acoustics so far (i.e., & O|W)P(W) for the word string/V constitutingp).

e h*(p) is an estimate of the best scoring extension of the parttaltoethe end of
the utterance.

Coming up with a good estimate bf is an unsolved and interesting problem.
A very simple approach is to chose hhestimate which correlates with the number

Section 9.10. Advanced Acoustic Models: Triphones 49

of words remaining in the sentence (Paul, 1991). Slightharger is to estimate the
expected likelihood per frame for the remaining frames, mndtiple this by the esti-
mate of the remaining time. This expected likelihood can trapmuted by averaging
the likelihood per frame in the training set. See Jelinel@{@Jor further discussion.

Tree Structured Lexicons

We mentioned above that both thé and various other two-stage decoding algorithms
require the use of éast match for quickly finding which words in the lexicon are
likely candidates for matching some portion of the acousiput. Many fast match
TREE-STRUCTURER algorithms are based on the use dfee-structured lexicon, which stores the pronun-
ciations of all the words in such a way that the computatiothefforward probability
can be shared for words which start with the same sequenchafeg. The tree-
structured lexicon was first suggested by Klovstad and Miogits(1975); fast match
algorithms which make use of it include Gupta et al. (198&hIRet al. (1992) in the
context of A decoding, and Ney et al. (1992) and Nguyen and Schwartz ji0%8e
context of Viterbi decoding. Fig. 9.36 shows an example aka-structured lexicon
from the Sphinx-Il recognizer (Ravishankar, 1996). Eaele oot represents the first
phone of all words beginning with that context dependenngh@hone context may
or may not be preserved across word boundaries), and edds Essociated with a

word.

DD(N,#) | ABOUND

ABOUT

ABOVE

B(AX,AH) |{ AH(B.V) |—{VIAHX] |

Figure 9.36 A tree-structured lexicon from the Sphinx-II recognizeitdaRavishankar
(1996)). Each node corresponds to a particular triphonesiigatly modified version of
the ARPADbet; thus EY(B,KD) means the phone EY preceded by adfellowed by the
closure of a K.

9.10 ADVANCED ACOUSTICMODELS. TRIPHONES

In our discussion in Sec. 9.4 of how the HMM architecture ipliegal to ASR, we
showed how an HMM could be created for each phone, with isetlemitting states
corresponding to subphones at the beginning, middle, ada&the phone. We thus

50

Chapter 9. Automatic Speech Recognition

COARTICULATION

CI PHONE
CD PHONES
TRIPHONE

represent each subphone (“beginning of [eh]”, “beginnindt]d, “middle of [ae]”)
with its own GMM.

There is a problem with using a fixed GMM for a subphone likegibaing of
[eh]”. The problem is that phones vary enormously based ephiones on either side.
This is because the movement of the articulators (tongps, lielum) during speech
production is continuous and is subject to physical comdgdike momentum. Thus
an articulator may start moving during one phone to get ifaagin time for the next
phone. In Ch. 7 we defined the wocdarticulation as the movement of articulators
to anticipate the next sound, or perseverating movememt fh@ last sound. Fig. 9.37
shows coarticulation due to neighboring phone contextthrowel [eh].

5000

‘MA

1

Frequency (Hz)

‘
0 1.19175
Time (s)

WED YELL BEN

Figure 9.37 The vowel [eh] in three different triphone contexts, in therdswed yell,
andBen Notice the marked differences in the second formant (F#ebeginning and
end of the [eh] in all three cases.

In order to model the marked variation that a phone exhibitsfferent contexts,
most LVCSR systems replace the idea of a context-indeperi@&mphone) HMM
with a context-dependent @D phones The most common kind of context-dependent
model is @riphone HMM (Schwartz et al., 1985; Deng et al., 1990). A triphone lod
represents a phone in a particular left and right context.eample the triphonfy-
eh+l] means “[eh] preceded by [y] and followed by [I]". In geneffakb+c] will mean
“[b] preceded by [a] and followed by [c]". In situations wieewe don’t have a full
triphone context, we'll use [a-b] to mean “[b] preceded bl fnd [b+c] to mean “[b]
followed by [c]".

Context-dependent phones capture an important sourceriatiga, and are a
key part of modern ASR systems. But unbridled context-ddperay also introduces
the same problem we saw in language modeling: training gatissisy. The more com-
plex the model we try to train, the less likely we are to havensenough observations
of each phone-type to train on. For a phoneset with 50 phamgsinciple we would

Section 9.10.

Advanced Acoustic Models: Triphones 51

TYING

need 568 or 125,000 triphones. In practice not every sequence oéthhenes is pos-
sible (English doesn’t seem to allow triphone sequences[lk-eh+ow] or [m-j+t]).
Young et al. (1994) found that 55,000 triphones are needéeia0K Wall Street Jour-
nal task. But they found that only 18,500 of these triphones|ess than half, actually
occurred in the SI84 section of the WSJ training data.

Because of the problem of data sparsity, we must reduce tind@uof triphone
parameters that we need to train. The most common way to dasthiy clustering
some of the contexts together atythg subphones whose contexts fall into the same
cluster (Young and Woodland, 1994). For example, the béginof a phone with an
[n] on its left may look much like the beginning of a phone watin[m] on its left. We
can therefore tie together the first (beginning) subphonsay, the [m-eh+d] and [n-
eh+d] triphones. Tying two states together means that thasesthe same Gaussians.
So we only train a single Gaussian model for the first subpbétiee [m-eh+d] and [n-
eh+d] triphones. Likewise, it turns out that the left confgixones [r] and [w] produce
a similar effect on the initial subphone of following phones

Fig. 9.38 shows, for example the vowel [iy] preceded by thesomants [w], [1],
[m], and [n]. Notice that the beginning of [iy] has a simil&e in F2 after [w] and [r].
And notice the similarity of the beginning of [m] and [n]; a$1 7 noted, the position
of nasal formants varies strongly across speakers, buspleaker (the first author) has
a nasal formant (N2) around 1000 Hz.

50007

Frequency (Hz)

l w|1|H\ L
Time (s)

[riy] [miy] [niy]

3.12079

Figure 9.38 The wordswe re, me andknee The glides [w] and [r] have similar effectg
on the beginning of the vowel [iy], as do the two nasals [n] pnH

Fig. 9.39 shows an example of the kind of triphone tying ledrny the clustering
algorithm. Each mixture Gaussian model is shared by thelmimpstates of various
triphone HMMs.

How do we decide what contexts to cluster together? The noostion method
is to use a decision tree. For each state (subphone) of eacteph separate tree is
built. Fig. 9.40 shows a sample tree from the first (beginngtate of the phone /ih/,
modified from Odell (1995). We begin at the root node of the tréith a single large
cluster containing (the beginning state of) all triphonestered on /ih/. At each node
in the tree, we split the current cluster into two smallerstdus by asking questions
about the context. For example the tree in Fig. 9.40 firstsfiie initial cluster into

52

Chapter 9. Automatic Speech Recognition

t-iy+n t-iy+ng fiy+l s-iy+l

.. etc

5o o R o D | I

Figure 9.39 PLACEHOLDER FIGURE. Four triphones showing the result afstér-
ing. Notice that the initial subphone of [t-iy+n] and [t-igg] is tied together, i.e. shares
the same Gaussian mixture acoustic model. From Young et394.

two clusters, one with nasal phone on the left, and one withesmiwe descend the tree
from the root, each of these clusters is progressively.spiie tree in Fig. 9.40 would
split all beginning-state /ih/ triphones into 5 clusteehdled A-E in the figure.

Left nasal?

Right liquid? Left fricative?

Yes No

i P
n-ih+l, A
ng-ih+], Yes No
m—ih+1(, (. ’

Yes No

. Cluster B:
QD O O O~ o
ng-ih+r,
w (3&.} m—ih+r0"
e il

Figure 9.40 Decision tree for choosing which triphone states (subpspie tie to-

gether. This particular tree will cluster state O (the begig state) of the triphones /n
ih+l/, Ing-ih+l/, /Im-ih+l/, into cluster class A, and vatis other triphones into classes B-E.
Adapted from Odell (1995).

The questions used in the decision tree ask whether the pbdine left or right
has a certaiphonetic feature, of the type introduced in Ch. 7. Fig. 9.41 shows a few

Section 9.10.

Advanced Acoustic Models: Triphones

53

decision tree questions; note that there are separateianestr vowels and conso-
nants. Real trees would have many more questions.

Feature Phones

Stop bdgkpt

Nasal m n ng

Fricative chdhfjhsshthvzzh

Liquid lrwy

Vowel aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh yiw

Front Vowel ae ehihixiy

Central Vowel aa ah ao axrer

Back Vowel ax ow uh uw

High Vowel ihix iy uh uw

Rounded ao ow oy uh uw w

Reduced ax axr ix

Unvoiced chfhhkpsshtth

Coronal chddhjhinrsshtthzzh
Figure 9.41 Sample decision tree questions on phonetic features. Mddifom Odell
(1995).

How are decision trees like the one in Fig. 9.40 trained? Tdwstare grown top
down from the root. At each iteration, the algorithm conssdeach possible question
g and each noda in the tree. For each such question, it considers how the pétv s
would impact the acoustic likelihood of the training datheTalgorithm computes the
difference between the current acoustic likelihood of tfzéning data, and the new
likelihood if the models were tied based on splitting via sfien q. The algorithm
picks the noden and questiorg which give the maximum likelihood. The procedure
then iterates, stopping when each each leaf node has sorireunirthreshold number
of examples.

