
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
Copyright c© 2005, All rights reserved. Draft of January 10, 2007. Do not cite
without permission.

9
AUTOMATIC SPEECH
RECOGNITION

When Frederic was a little lad he proved so brave and daring,
His father thought he’d ’prentice him to some career seafaring.
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice to apilot —
A life not bad for a hardy lad, though surely not a high lot,
Though I’m a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,
And I did not catch the word aright, through being hard of hearing;
Mistaking my instructions, which within my brain did gyrate,
I took and bound this promising boy apprentice to apirate.

The Pirates of Penzance, Gilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as a pirate and,
due to a slight complication involving 21st birthdays and leap years, nearly led to 63
extra years of apprenticeship. The mistake was quite natural, in a Gilbert-and-Sullivan
sort of way; as Ruth later noted, “The two words were so much alike!” True, true;
spoken language understanding is a difficult task, and it is remarkable that humans do
as well at it as we do. The goal ofautomatic speech recognition(ASR) research is to
address this problem computationally by building systems that map from an acoustic
signal to a string of words.Automatic speech understanding(ASU) extends this goal
to producing some sort of understanding of the sentence, rather than just the words.

The general problem of automatic transcription of speech byany speaker in any
environment is still far from solved. But recent years have seen ASR technology ma-
ture to the point where it is viable in certain limited domains. One major application
area is in human-computer interaction. While many tasks arebetter solved with visual
or pointing interfaces, speech has the potential to be a better interface than the keyboard
for tasks where full natural language communication is useful, or for which keyboards
are not appropriate. This includes hands-busy or eyes-busyapplications, such as where
the user has objects to manipulate or equipment to control. Another important ap-
plication area is telephony, where speech recognition is already used for example for
entering digits, recognizing “yes” to accept collect calls, finding out airplane or train
information, and call-routing (“Accounting, please”, “Prof. Regier, please”). In some
applications, a multimodal interface combining speech andpointing can be more effi-
cient than a graphical user interface without speech (Cohenet al., 1998). Finally, ASR
is being applied to dictation, that is, transcription of extended monologue by a single

DRAFT

2 Chapter 9. Automatic Speech Recognition

specific speaker. Dictation is common in fields such as law andis also important as
part of augmentative communication (interaction between computers and humans with
some disability resulting in the inability to type, or the inability to speak). The blind
Milton famously dictatedParadise Lostto his daughters, and Henry James dictated his
later novels after a repetitive stress injury.

Before turning to architectural details, let’s discuss some of the parameters and
the state of the art of the speech recognition task. One dimension of variation in speech
recognition tasks is the vocabulary size. Speech recognition is easier if the number of
distinct words we need to recognize is smaller. So tasks witha two word vocabulary,
like yesversusnodetection, or an eleven word vocabulary, like recognizing sequences
of digits, in what is called thedigits task, are relatively easy. On the other end, tasksDIGITS

with large vocabularies, like transcribing human-human telephone conversations, or
transcribing broadcast news, tasks with vocabularies of 64,000 words or more, are
much harder.

A second dimension of variation is how fluent, natural, or conversational the
speech is.Isolated word recognition, in which each word is surrounded by some sortISOLATED WORD

of pause, is much easier than recognizingcontinuous speech, in which words runCONTINUOUS
SPEECH

into each other and have to be segmented. Continuous speech tasks themselves vary
greatly in difficulty. For example, human-to-machine speech turns out to be far easier to
recognize than human-to-human speech. That is, recognizing speech of humans talking
to machines, either reading out loud inread speech(which simulates the dictationREAD SPEECH

task), or conversing with speech dialogue systems, is relatively easy. Recognizing the
speech of two humans talking to each other, inconversational speechrecognition,CONVERSATIONAL

SPEECH

for example for transcribing a business meeting or a telephone conversation, is much
harder. It seems that when humans talk to machines, they simplify their speech quite a
bit, talking more slowly and more clearly.

A third dimension of variation is channel and noise. Commercial dictation sys-
tems, and much laboratory research in speech recognition, is done with high quality,
head mounted microphones. Head mounted microphones eliminate the distortion that
occurs in a table microphone as the speakers head moves around. Noise of any kind
also makes recognition harder. Thus recognizing a speaker dictating in a quiet office
is much easier than recognizing a speaker dictating in a noisy car on the highway with
the window open.

A final dimension of variation is accent or speaker-class characteristics. Speech
is easier to recognize if the speaker is speaking a standard dialect, or in general one
that matches the data the system was trained on. Recognitionis thus harder on foreign-
accented speech, or speech of children (unless the system was specifically trained on
exactly these kinds of speech).

Table 9.1 shows the rough percentage of incorrect words (theword error rate ,
or WER, defined on page 37) from state-of-the-art systems on arange of different ASR
tasks.

Variation due to noise and accent increases the error rates quite a bit. The word
error rate on strongly Japanese-accented or Spanish accented English has been reported
to be about 3 to 4 times higher than for native speakers on the same task (Tomokiyo,
2001). And adding automobile noise with a 10dB SNR (signal-to-noise ratio) can cause
error rates to go up by 2 to 4 times.

DRAFT

Section 9.1. Speech Recognition Architecture 3

Task Vocabulary Error Rate %

TI Digits 11 (zero-nine, oh) .5
Wall Street Journal read speech 5,000 3
Wall Street Journal read speech 20,000 3
Broadcast News 64,000+ 10
Conversational Telephone Speech (CTS) 64,000+ 20

Figure 9.1 Rough word error rates (% of words misrecognized) reported around 2006
for ASR on various tasks; the error rates for Broadcast News and CTS are based on par-
ticular training and test scenarios and should be taken as ballpark numbers; error rates for
differently defined tasks may range up to a factor of two.

In general, these error rates go down every year, as speech recognition perfor-
mance has improved quite steadily. One estimate is that performance has improved
roughly 10 percent a year over the last decade (Deng and Huang, 2004), due to a com-
bination of algorithmic improvements and Moore’s law.

While the algorithms we describe in this chapter are applicable across a wide va-
riety of these speech tasks, we chose to focus this chapter onthe fundamentals of one
crucial area:Large-Vocabulary Continuous Speech Recognition(LVCSR). Large-LVCSR

vocabulary generally means that the systems have a vocabulary of roughly 20,000
to 60,000 words. We saw above thatcontinuous means that the words are run to-
gether naturally. Furthermore, the algorithms we will discuss are generallyspeaker-
independent; that is, they are able to recognize speech from people whosespeech theSPEAKER

INDEPENDENT

system has never been exposed to before.
The dominant paradigm for LVCSR is the HMM, and we will focus on this ap-

proach in this chapter. Previous chapters have introduced most of the core algorithms
used in HMM-based speech recognition. Ch. 7 introduced the key phonetic and phono-
logical notions ofphone, syllable, and intonation. Ch. 5 and Ch. 6 introduced the use
of the Bayes rule, theHidden Markov Model (HMM), theViterbi algorithm, and
the Baum-Welch training algorithm. Ch. 4 introduced theN-gram language model
and theperplexity metric. In this chapter we begin with an overview of the architec-
ture for HMM speech recognition, offer an all-too-brief overview of signal processing
for feature extraction, and an overview of Gaussian acoustic models. We then continue
with Viterbi decoding, and talk about the use of word error rate for evaluation. In ad-
vanced sections, we introduce advanced search techniques like A∗ andN-best decoding
and lattices, context-dependent triphone acoustic modelsand dealing with variation.

Of course the field of ASR is far too large even to summarize in such a short
space; the reader is encouraged to see the suggested readings at the end of the chapter
for useful textbooks and articles.

9.1 SPEECHRECOGNITION ARCHITECTURE

The task of speech recognition is to take as input an acousticwaveform and produce
as output a string of words. HMM-based speech recognition systems view this task
using the metaphor of the noisy channel. The intuition of thenoisy channelmodelNOISY CHANNEL

DRAFT

4 Chapter 9. Automatic Speech Recognition

(see Fig. 9.2) is to treat the acoustic waveform as an “noisy”version of the string of
words, i.e.. a version that has been passed through a noisy communications channel.
This channel introduces “noise” which makes it hard to recognize the “true” string of
words. Our goal is then to build a model of the channel so that we can figure out how
it modified this “true” sentence and hence recover it.

The insight of the noisy channel model is that if we know how the channel dis-
torts the source, we could find the correct source sentence for a waveform by taking
every possible sentence in the language, running each sentence through our noisy chan-
nel model, and seeing if it matches the output. We then selectthe best matching source
sentence as our desired source sentence.

NOISY CHANNEL

noisy
sentence

guess at
original
sentence

If music be the
 food of love... If music be the

 food of love...

DECODER

?Every happy family...

...

source
sentence

?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

Figure 9.2 The noisy channel model. We search through a huge space of potential
“source” sentences and choose the one which has the highest probability of generating the
“noisy” sentence. We need models of the prior probability ofa source sentence (N-grams),
the probability of words being realized as certain strings of phones (HMM lexicons), and
the probability of phones being realized as acoustic or spectral features (Gaussian Mixture
Models).