We also need to modify the embedded training algorithm we isaec. 9.7
to deal with context-dependent phones and also to handieireisaussians. In both

CLONNG ~ Cases we use a more complex process that invalleesng and using extra iterations
of EM, as described in Young et al. (1994).

To train context-dependent models, for example, we firsttigestandard em-
bedded training procedure to train context-independemtaisp using multiple passes
of EM and resulting in separate single-Gaussians modelsdoh subphone of each
monophone /aa/, /ae/, etc. We thdane each monophone model, i.e. make identical
copies of the model with its 3 substates of Gaussians, ome ¢t each potential tri-
phone. TheA transition matrices are not cloned, but tied together fbtha triphone
clones of a monophone. We then run an iteration of EM agairreindin the triphone
Gaussians. Now for each monophone we cluster all the cedependent triphones
using the clustering algorithm described on page 52 to get afdied state clusters.
One typical state is chosen as the exemplar for this clustbttee rest are tied to it.

We use this same cloning procedure to learn Gaussian méxtine first use
embedded training with multiple iterations of EM to learngle-mixture Gaussian
models for each tied triphone state as described above. &kecthne (split) each state
into 2 identical Gaussians, perturb the values of each byesspsilon, and run EM
again to retrain these values. We then split each of the tweungs, resulting in four,
perturb them, retrain. We continue until we have an appad@mumber of mixtures

54 Chapter 9. Automatic Speech Recognition

for the amount of observations in each state.
A full context-depending GMM triphone model is thus creabgdpplying these
two cloning-and-retraining procedures in series, as stsmkematically in Fig. 9.42.

e5)

Figure 9.42 PLACEHOLDER FIGURE. From (Young et al., 1994).

9.11 ADVANCED: DISCRIMINATIVE TRAINING

The Baum-Welch and embedded training models we have pezbént training the
HMM parameters (thé andB matrices) are based on maximizing the likelihood of
LKELHooD the training data. An alternative to thisaximum likelihood estimation (MLE) is to
ESTIMATION - . . .
me focus not on fitting the best model to the data, but rathedisoriminating the best
oiscrmnatng model from all the other models. Such training procedurekigde Maximum Mu-
tual Information Estimation (MMIE) (Woodland and Povey,02) the use of neural
net/SVM classifiers (Bourlard and Morgan, 1994) as well Asotechniques like Min-
imum Classification Error training (Chou et al., 1993; McBeitt and Hazen, 2004) or
Minimum Bayes Risk estimation (Doumpiotis et al., 2003a) $dmmarize the first
two of these in the next two subsections.

Section 9.11.

Advanced: Discriminative Training 55

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

9.11.1 Maximum Mutual Information Estimation

Recall that in Maximum Likelihood Estimation (MLE), we traour acoustic model
parametersA andB) so as to maximize the likelihood of the training data. Cdasia
particular observation sequen@eand a particular HMM modeWk corresponding to
word sequenc®f, out of all the possible sentencég € £. The MLE criterion thus
maximizes

FMLE (M) =P, (O[My)

Since our goal in speech recognition is to have the corranstription for the
largest number of sentences, we'd like on average for thbatnitity of the correct
word string\W to be high; certainly higher than the probability of all tweong word
stringsWjs.t.j # k. But the MLE criterion above does not guarantee this. Imstea’'d
like to pick some other criterion which will let us chose thedelA which assigns the
highest probability to the correct model, i.e. maximiB$My|O). Maximizing the
probability of the word string rather than the probabilifitiee observation sequence is
calledconditional maximum likelihood estimation or CMLE:

FemLE () = P(Mk[O)
Using Bayes Law, we can express this as
P (OMi)P(M)
P(O)
Let's now expand, (O) by marginalizing (summing over all sequences which

could have produced it). The total probability of the obs#ion sequence is the
weighted sum over all word strings of the observation Itketid given that word string:

FoMLE(A) = PA(Mk[O) =

P(0) =) P(OW)P(W)
WeL

So a complete expansion of Eq. 9.55 is:

PA(O]My)P(My)

In a slightly confusing bit of standard nomenclature, CMkBénerally referred
to instead as Maximum Mutual Information Estimation (MMIBis is because it
turns out that maximizing the posteri®W|O) and maximizing the mutual infor-
mation | (W, O) are equivalent if we assume that the language model pratyadbil
each sentend®/ is constant (fixed) during acoustic training, an assumptierusually
make. Thus from here on we will refer to this criterion as thBIM criterion rather
than the CMLE criterion, and so here is Eq. 9.57 restated:

P\ (O|My)P(M
Fawie () =R10) = =2 TSR

In a nutshell, then, the goal of MMIE estimation is to maximi®.58) rather
than (9.53). Now if our goal is to maximiZ® (Mg|O), we not only need to maximize

56

Chapter 9. Automatic Speech Recognition

(9.59)

the numerator of (9.58), but also minimize the denominaotice that we can rewrite
the denominator to make it clear that it includes a term etgquile model we are trying
to maximize and a term for all other models:

P\ (O]My)P(M)
(OIMi)P(M) + 3. Pr (O[Mi) P(M;)

Thus in order to maximizB), (M|O), we will need to incrementally changeso
that it increases the probability of the correct model, e/simultaneously decreasing
the probability of each of the incorrect models. Thus tranwith MMIE clearly
fulfills the important goal ofliscriminating between the correct sequence and all other
sequences.

The implementation of MMIE is quite complex, and we don’tadiss it here
except to mention that it relies on a variant of Baum-Weletining called Extended
Baum-Welch that maximizes (9.58) instead of (9.53). Brijeflg can view this as a
two step algorithm; we first use standard MLE Baum-Welch tmpote the forward-
backward counts for the training utterances. Then we coegoutther forward-backward
pass using all other possible utterances and subtractfiiloes¢he counts. Of course it
turns out that computing this full denominator is computadilly extremely expensive,
because it requires running a full recognition pass on altthining data. Recall that
in normal EM, we don’t need to run decoding on the trainingagdaince we are only
trying to maximize the likelihood of theorrectword sequence; in MMIE, we need
to compute the probabilities @l possible word sequences. Decoding is very time-
consuming because of complex language models. Thus ingFadMIE algorithms
estimate the denominator by summing over only the pathsttatr in a word lattice,
as an approximation to the full set of possible paths.

CMLE was first proposed by Nadas (1983) and MMIE by Bahl etl#86), but
practical implementations that actually reduced wordrerate came much later; see
Woodland and Povey (2002) or Normandin (1996) for details.

P\ (My|O) =)

9.11.2 Acoustic Models based on Posterior Classifiers

Another way to think about discriminative training is to cise a classifier at the frame
level which is discriminant. Thus while the Gaussian clgssis by far the most com-
monly used acoustic likelihood classifier, it is possibldrtstead use classifiers that
are naturally discriminative or posterior estimators,bsas neural networks or SVMs
(support vector machines).

The posterior classifier (neural net or SVM) is generallggnated with an HMM
architecture, is often calleddMM-SVM or HMM-MLP hybrid approach (Bourlard
and Morgan, 1994).

The SVM or MLP approaches, like the Gaussian model, estithatprobability
of a cepstral feature vector at a single timé&nlike the Gaussian model, the posterior
approaches often uses a larger window of acoustic infoomatelying on cepstral
feature vectors from neighboring time periods as well. Tthesinput to a typical
acoustic MLP or SVM might be feature vectors for the curreatrfe plus the four
previous and four following frame, i.e. a total of 9 cepsfedture vectors instead of
the single one that the Gaussian model uses. Because thephiely a wide context,

Section 9.12. Advanced: Modeling Variation 57

SVM or MLP models generally use phones rather than subphanggphones, and
compute a posterior for each phone.

The SVM or MLP classifiers are thus computing the posteriobpbility of a
statej given the observation vectors, i.2(qgj|o;). (also conditioned on the context,
but let's ignore that for the moment). But the observatigrllhood we need for the
HMM, bj(o), is P(at|gj). The Bayes rule can help us see how to compute one from
the other. The netis computing:

P(ox|dj)p(q;)

(9.60) p(gjlor) = o(a)

We can rearrange the terms as follows:

(9.61) p(ot|a;) y P(qj o)

p(or) p(a;)

The two terms on the right-hand side of (9.61) can be diremtiyputed from
the posterior classifier; the numerator is the output of & ®r MLP, and the de-
nominator is the total probability of a given state, sumnongr all observations (i.e.,
the sum over alt of ;(t)). Thus although we cannot directly compiéo|q;), we

SCALEDLIKELHOoOD ~ canuse (9.61) to Comput%, which is known as @caled likelihood (the likeli-
hood divided by the probability of the observation). In fatie scaled likelihood is
just as good as the regular likelihood, since the probglwfithe observatiomp(o;) is
a constant during recognition and doesn’t hurt us to haviedretjuation.

The supervised training algorithms for training a SVM or Mp&sterior phone
classifiers require that we know the correct phone lapebr each observation.
We can use the sammmbedded training algorithm that we saw for Gaussians; we
start with some initial version of our classifier and a womhscript for the training
sentences. We run a forced alignment of the training datadyming a phone string,
and now we retrain the classifier, and iterate.

9.12 ADVANCED: MODELING VARIATION

As we noted at the beginning of this chapter, variation isafritbe largest obstacles to
successful speech recognition. We mentioned variationalsigeaker differences from
vocal characteristics or dialect, due to genre (such astapeaus versus read speech),
and due to the environment (such as noisy versus quiet emaiots). Handling this
kind of variation is a major subject of modern research.

9.12.1 Environmental Variation and Noise

Environmental variation has received the most attentiomfthe speech literature, and
a number of techniques have been suggested for dealing withoemental noise.
Ui Spectral subtraction, for example, is used to combatiditive noise Additive noise
abDiTvENOISE IS noise from external sound sources like engines or windidgés that is relatively

58 Chapter 9. Automatic Speech Recognition

constant and can be modeled as a noise signal that is justl aoidlee speech wave-
form to produce the observed signal. In spectral subtracti@ estimate the average
noise during non-speech regions and then subtract thisgeemlue from the speech
signal. Interestingly, speakers often compensate for hagtkground noise levels by
increasing their amplitude, FO, and formant frequencidss Thange in speech pro-

tovearo FFecT duction due to noise is called th®mbard effect, named for Etienne Lombard who
first described it in 1911 (Junqua, 1993).

G ST MEAN Other noise robustness technigues tikpstral mean normalizationare used to

convoLuTionAL - deal withconvolutional noise noise introduced by channel characteristics like differ-
ent microphones. Here we compute the average of the cepstrainime and subtract
it from each frame; intuitively the average cepstrum cqrogsls to the spectral char-
acteristics of the microphone and the room acoustics (?).

Finally, some kinds of short non-verbal sounds like coutfhg] breathing, and
throat clearing, or environmental sounds like beeps, telap rings, and door slams,
can be modeled explicitly. For each of these non-verbal deuwe create a special
phone and add to the lexicon a word consisting only of thahphdVe can then use
normal Baum-Welch training to train these phones just byifgot) the training data
transcripts to include labels for these new non-verbal dgbfWard, 1989).

9.12.2 Speaker and Dialect Adaptation: Variation due to spaker
differences

Speech recognition systems are generally designed to laékespimdependent, since
it's rarely practical to collect sufficient training data boild a system for a single

user. But in cases where we have enough data to build spdekendent systems,
they function better than speaker-independent systenis.ofity makes sense; we can
reduce the variability and increase the precision of ouretoiflwe are guaranteed that
the test data will look like the training data.

While it is rare to have enough data to train on an individysdaker, we do
have enough data to train separate models for two importanpg of speakers: men
versus women. Since women and men have different vocabteaxtt other acoustic
and phonetic characteristics, we can split the training bgtgender, and train separate
acoustic models for men and for women. Then when a test sentgmmes in, we use
a gender detector to decide if it is male or female, and swéthose acoustic models.
Gender detectors can be built out of binary GMM classifieseldan cepstral features.
Suchgender-dependent acoustic modeling used in most LVCSR systems.

Although we rarely have enough data to train on a specifickgyethere are
techniques that work quite well at adapting the acousticeteo a new speaker very

mir quickly. For example théILLR (Maximum Likelihood Linear Regression) tech-
nigue (Leggetter and Woodland, 1995) is used to adapt Gauasbustic models to a
small amount of data from a new speaker. The idea is to userth# amount of data
to train a linear transform to warp the means of the Gaussidihé R and other such
ADibcAkER techniques fospeaker adaptationhave been one of the largest sources of improve-
ment in ASR performance in recent years.

The MLLR algorithm begins with a trained acoustic model arsirell adapta-

tion dataset from a new speaker. The adaptation set can leatisas 3 sentences or

Section 9.12.

Advanced: Modeling Variation 59

(9.62)

(9.63)

VTLN

10 seconds of speech. The idea is to learn a linear transfatmxnfW) and a bias
vector () to transform the means of the acoustic model Gaussiarise ifid mean of
a Gaussian ig, the equation for the new mearis'thus:

pP=Wp+w

In the simplest case, we can learn a single global transfodraaply it to each Gaus-
sian models. The resulting equation for the acoustic litead is thus only very slightly
modified:

1 1 Ty-1
By = e exp(501~ Wiy +)% o Wiy))

The transform is learned by using linear regression to maeithe likelihood of
the adaptation dataset. We first run forward-backward aligmt on the adaptation set
to compute the state occupation probabiliig&). We then comput®/ by solving a
system of simultaneous equations involviygt). If enough data is available, it's also
possible to learn a larger number of transforms.

MLLR is an example of thdinear transform approach to speaker adaptation,
one of the three major classes of speaker adaptation metiedsther two aréMAP
adaptationandSpeaker Clustering/Speaker Spacapproaches. See Woodland (2001)
for a comprehensive survey of speaker adaptation whichrs@bethree families.

MLLR and other speaker adaptation algorithms can also be tesaddress an-
other large source of error in LVCSR, the problem of foreigdialect accented speak-
ers. Word error rates go up when the test set speaker speais@ dr accent (such as
Spanish-accented English or southern accented Mandairie§) that differs from the
(usually standard) training set, Here we can take an adaptset of a few sentences
from say 10 speakers, and adapt to them as a group, creatviglaR transform that
addresses whatever characteristics are present in tleeda@l accent (Huang et al.,
2000; Tomokiyo and Waibel, 2001; Wang et al., 2003; Zhend.£2@05).

Another useful speaker adaptation technique is to contrahfe differing vocal
tract lengths of speakers by usiM@LN (Vocal Tract Length Normalization) (?).

9.12.3 Pronunciation Modeling: Variation due to Genre

We said at the beginning of the chapter that recognizingeational speech is harder
for ASR systems than recognizing read speech. What are tisesaf this difference?
Isit the difference in vocabulary? Grammar? Something tth@speaker themselves?
Perhaps it's a fact about the microphones or telephone nshé iexperiment.

None of these seems to be the cause. In a well-known expetitveintraub
et al. (1996) compared ASR performance on natural conversdispeech versus per-
formance on read speech, controlling for the influence ofibtes causal factors. Pairs
of subjects in the lab had spontaneous conversations osléghbne. Weintraub et al.
(1996) then hand-transcribed the conversations, anceihtite participants back into
the lab to read their own transcripts to each other over theegzhone lines as if they
were dictating. Both the natural and read conversations vemorded. Now Weintraub
et al. (1996) had two speech corpora from identical trapsgrione original natural

60

Chapter 9. Automatic Speech Recognition

conversation, and one read speech. In both cases the spimkactual words, and
the microphone were identical; the only difference was theiralness or fluency of
the speech. They found that read speech was much easier (2¢&6than conver-
sational speech (WER=53%). Since the speakers, words emhel were controlled
for, this difference must be somewhere in the acoustic madaionunciation lexicon.

Saraclar et al. (2000) tested the hypothesis that this dliffievith conversational
speech was due to changed pronunciations, i.e., to a misrbateeen the phone
strings in the lexicon and what people actually said. Reeafth Ch. 7 that conver-
sational corpora like Switchboard contain many differergrnunciations for words,
(such as 12 different pronunciations faecauseand hundreds fothe). Saraclar et al.
(2000) showed in an oracle experiment that if a Switchboacdgnizer is told which
pronunciations to use for each word, the word error ratesifisgm 47% to 27%.

If knowing which pronunciation to use improves accuracyhpes we could im-
prove recognition by simply adding more pronunciationsgfach word to the lexicon,
either as a simple list for each word, or as a more complexhtetyFSA (Fig. 9.43)
(Cohen, 1989; Tajchman et al., 1995; Sproat and Riley, 19@fters and Stolcke,
1994).

Word model with dialect variation:

Figure 9.43 You say [tow m ey t ow] and | say [t ow m aa t ow]. Two sample pronun
ciation networks (weighted FSAs) for the wamimatg adapted from Russell and Norvig
(1995). The top one models sociolinguistic variation (sddngish or eastern American|
dialects); the bottom one adds in coarticulatory effects.

Recent research shows that these sophisticated multipfespciation approaches

turn out not to work well. Adding extra pronunciations addsrenconfusability; if a
common pronunciation of the word “of” is the single vowel Jait is now very con-
fusable with the word “a”. Another problem with multiple pranciations is the use of
Viterbi decoding. Recall our discussion on 40 that sinceMiterbi decoder finds the
best phone string, rather than the best word string, it biagainst words with many
pronunciations. Finally, using multiple pronunciationstmodel coarticulatory effects
may be unnecessary because CD phones (triphones) areyaipg@itelgood at model-
ing the contextual effects in phones due to neighboring phplike the flapping and
vowel-reduction handled by Fig. 9.43 (Jurafsky et al., 2001

Section 9.13.

Human Speech Recognition 61

Instead, most current LVCSR systems use a very small nunfipeoounciations
per word. What is commonly done is to start with a multiplemrociation lexicon,
where the pronunciations are found in dictionaries or areegged via phonological
rules of the type described in Ch. 7. A forced Viterbi phongrahent is then run of the
training set, using this dictionary. The result of the afiggnt is a phonetic transcription
of the training corpus, showing which pronunciation wasdysmnd the frequency of
each pronunciation. We can then collapse similar prontiocia (for example if two
pronunciations differ only in a single phone substitutioa @hose the more frequent
pronunciation). We then chose the maximum likelihood pramiation for each word.
For frequent words which have multiple high-frequency praciations, some systems
chose multiple pronunciations, and annotate the dictiowéth the probability of these
pronunciations; the probabilities are used in computiregatoustic likelihood (Cohen,
1989; Hain et al., 2001; Hain, 2002).

Finding a better method to deal with pronunciation variatiemains an unsolved
research problem. One promising avenue is to focus on nongtit factors that affect
pronunciation. For example words which are highly prediltaor at the beginning
or end of intonation phrases, or are followed by disfluencée pronounced very
differently (Jurafsky et al., 1998; Fosler-Lussier and lybor, 1999; Bell et al., 2003).
Fosler-Lussier (1999) shows an improvement in word errte by using these sorts
of factors to predict which pronunciation to use. Anothecitimg line of research
in pronunciation modeling uses a dynamic Bayesian netwonkddel the complex
overlap in articulators that produces phonetic reductigveScu and Glass, 2004; ?).

9.13 HUMAN SPEECHRECOGNITION

LEXICAL ACCESS

Humans are of course much better at speech recognition thahines; current ma-
chines are roughly about five times worse than humans on slgeech, and the gap
seems to increase with noisy speech.

Speech recognition in humans shares some features with AfeiRthms. We
mentioned above that signal processing algorithms like BhBlysis (Hermansky,
1990) were in fact inspired by properties of the human awgisgstem. In addition,
three properties of humaexical accesqthe process of retrieving a word from the
mental lexicon) are also true of ASR moddisquency, parallelism, andcue-based
processing For example, as in ASR with itd-gram language models, human lexi-
cal access is sensitive to walr@quency. High-frequency spoken words are accessed
faster or with less information than low-frequency word$iey are successfully rec-
ognized in noisier environments than low frequency wordsyloen only parts of the
words are presented (Howes, 1957; Grosjean, 1980; Tyl84,i8ter alia). Like ASR
models, human lexical accessparallel: multiple words are active at the same time
(Marslen-Wilson and Welsh, 1978; Salasoo and Pisoni, 1ia8#, alia).

Finally, human speech perceptiondse based speech input is interpreted by
integrating cues at many different levels. Human phonegpien combines acous-
tic cues, such as formant structure or the exact timing ofingi (Oden and Mas-
saro, 1978; Miller, 1994) visual cues, such as lip movembttQGurk and Macdon-

62

Chapter 9. Automatic Speech Recognition

PHONEME
RESTORATION
EFFECT

MCGURK EFFECT

WORD ASSOCIATION

REPETITION PRIMING

ON-LINE

ald, 1976; Massaro and Cohen, 1983; Massaro, 1998) andaleodes such as the
identity of the word in which the phone is placed (Warren,@;9%8amuel, 1981; Con-
nine and Clifton, 1987; Connine, 1990). For example, in wikabften called the
phoneme restoration effect Warren (1970) took a speech sample and replaced one
phone (e.g. the [s] itegislaturé with a cough. Warren found that subjects listening
to the resulting tape typically heard the entire wéadislatureincluding the [s], and
perceived the cough as background. In keGurk effect, (McGurk and Macdon-
ald, 1976) showed that visual input can interfere with php@aeeption, causing us to
perceive a completely different phone. They showed subgeideo of someone say-
ing the syllablegain which the audio signal was dubbed instead with someoriagay
the syllableba. Subjects reported hearing something ldainstead. It is definitely
worth trying this out yourself from video demos on the wele & examplent t p:

/ I ww. haski ns. yal e. edu/ f eat ur ed/ heads/ ncgur k. ht M . Other cues
in human speech perception include semawticd association(words are accessed
more quickly if a semantically related word has been heacdirdy) andrepetition
priming (words are accessed more quickly if they themselves hatdgen heard).
The intuitions of both these results are incorporated iat®nt language models dis-
cussed in Ch. 4, such as the cache model of Kuhn and de Mord}1@&8ich models
repetition priming, or the trigger model of Rosenfeld (1986d the LSA models of
Coccaro and Jurafsky (1998) and Bellegarda (1999), whictielword association.
In a fascinating reminder that good ideas are never disedvenly once, Cole and
Rudnicky (1983) point out that many of these insights abomtext effects on word
and phone processing were actually discovered by Williarglda(1901). Bagley
achieved his results, including an early version of the joa restoration effect, by
recording speech on Edison phonograph cylinders, modjfitirand presenting it to
subjects. Bagley’s results were forgotten and only redised much latef.

One difference between current ASR models and human speeofrmition is
the time-course of the model. It is important for the perfante of the ASR algorithm
that the the decoding search optimizes over the entireamer This means that the
best sentence hypothesis returned by a decoder at the emg sgnitence may be very
different than the current-best hypothesis, halfway iheogentence. By contrast, there
is extensive evidence that human processimanidine: people incrementally segment
and utterance into words and assign it an interpretatioh@shtear it. For example,
Marslen-Wilson (1973) studiedlose shadowerspeople who are able to shadow (re-
peat back) a passage as they hear it with lags as short as 258arslen-Wilson
found that when these shadowers made errors, they werecsgatly and semanti-
cally appropriate with the context, indicating that wordmsentation, parsing, and in-
terpretation took place within these 250 ms. Cole (1973)@ole and Jakimik (1980)
found similar effects in their work on the detection of mispunciations. These results
have led psychological models of human speech perceptizh @s the Cohort model
(Marslen-Wilson and Welsh, 1978) and the computational TEAnodel (McClelland
and Elman, 1986)) to focus on the time-course of word selecind segmentation.
The TRACE model, for example, is a connectionist interactetivation model, based
on independent computational units organized into threzlde feature, phoneme, and

2 Recall the discussion on pa@e of multiple independent discovery in science.

Section 9.14. Summary 63

word. Each unit represents a hypothesis about its preserhe input. Units are acti-
vated in parallel by the input, and activation flows betweeits;iconnections between
units on different levels are excitatory, while connectitwetween units on single level
are inhibitatory. Thus the activation of a word slightly ibits all other words.

We have focused on the similarities between human and mashigech recog-

nition; there are also many differences. In particular, yrather cues have been shown
to play a role in human speech recognition but have yet to beessfully integrated
into ASR. The most important class of these missing cuesdsqaly. To give only
one example, Cutler and Norris (1988), Cutler and Carte87)@ote that most mul-
tisyllabic English word tokens have stress on the initidladje, suggesting in their
metrical segmentation strategy (MSS) that stress shouldskd as a cue for word
segmentation. Another difference is that human lexicatss@xhibitsmieighborhood
effects (the neighborhood of a word is the set of words which closesemble it).
Words with large frequency-weighted neighborhoods aressed slower than words
with less neighbors (Luce et al., 1990). Current models dRABN’t general focus on
this word-level competition.

9.14 SUMMARY

Together with Ch. 4 and Ch. 6, this chapter introduced thddmmental algorithms for
addressing the problem barge Vocabulary Continuous Speech Recognition

The input to a speech recognizer is a series of acoustic waleswaveform,
spectrogramandspectrumare among the visualization tools used to understand
the information in the signal.

In the first step in speech recognition, sound wavessarepled quantized,
and converted to some sortggectral representation A commonly used spec-
tral representation is theel cepstrum or MFCC which provides a vector of
features for each frame of the input.

GMM acoustic models are used to estimategthenetic likelihoods(also called
observation likelihoodg of thesefeature vectorsfor each frame.

Decodingor searchor inferenceis the process of finding the optimal sequence
of model states which matches a sequence of input obsamgatf@he fact that
there are three terms for this process is a hint that speeogméion is inherently
inter-disciplinary, and draws its metaphors from more thaa field;decoding
comes from information theory, arsgarchandinferencefrom artificial intelli-
gence).

We introduced two decoding algorithms: time-synchrondiierbi decoding
(which is usually implemented with pruning and can then led&eam search
andstackor A* decoding. Both algorithms take as input a sequence of @pstr
feature vectors, a GMM acoustic model, andNugram language model, and
produce a string of words.

Theembedded trainingparadigm is the normal method for training speech rec-
ognizers. Given an initial lexicon with hand-built proniatton structures, it will
train the HMM transition probabilities and the HMM obseilgatprobabilities.

64

Chapter 9. Automatic Speech Recognition

e Advanced acoustic models make use of context-depemdgmbnes, which are
clustered.

e Acoustic models can bedaptedto new speakers.

e Pronunciation variation is a source of errors in human-husgeech recogni-
tion, but one that is not successfully handled by currertrietogy.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

WARPING

The first machine which recognized speech was probably a esoiah toy named
“Radio Rex” which was sold in the 1920s. Rex was a celluloid tltat moved (via
a spring) when the spring was released by 500 Hz acoustiggn8ince 500 Hz is
roughly the first formant of the vowel in “Rex”, the dog seemi@dome when he was
called (David, Jr. and Selfridge, 1962).

By the late 1940s and early 1950s, a number of machine speeocignition
systems had been built. An early Bell Labs system could neizegny of the 10 digits
from a single speaker (Davis et al., 1952). This system hapé&aker-dependent stored
patterns, one for each digit, each of which roughly repreeskthe first two vowel
formants in the digit. They achieved 97-99% accuracy by simgothe pattern which
had the highest relative correlation coefficient with theuth Fry (1959) and Denes
(1959) built a phoneme recognizer at University Collegendan, which recognized
four vowels and nine consonants based on a similar patemwgnition principle. Fry
and Denes’s system was the first to use phoneme transitidralpitities to constrain
the recognizer.

The late 1960s and early 1970s produced a number of impgaaatligm shifts.
First were a number of feature-extraction algorithms tidelthe efficient Fast Fourier
Transform (FFT) (Cooley and Tukey, 1965), the applicatiboepstral processing to
speech (Oppenheim et al., 1968), and the development of bPg€péech coding (Atal
and Hanauer, 1971). Second were a number of ways of hanatnging; stretching
or shrinking the input signal to handle differences in sjregkate and segment length
when matching against stored patterns. The natural atgoffior solving this problem
was dynamic programming, and, as we saw in Ch. 6, the algontlas reinvented
multiple times to address this problem. The first applicatmspeech processing was
by Vintsyuk (1968), although his result was not picked up byeo researchers, and
was reinvented by Velichko and Zagoruyko (1970) and SakdeGiriba (1971) (and
(1984)). Soon afterward, Itakura (1975) combined this dyicgprogramming idea
with the LPC coefficients that had previously been used omiyspeech coding. The
resulting system extracted LPC features for incoming wamils used dynamic pro-
gramming to match them against stored LPC templates.

The third innovation of this period was the rise of the HMMdHéen Markov
Models seem to have been applied to speech independently &horatories around
1972. One application arose from the work of statisticiangjarticular Baum and
colleagues at the Institute for Defense Analyses in Prarcen HMMs and their ap-
plication to various prediction problems (Baum and Petti266; Baum and Eagon,

Section 9.14.

Summary 65

BAKE-OFF

1967). James Baker learned of this work and applied the ithgoto speech process-
ing (Baker, 1975) during his graduate work at CMU. IndepetigeFrederick Jelinek,
Robert Mercer, and Lalit Bahl (drawing from their reseantlniformation-theoretical
models influenced by the work of Shannon (1948)) applied HM¥speech at the
IBM Thomas J. Watson Research Center (Jelinek et al., 1986)'s and Baker’s sys-
tems were very similar, particularly in their use of the Bsige framework described
in this chapter. One early difference was the decoding dlyor Baker's DRAGON
system used Viterbi (dynamic programming) decoding, wihieeIBM system applied
Jelinek’s stack decoding algorithm (Jelinek, 1969). Bdken joined the IBM group
for a brief time before founding the speech-recognition pany Dragon Systems. The
HMM approach to speech recognition would turn out to congiyeiominate the field
by the end of the century; indeed the IBM lab was the drivingdédn extending sta-
tistical models to natural language processing as welludicg the development of
class-basedll-grams, HMM-based part-of-speech tagging, statisticaihimee transla-
tion, and the use of entropy/perplexity as an evaluationimet

The use of the HMM slowly spread through the speech commu@ite cause
was a number of research and development programs sporsotieel Advanced Re-
search Projects Agency of the U.S. Department of DefensdPfARThe first five-
year program starting in 1971, and is reviewed in Klatt ()97he goal of this first
program was to build speech understanding systems basedeanspeakers, a con-
strained grammar and lexicon (1000 words), and less than séi¥@ntic error rate.
Four systems were funded and compared against each otleeSydiem Develop-
ment Corporation (SDC) system, Bolt, Beranek & Newman (BBMWIM system,
Carnegie-Mellon University’s Hearsay-Il system, and @aie-Mellon’s Harpy sys-
tem (Lowerre, 1968). The Harpy system used a simplified warsf Baker's HMM-
based DRAGON system and was the best of the tested systetdrscenrding to Klatt
the only one to meet the original goals of the ARPA projectifvei semantic accuracy
rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speesearch
programs. The first was the “Resource Management” (RM) tBsice et al., 1988),
which like the earlier ARPA task involved transcription ¢ognition) of read-speech
(speakers reading sentences constructed from a 1000-wcadbwlary) but which now
included a component that involved speaker-independengretion. Later tasks in-
cluded recognition of sentences read from the Wall Streetn# (WSJ) beginning
with limited systems of 5,000 words, and finally with systeshsnlimited vocabulary
(in practice most systems use approximately 60,000 wotdggr speech-recognition
tasks moved away from read-speech to more natural domdiasBrioadcast News
domain (LDC, 1998; Graff, 1997) (transcription of actualvsebroadcasts, including
quite difficult passages such as on-the-street interviewd)the Switchboard;ALL -
HOME, CALLFRIEND, and Fisher domains (LDC, 1999; ?; Godfrey et al., 1992; ?)
(natural telephone conversations between friends orggrah. The Air Traffic Infor-
mation System (ATIS) task (Hemphill et al., 1990) was anieaspeech understanding
task whose goal was to simulate helping a user book a flightnsyering questions
about potential airlines, times, dates, and so forth.

Each of the ARPA tasks involved an approximately anrhele-off at which
all ARPA-funded systems, and many other ‘volunteer’ systé&mm North American

66

Chapter 9. Automatic Speech Recognition

FRAME-BASED

SEGMENT-BASED
RECOGNIZERS

SPEAKER
IDENTIFICATION
SPEAKER
VERIFICATION

LANGUAGE
IDENTIFICATION

and Europe, were evaluated against each other in terms of @oor rate or seman-
tic error rate. In the early evaluations, for-profit corpgaras did not generally com-
pete, but eventually many (especially IBM and ATT) compeeggllarly. The ARPA
competitions resulted in widescale borrowing of techngjamong labs, since it was
easy to see which ideas had provided an error-reductionrthégois year, and were
probably an important factor in the eventual spread of theMHparadigm to virtual
every major speech recognition lab. The ARPA program alsaolted in a number of
useful databases, originally designed for training antingsystems for each evalua-
tion (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard, Fisr) but then made
available for general research use.

There are many new directions in current speech recognigisearch involving
alternatives to the HMM model. There are many new architestbased on graphi-
cal models (dynamic bayes nets, factorial HMMs, etc) (Zw&8P8; Bilmes, 2003; ?;
Bilmes and Bartels, 2005; ?). There are attempts to repleegame-basedHMM
acoustic model (that make a decision about each frame) seigment-based rec-
ognizersthat attempt to detect variable-length segments (phomxgjldkis, 1992;
Ostendorf et al., 1996; Glass, 2003). Landmark-based rézeig and articulatory
phonology-based recognizers focus on the use of distmétatures, defined acousti-
cally or articulatorily (respectively) (Niyogi et al., 189Livescu, 2005; et al, 2005;
Juneja and Espy-Wilson, 2003). Attempts to improve pertoroe specifically on
human-human speech have begin to focus on improved reamyaftdisfluencies (Liu
etal., 2005).

Speech research includes a number of areas besides speeghitien; we al-
ready saw computational phonology in Ch. 7, speech systlesth. 8, and we will
discuss spoken dialogue systems in Ch. 23. Another impoastaa isspeaker iden-
tification andspeaker verification in which we identify a speaker (for example for
security when accessing personal information over thelelee) (Reynolds and Rose,
1995; Shriberg et al., 2005; Doddington, 2001). This tasklisted tdanguage iden-
tification, in which we are given a wavefile and have to identify whichgiaage is
being spoken; this is useful for automatically directingera to human operators that
speak appropriate languages.

There are a number of textbooks and reference books on spssgnition that
are good choices for readers who seek a more in-depth uaddnsg of the material in
this chapter: Huang et al. (2001) is by far the most comprekierand up-to-date ref-
erence volume and is highly recommended. Jelinek (1997} &uwl Morgan (1999),
and Rabiner and Juang (1993) are good comprehensive t&stbdbe last two text-
books also have discussions of the history of the field, agdtteer with the survey
paper of Levinson (1995) have influenced our short histosgulision in this chap-
ter. Our description of the forward-backward algorithm wasdeled after Rabiner
(1989), and we were also influence by another useful tutpepkr, Knill and Young
(1997). Research in the speech recognition field often appedhe proceedings of
the annual INTERSPEECH conference, (which is called ICSh#® BUROSPEECH
in alternate years) as well as the annual IEEE InternatiGoaference on Acoustics,
Speech, and Signal Processing (ICASSP). Journals in@peéech Communicatipn
Computer Speech and Languagfee IEEE Transactions on Audio, Speech, and Lan-
guage Processingnd theACM Transactions on Speech and Language Processing

Section 9.14. Summary 67

EXERCISES

9.1 Analyze each of the errors in the incorrectly recognizeddcaiption of “um the
phoneis | leftthe...” on page 38. For each one, give yourdpasss as to whether you
think it is caused by a problem in signal processing, promiimn modeling, lexicon
size, language model, or pruning in the decoding search.

9.2 In practice, speech recognizers do all their probabilitypatation using théog

LOGPROB probability (or logprob) rather than actual probabilities. This helps avoid undexfl
for very small probabilities, but also makes the Viterbialthm very efficient, since
all probability multiplications can be implemented by augliog probabilities. Rewrite
the pseudocode for the Viterbi algorithm in Fig. 9.20 on pa@¢o make use of log-
probs instead of probabilities.

9.3 Now modify the Viterbi algorithm in Fig. 9.20 on page 30 to ilment the beam
search described on page 32. Hint: You will probably needdbia code to check
whether a given state is at the end of a word or not.

9.4 Finally, modify the Viterbi algorithm in Fig. 9.20 on page &@th more detailed
pseudocode implementing the array of backtrace pointers.

9.5 Implement the Stack decoding algorithm of Fig. 9.33 on 4¢kRivery simple
h* function like an estimate of the number of words remaininthmsentence.

9.6 Modify the forward algorithm of Fig. 9.17 to use the treeustured lexicon of
Fig. 9.36 on page 49.

9.7 Using the tutorials available as part of a publicly avakatdcognizer like HTK
or Sonic, build a digit recognizer.

9.8 Take the digit recognizer above and dump the phone liketisdor a sentence.
Now take your implementation of the Viterbi algorithm an@wstthat you can success-
fully decode these likelihoods.

9.9 Many ASR systems, including the Sonic and HTK systems, uséfereht al-
gorithm for Viterbi called theoken-passing Viterbi algorithm (Young et al., 1989).
Read this paper and implement this algorithm.

68 Chapter 9. Automatic Speech Recognition

Atal, B. S. and Hanauer, S. (1971). Speech analysis andesynthChou, W., Lee, C.-H., and Juang, B.-H. (1993). Minimum error
sis by prediction of the speech waveurnal of the Acoustical rate training based ombest string models. IFEEE ICASSP-
Society of Americeb0, 637—655. 93, pp. 2.652—-655.

Aubert, X. and Ney, H. (1995). Large vocabulary continu-CMU (1993). The Carnegie Mellon Pronouncing Dictionary
ous speech recognition using word graphsIHRE ICASSP v0.1. Carnegie Mellon University.

Vol. 1, pp. 49-52. Coccaro, N. and Jurafsky, D. (1998). Towards better integra
Austin, S., Schwartz, R., and Placeway, P. (1991). The fafwa tion of semantic predictors in statistical language madgli
backward search algorithm. IEEE ICASSP-91Vol. 1, pp. In ICSLP-98 Sydney, \Vol. 6, pp. 2403-2406.

697-700. IEEE.) Cohen, M. H. (1989). Phonological Structures for Speech
Bagley, W. C. (1900-1901). The apperception of the spoken Recognition Ph.D. thesis, University of California, Berkeley.
sentence: A study in the psychology of languagke Ameri- Cohen, P. R., Johnston, M., McGee, D., Oviatt, S. L., Clow, J.

can Journal of Psychologyl2, 80-130. 1. and Smith, 1. (1998). The efficiency of multimodal interac-
Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L. fion: a case study. IFCSLP-98 Sydney, Vol. 2, pp. 249-252.
(1986). Maximum mutual information estimation of hidden Cole, R. A. (1973). Listening for mispronunciations: A mea-

Markov model parameters for speech recognition.|[HEE sure of what we hear during speeciPerception and Psy-
ICASSP-86Tokyo, pp. 49-52. IEEE. chophysics13, 153-156.

Bahl, L. R., de Souza, P. V., Gopalakrishnan, P. S., Nahamo% -
. -~ Cole, R. A. and Jakimik, J. (1980). A model of speech percep-
D., and Picheny, M. A. (1992). A fast match for continu tion. In Cole, R. A. (Ed.)Perception and Production of Fluent

ous speech recognition using allophonic models. IHRE .
ICASSP-92San Francisco, CA, pp. 1.17-20. IEEE. Speechpp. 133-163. Lawrence Erlbaum, Hillsdale, NJ.

Baker, J. K. (1975). The DRAGON system — An overview. Cole, R. A and Rudnicky, A. 1. (198.3)' What's new in speech
IEEE Transactions on Acoustics, Speech, and Signal Precess perception? The' researc_h and ideas of William Chandler
ing, ASSP-28L), 24-29. Bagley. Psychological Reviey®0(1), 94-101.

Baum, L. E. and Eagon, J. A. (1967). An inequality with appli- Connine, C. M. (1990). Effects of sentence context and lexi-
cations to statistical estimation for probabilistic fuinos of ~ c@l knowledge in speech processing. In Altmann, G. T. M.
Markov processes and to a model for ecoloBylletin of the (Ed-), Cognitive Models of Speech Processipg. 281-294.
American Mathematical Society3(3), 360—363. MIT Press, Cambridge, MA.

Baum, L. E. and Petrie, T. (1966). Statistical inferencepfob- ~ €0nnine, C. M. and Clifton, C. (1987). Interactive use oiex
abilistic functions of finite-state Markov chainsannals of ~ ¢alinformation in speech perceptiofournal of Experimental
Mathematical Statistics37(6), 1554—1563. Psychology: Human Perception and Performantg 291—

Bayes, T. (1763).An Essay Toward Solving a Problem in the .

Doctrine of ChancesVol. 53. Reprinted inFacsimiles of ~ Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the
two papers by Bayesiafner Publishing Company, New York, machine calpulatlon of complex Fourier seriédathematics
1963. of Computation19(90), 297-301.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gogy, ~ Cutler, A. and Carter, D. M. (1987). The predominance of
M., and Gildea, D. (2003). Effects of disfluencies, preditta Strong initial syllables in the English vocabulargzomputer
ity, and utterance position on word form variation in Englis ~Speech and Languag, 133-142.
conversation. Journal of the Acoustical Society of America Cutler, A. and Norris, D. (1988). The role of strong syllabie
1132), 1001-1024. segmentation for lexical acceskurnal of Experimental Psy-

Bellegarda, J. R. (1999). Speech recognition experimesitggu chology: Human Perception and Performantd, 113-121.
multi-span statistical language models.IEEE ICASSP-99 David, Jr., E. E. and Selfridge, O. G. (1962). Eyes and ears fo
pp. 717-720. IEEE. computers.Proceedings of the IRE (Institute of Radio Engi-

Bilmes, J. (2003). Buried markov models: A graphical- neers)50, 1093-1101.
modeling approach to automatic speech recogniti@@m- Davis, K. H., Biddulph, R., and Balashek, S. (1952). Autdmat
puter Speech and Languader(2-3). recognition of spoken digitslournal of the Acoustical Society

Bilmes, J. and Bartels, C. (2005). Graphical model architec 0f America 24(6), 637-642.
tures for speech recognitiohEEE Signal Processing Maga- penes, P. (1959). The design and operation of the mechani-
zing 22(5), 89-100. cal speech recognizer at University College Londdournal

Bledsoe, W. W. and Browning, |. (1959). Pattern recognition of the British Institution of Radio Enginegrsy(4), 219-234.
and reading by machine. 859 Proceedings of the Eastern Appears together with companion paper (Fry 1959).

Joint Computer Conferencepp. 225-232. Academic, NewW peng, L., Lennig, M., Seitz, F., and Mermelstein, P. (1990).
York. Large vocabulary word recognition using context-depehden

Bourlard, H. and Morgan, N. (1994)Connectionist Speech allophonic hidden Markov models.Computer Speech and

Recognition: A Hybrid ApproachKluwer Press. Language4, 345-357.

Section 9.14. Summary 69

Deng, L. and Huang, X. (2004). Challenges in adopting speecBupta, V., Lennig, M., and Mermelstein, P. (1988). Fastdear

recognition.. strategy in a large vocabulary word recognizkrurnal of the
Digilakis, V. V. (1992). Segment-based stochastic models of Acoustical Society of Americ84(6), 2007-2017.

spectral dynamics for continuous speech recogniti®.D. pain T, (2002). Implicit pronunciation modelling in asm |

thesis, Boston University. Proceedings of ISCA Pronunciation Modeling Workshop
Doddington, G. (2001). Speaker recognition based on idiole = .

tal differences between speakers.BOROSPEECH-01Bu- Hain, T., Woodlgnd, P. C., Evermag(is., and PO\.’eY‘ D. (2001)

dapest, pp. 2521-2524. New features in the CU-HTK system for transcription of con-

T . . versational telephone speech.|HEE ICASSP-01Salt Lake

Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003a). -Dis City, Utah

criminative training for segmental minimum bayes-risk de- ' '

coding. INIEEE ICASSP-03 Hemphill, C. T., Godfrey, J., and Doddington, G. R. (1990).
Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003b).ticet | e ATIS spoken language systems pilot corpusPrioceed-

segmentation and minimum bayes risk discriminative train- "9 DARPA Speech and Natural Language WorksHig-
ing. In EUROSPEECH-03 den Valley, PA, pp. 96-101. Morgan Kaufmann.

Duda, R. O., Hart, P. E., and Stork, D. G. (200Battern Clas- Hermansky, H. (1990). Perceptual linear predictive (PLf)-a
sification Wiley-Interscience Publication. ysis of speechJournal of the Acoustical Society of America

etal, M. H.-J. (2005). Landmark-based speech recogniten: 87(4), 1738-1752.

port of the 2004 johns hopkins summer workshop.IBEE Howes, D. (1957). On the relation between the intelligipili
ICASSP-05 and frequency of occurrence of English wordsurnal of the
Evermann, G. and Woodland, P. C. (2000). Large vocabu- Acoustical Society of America9, 296—305.

lary decoding and confidence estimation using word pOSteHuang, C., Chang, E., Zhou, J., and Lee, K.-F. (2000). Ac-

rior probabilities. INIEEE ICASSP-00Istanbul, Vol. l, pp. cent modeling based on pronunciation dictionary adaptatio

1655-1658. . "
) . » . for large vocabulary mandarin speech recognitionlG8LP-
Fosler-Lussier, E. (1999). Multi-level decision trees $tatic 00, Beijing, China.

and dynamic pronunciation models. EUROSPEECH-99
Budapest. Huang, X., Acero, A., and Hon, H.-W. (2001)Spoken Lan-

guage Processing: A Guide to Theory, Algorithm, and System

Fosler-Lussier, E. and Morgan, N. (1999). Effects of spegki ; .
DevelopmentPrentice Hall, Upper Saddle River, NJ.

rate and word predictability on conversational pronumniet.

Speech Communicatipg¥(2-4), 137-158. Itakura, F. (1975). Minimum prediction residual princile-
Fry, D. B. (1959). Theoretical aspects of mechanical speechplied to speech recognitionEEE Transactions on Acoustics,

recognition. Journal of the British Institution of Radio En- Speech, and Signal ProcessiigSP-3267—-72.

gineers 19(4), 211-21ggRppears toge iRt companion yeinek, F. (1969). A fast sequential decoding algorithingis

paper (Denes 1959). a stack.IBM Journal of Research and Developmett, 675—
Gillick, L. and Cox, S. (1989). Some statistical issues in ggs5.

the comparison of speech recognition algorithms. IHEE)) N)
ICASSP-89pp. 532-535. IEEE. Jelinek, F. (1976). Continuous speech recognition byssiei

Glass, J. R. (2003). A probabilistic framework for segment- methods Proceedings of the IEEB4(4), 532-557.

based speech recognitio@omputer Speech and Language, Jelinek, F. (1997)Statistical Methods for Speech Recognition
17(1-2), 137-152. MIT Press, Cambridge, MA.

Godfrey, J., Holliman, E., and McDaniel, J. (1992). SWITCH-Je“nek’ F., Mercer, R. L., and Bahl, L. R. (1975). Design of a
BOARD: Telephone speech corpus for research and develjingistic statistical decoder for the recognition of donbus
opment. INIEEE ICASSP-92San Francisco, pp. 517-520. gpeech IEEE Transactions on Information Theoty-21(3),
IEEE. 250-256.

Gold, B. and Morgan, N. (19995peech and Audio Signal Pro-))
cessing Wiley Press. Ju_ne]a, ‘A. and Es_py-_WlIson, C (2003)._ Speech segmenta-

Graff, D. (1997). The 1996 Broadcast News speech and Sce)ztgflrr:]%g‘r]?nb:sk?|I;fﬂt|(<;Np:|o;§(t)|§ feature hierarchy anppsrt
language-model corpus. IRroceedings DARPA Speech
Recognition WorkshgpChantilly, VA, pp. 11-14. Morgan Junqua, J. C. (1993). The Lombard reflex and its role on hu-
Kaufmann. man listeners and automatic speech recognizdaairnal of

Gray, R. M. (1984). Vector quantizatiolEEE Transactions on the Acoustical Society of Americ3(1), 510-524.
Acoustics, Speech, and Signal Processh§SP-12), 4-29. jyrafsky, D., Ward, W., Jianping, Z., Herold, K., Xiuyang, Y
Grosjean, F. (1980). Spoken word recognition processes andand Sen, Z. (2001). What kind of pronunciation variation is

the gating paradignPerception and Psychophysj@&8, 267— hard for triphones to model?. IEEE ICASSP-01Salt Lake
283. City, Utah, pp. 1.577-580.

70 Chapter 9. Automatic Speech Recognition

Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., &aly- Marslen-Wilson, W. D. (1973). Linguistic structure and sgle
mond, W. D. (1998). Reduction of English function words in shadowing at very short latencid¥ature 244, 522—-523.

Switchboard. IHCSLP"QS Sydney, Vol. 7, pp. 3111-3114. ~ Massaro, D. W. (1998Perceiving Talking Faces: From Speech
Klatt, D. H. (1977). Review of the ARPA speech understanding perception to a Behavioral PrincipleMIT Press.

project. Journal of the Acoustical Society of Ameri&2(6), M D. W. and Cohen. M. M. (1983). Evaluafi di

1345-1366. assaro, D. W. and Cohen, M. M. (). Evaluation and in-

. tegration of visual and auditory information in speech pprc
KI.OVSt‘.”ld.’ . W. ar_1d Mondshein, L. F. (19.75)' The CASP.ERS tiog:m Journal of Experimental Igsychology: Humzn Per(?sption
linguistic analysis systemlEEE Transactions on Acoustics, and Performance9, 753-771.
Speech, and Signal ProcessidgSSP-28L), 118-123. '
Knill, K. and Young, S. J. (1997). Hidden Markov Mod- McCIeIIand, J. L.an(_i Elman, J. L. (1986). Interactive pases
els in speech and language processing. In Young, S. J. and” speech perception: The TRACE model. In McClelland,

Bloothooft, G. (Eds.)Corpus-based Methods in Language - L~ Rumelhart, D. E., and the PDP Re§earch Group (Eds.),
and Speech Processingp. 27-68. Kluwer, Dordrecht. Parallel Distributed Processing Volume 2: Psychologicatla

Biological Models pp. 58—-121. MIT Press, Cambridge, MA.
Kuhn, R. and de Mori, R. (1990). A cache-based natural lan- 9 PP N g”)
guage model for speech recognitiofEEE Transactions on McDermott, E. and Hazen, T. (2004). Minimum Classification
Pattern Analysis and Machine Intelligenck2(6), 570-583. Error training of landmark models for real-time continuous
Kumar, S. and Byrne, W. (2002). Risk based lattice cutting speech recognition. IFEEE ICASSP-04
for segmental minimum Bayes-risk decoding. IBSLP-02 McGurk, H. and Macdonald, J. (1976). Hearing lips and seeing

Denver, CO. voices.Nature 264, 746—748.

LDC (1998). LDC Catalog: Hub4 project University jiller, J. L. (1994). On the internal structure of phonetites
of Pennsylvania. ww. | dc. upenn. edu/ Cat al og/ gories: a progress repo€ognition 50, 271-275.
LDC98S71. ht M orwww. | dc. upenn. edu/ Cat al og/ _
Hub4. ht i . Mosteller, F. and Wallace, D. L. (1964nference and Disputed

Authorship: The FederalistSpringer-Verlag, New York. 2nd

LDC (1999). LDC Catalog: Hub5-LVCSR projectiniversity Edition appeared in 1984 and was calladplied Bayesian

of Pennsylvania. ww. | dc. upenn. edu/ | dc/ about / ical Inference
chengl i sh. ht M orww. | dc. upenn. edu/ Cat al og/ Hubag]-q_gégﬂ. ﬁt m

Leggetter, C. J. and Woodland, P. C. (1995). Maximum likeli-Murveit, H., Butzberger, J. W., Digalakis, V. V., and Weaib,
hood linear regression for speaker adaptatioddMs. Com- M. (1993). Large-vocabulary dictation using SRI's deciphe
puter Speech and Languag(2), 171-186. speech recognition system: Progressive-search tectmitue

Levinson, S. E. (1995). Structural methods in automatiespe IEEE ICASSP-93vol. 2, pp. 319-322. IEEE.
recognition. Proceedings of the IEEE3(11), 1625-1650. Nadas, A. (1983). A decision theorectic formulation of atra
Liu, Y., Shriberg, E., Stolcke, A., Peskin, B., Ang, J., B, ing problem in speech recognition and a comparison of train-
D., Ostendorf, M., Tomalin, M., Woodland, P., and Harper, ing by unconditional versus conditional maximum likelildoo
M. (2005). Structural metadata research in the ears pragram _IEEE Transactions on Acoustics, Speech, and Signal Process
In IEEE ICASSP-05 ing, 31(4), 814-817.

Livescu, K. (2005) Feature-Based Pronuncaition Modeling for Ney, H., Haeb-Umbach, R., Tran, B.-H., and Oerder, M. (1992)
Automatic Speech RecognitioPh.D. thesis, Massachusetts Improvements in beam search for 10000-word continuous
Institute of Technology. speech recognition. IEEEE ICASSP-92San Francisco, CA,

Livescu, K. and Glass, J. (2004). Feature-based pronimeiat PP- 1-9-12. I[EEE.
modeling with trainable asynchrony probabilities. IGSLP- Nguyen, L. and Schwartz, R. (1999). Single-tree method for
04, Jeju, South Korea. grammar-directed search. IREE ICASSP-99pp. 613-616.
Lowerre, B. T. (1968).The Harpy Speech Recognition System |EEE.

Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA. Njisson, N. . (1980)Principles of Artificial Intelligence Mor-

Luce, P. A,, Pisoni, D. B., and Goldfinger, S. D. (1990). Simi- gan Kaufmann, Los Altos, CA.
larity neighborhoods of spoken words. In Altmann, G. T. M.
(Ed.), Cognitive Models of Speech Processipg. 122-147.
MIT Press, Cambridge, MA.

Mangu, L., Brill, E., and Stolcke, A. (2000). Finding consen Niyogi, P., Burges, C., and Ramesh, P. (1998). Distinctive
sus in speech recognition: Word error minimization andiothe feature detection using support vector machines. IBBE
applications of confusion networksComputer Speech and |CASSP-98IEEE.

Language 14(4), 373-400. Normandin, Y. (1996). Maximum mutual information estima-

Marslen-Wilson, W. D. and Welsh, A. (1978). Processingrinte tion of hidden Markov models. In Lee, C., Soong, F., and
actions and lexical access during word recognition in eenti Paliwal, K. (Eds.),Automatic Speech and Speaker Recogni-
uous speechCognitive Psychologyl0, 29-63. tion, pp. 57-82. Kluwer Academic Publishers.

NIST (2005). Speech recognition scoring toolkit (sctk)sien
2.1. Available at http://www.nist.gov/speech/tools/.

Section 9.14. Summary 71

Odell, J. J. (1995).The Use of Context in Large Vocabulary Samuel, A. G. (1981). Phonemic restoration: Insights from a
Speech RecognitionPh.D. thesis, Queen’s College, Univer- new methodologyJournal of Experimental Psychology: Gen-

sity of Cambridge. eral, 110, 474-494.

Oden, G. C. and Massaro, D. W. (1978). Integration of fe&turagaraclar, M., Nock, H., and Khudanpur, S. (2000). Pronunci-
information in speech perceptiof®sychological Revievs, ation modeling by sharing gaussian densities across pisonet
172-191. models.Computer Speech and Languadé(2), 137-160.

Oppenheim, A. V., Schafer, R. W., and Stockham, T. G. Jgchwartz, R. and Austin, S. (1991). A comparison of several
(1968). Nonll_near filtering of multiplied and convolved sig approximate algorithms for finding multiple&¢BEST) sen-
nals. Proceedings of the IEEE(8), 1264-1291. tence hypotheses. Inassp91 Toronto, Vol. 1, pp. 701-704.

Ortmanns, S., Ney, H., and Aubert, X. (1997). A word graph IEEE.

algorithm for large vocabulary continuous speech recagnit Schwartz, R. and Chow, Y.-L. (1990). The N-best algorithm:

Computer Speef:r‘\ an‘d Languagﬂ,. 4s-r2. An efficient and exact procedure for finding the N most likely
Ostendorf, M., Digilakis, V., and Kimball, O. (1996). From sentence hypotheses. IBEE ICASSP-90Vol. 1, pp. 81-84.
HMMs to segment models: A unified view of stochastic mod- |EEE.

eling for speech recognitionlEEE Transactions on Speech)
andgAudioréJl(S), 360—3%8. P Schwartz, R., Chow, Y.-L., Kimball, O., Roukos, S., Krasmwe

. N M., and Makhoul, J. (1985). Context-dependent modeling for
Paul, D. B. (1991). Algorithms for an optimal*/search and 5.qystic-phonetic recognition of continuous speecHEEE
linearizing the search in the stack decoderlHRE ICASSP- ICASSP-85V0l. 3, pp. 1205-1208. IEEE.

91, Vol. 1, pp. 693-696. IEEE. sh C.E. (1948) h cal th ’)
L . . annon, C. E. (1948). A mathematical theory of communica-
Pearl, J. (1984)Heuristics Addison-Wesley, Reading, MA. tion. Bell System Technical Journ&7(3), 379-423. Contin-

Price, P., Fisher, W., Bernstein, J., and Pallet, D. (1988)e ued in following volume.
DARPA 1000-word resource management database for con-

tinuous speech recognition. IREE ICASSP-88New York, Shriberg, E., Ferrer, L., a(_‘” A. Venkgtaraman, S. K., ant Sto
Vol. 1, pp. 651-654. IEEE. cke, A. (2005). Modeling prosodic feature sequences for

. . . speaker recognitionSpeech Communicatipd6(3-4), 455—
Rabiner, L. R. (1989). A tutorial on Hidden Markov Models 475

and selected applications in speech recogniti®raceedings) o)
of the IEEE 77(2), 257—286. Sproat, R. and Riley, M. D. (1996). Compilation of weighted

finite-state transducers from decision treesPtaceedings of

Rabiner, L. R. and Juang, B. (1993jundamentals of Speech ACL-96 Santa Cruz, CA, pp. 215-222. ACL.

Recognition Prentice Hall, Englewood Cliffs, NJ.

Ravishankar, M. K. (1996).Efficient Algorithms for Speech Stolck_e, A. (2002). Srilm - an extensible language modeling
Recognition Ph.D. thesis, School of Computer Science, tolkit. In ICSLP-02 Denver, CO.
Carnegie Mellon University, Pittsburgh. Available as CMU Tajchman, G., Fosler, E., and Jurafsky, D. (1995). Build-
CS tech report CMU-CS-96-143. ing multiple pronunciation models for novel words using ex-

Reynolds, D. and Rose, R. (1995). Robust text- independentploratory computational phonology. &urospeech-95pp.
speaker identification using gaussian mixture speaker mod-2247-2250.

els.IEEE Transactions on Speech and Audio Processild, Tomokiyo, L. M. (2001). Recognizing non-native speech:
72-83. Characterizing and adapting to non-native usage in speech
Rosenfeld, R. (1996). A maximum entropy approach to adap- recognition Ph.D. thesis, Carnegie Mellon University.

tive statistical language modelinGomputer Speech and Lan- Tomokiyo, L. M. and Waibel, A. (2001). Adaptation methods
guage 10, 187-228. for non-native speech. IRroceedings of Multilinguality in
Russell, S. and Norvig, P. (1995)Artificial Intelligence: A Spoken Language Processjglborg, Denmark.

Modern Approach Prenticegypll, EngIewocIJd cCliffs, NJ'_ Tyler, L. K. (1984). The structure of the initial cohort: Eeince
Sakoe, H. and Chiba, S. (1971). A dynamic programming ap- from gating. Perception & Psychophysic86(5), 417-427.
proach to continuous speech recognition. Pimceedings of

the Seventh International Congress on Acoustics, Budapesfelichko, V. M. and Zagoruyko, N. G. (1970). Automatic
Budapest, Vol. 3, pp. 65-69. Akadémiai Kiado. recognition of 200 words. International Journal of Man-

Machine Studie2, 223-234.
Sakoe, H. and Chiba, S. (1984). Dynamic programming algo- aching Stude

rithm optimization for spoken word recognitiotlEEE Trans- Vintsyuk, T. K. (1968). Speech discrimination by dynamio-pr
actions on Acoustics, Speech, and Signal Proces¢is@P- gramming. Cybernetics 4(1), 52-57. Russian Kibernetika
26(1), 43-49. 4(1):81-88 (1968).

Salasoo, A. and Pisoni, D. B. (1985). Interaction of knogked Wang, Z., Schultz, T., and Waibel, A. (2003). Comparison of
sources in spoken word identificatiafournal of Memory and acoustic model adaptation techniques on non-native speech
Language 24, 210-231. In IEEE ICASSPVol. 1, pp. 540-543.

72

Chapter

9.

Automatic Speech Recognition

Ward, W. (1989). Modelling non-verbal sounds for speech
recognition. InHLT '89: Proceedings of the Workshop on
Speech and Natural Languag8ape Cod, Massachusetts, pp.
47-50. Association for Computational Linguistics.

Warren, R. M. (1970). Perceptual restoration of missingspe
sounds.Science167, 392—-393.

Weintraub, M., Taussig, K., Hunicke-Smith, K., and Snodgra
A. (1996). Effect of speaking style on LVCSR performance.
In ICSLP-96 Philadelphia, PA, pp. 16-19.

Woodland, P. C., Leggetter, C. J., Odell, J. J., Valtchevakd
Young, S. J. (1995). The 1994 htk large vocabulary speech
recognition system. I{EEE ICASSP

Woodland, P. and Povey, D. (2002). Large scale discrimina-
tive training of hidden Markov models for speech recognitio
Computer Speech and Languads, 25-47.

Woodland, P. C. (2001). Speaker adaptation for continuous
density HMMs: A review. In Juncqua, J.-C. and Wellekens,
C. (Eds.),Proceedings of the ITRW ‘Adaptation Methods For
Speech RecognitionSophia-Antipolis, France.

Wooters, C. and Stolcke, A. (1994). Multiple-pronunciatio
lexical modeling in a speaker-independent speech understa
ing system. INCSLP-94 Yokohama, Japan, pp. 1363—-1366.

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-
based state tying for high accuracy acoustic modelling. In
Proceedings ARPA Workshop on Human Language Technol-
ogy, pp. 307-312.

Young, S. J., Russell, N. H., and Thornton, J. H. S. (1989). To
ken passing: A simple conceptual model for connected speech
recognition systems.. Tech. rep. CUED/F-INFENG/TR.38,
Cambridge University Engineering Department, Cambridge,
England.

Young, S. J. and Woodland, P. C. (1994). State clustering
in HMM-based continuous speech recognitiofComputer
Speech and Languag&(4), 369-394.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D.,
Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, Wida
Woodland, P. (2005)The HTK Book Cambridge University
Engineering Department.

Zheng, Y., Sproat, R., Gu, L., Shafran, I., Zhou, H., Su, ¥, J
rafsky, D., Starr, R., and Yoon, S.-Y. (2005). Accent detect
and speech recognition for shanghai-accented mandarin. In
InterSpeech 20Q4.isbon, Portugal.

Zweig, G. (1998).Speech Recognition with Dynamic Bayesian
Networks Ph.D. thesis, University of California, Berkeley.