Implementing the noisy-channel model as we have expressed it in Fig. 9.2 re-
quires solutions to two problems. First, in order to pick thesentence that best matches
the noisy input we will need a complete metric for a “best match”. Because speech is
so variable, an acoustic input sentence will never exactly match any model we have for
this sentence. As we have suggested in previous chapters, wewill use probability as our
metric. This makes the speech recognition problem a specialcase ofBayesian infer-BAYESIAN

ence, a method known since the work of Bayes (1763). Bayesian inference or Bayesian
classification was applied successfully by the 1950s to language problems like optical
character recognition (Bledsoe and Browning, 1959) and to authorship attribution tasks
like the seminal work of Mosteller and Wallace (1964) on determining the authorship of
the Federalist papers. Our goal will be to combine various probabilistic models to get a
complete estimate for the probability of a noisy acoustic observation-sequence given a
candidate source sentence. We can then search through the space of all sentences, and
choose the source sentence with the highest probability.

Second, since the set of all English sentences is huge, we need an efficient algo-
rithm that will not search through all possible sentences, but only ones that have a good
chance of matching the input. This is thedecodingor searchproblem, which we have
already explored with the Viterbi decoding algorithm for HMMs in Ch. 5 and Ch. 6.
Since the search space is so large in speech recognition, efficient search is an important
part of the task, and we will focus on a number of areas in search.

In the rest of this introduction we will introduce the probabilistic or Bayesian

DRAFT

Section 9.1. Speech Recognition Architecture 5

model for speech recognition (or more accurately re-introduce it, since we first used
the model in our discussions of part-of-speech tagging in Ch. 5). We then introduce the
various components of a modern HMM-based ASR system.

We now turn to our probabilistic implementation of the noisychannel intuition,
which should be familiar from Ch. 5. The goal of the probabilistic noisy channel archi-
tecture for speech recognition can be summarized as follows:

“What is the most likely sentence out of all sentences in the languageL

given some acoustic input O?”

We can treat the acoustic inputO as a sequence of individual “symbols” or “ob-
servations” (for example by slicing up the input every 10 milliseconds, and represent-
ing each slice by floating-point values of the energy or frequencies of that slice). Each
index then represents some time interval, and successiveoi indicate temporally con-
secutive slices of the input (note that capital letters willstand for sequences of symbols
and lower-case letters for individual symbols):

O = o1,o2,o3, . . . ,ot(9.1)

Similarly, we treat a sentence as if it were composed of a string of words:

W = w1,w2,w3, . . . ,wn(9.2)

Both of these are simplifying assumptions; for example dividing sentences into
words is sometimes too fine a division (we’d like to model facts about groups of words
rather than individual words) and sometimes too gross a division (we need to deal with
morphology). Usually in speech recognition a word is definedby orthography (after
mapping every word to lower-case):oak is treated as a different word thanoaks, but
the auxiliarycan(“can you tell me. . . ”) is treated as the same word as the nouncan(“i
need a can of. . . ”).

The probabilistic implementation of our intuition above, then, can be expressed
as follows:

Ŵ = argmax
W∈L

P(W|O)(9.3)

Recall that the function argmaxx f (x) means “the x such that f(x) is largest”.
Equation (9.3) is guaranteed to give us the optimal sentenceW; we now need to make
the equation operational. That is, for a given sentenceW and acoustic sequenceO we
need to computeP(W|O). Recall that given any probabilityP(x|y), we can use Bayes’
rule to break it down as follows:

P(x|y) =
P(y|x)P(x)

P(y)
(9.4)

We saw in Ch. 5 that we can substitute (9.4) into (9.3) as follows:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
(9.5)

DRAFT

6 Chapter 9. Automatic Speech Recognition

The probabilities on the right-hand side of (9.5) are for themost part easier to
compute thanP(W|O). For example,P(W), the prior probability of the word string
itself is exactly what is estimated by then-gram language models of Ch. 4. And we
will see below thatP(O|W) turns out to be easy to estimate as well. ButP(O), the
probability of the acoustic observation sequence, turns out to be harder to estimate.
Luckily, we can ignoreP(O) just as we saw in Ch. 5. Why? Since we are maximizing

over all possible sentences, we will be computingP(O|W)P(W)
P(O)

for each sentence in the

language. ButP(O) doesn’t change for each sentence! For each potential sentence
we are still examining the same observationsO, which must have the same probability
P(O). Thus:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(9.6)

To summarize, the most probable sentenceW given some observation sequence
O can be computed by taking the product of two probabilities for each sentence, and
choosing the sentence for which this product is greatest. The general components of
the speech recognizer which compute these two terms have names;P(W), theprior
probability , is computed by thelanguage model. while P(O|W), the observationLANGUAGE MODEL

likelihood, is computed by theacoustic model.ACOUSTIC MODEL

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.7)

The language model (LM) priorP(W) expresses how likely a given string of
words is to be a source sentence of English. We have already seen in Ch. 4 how to
compute such a language model priorP(W) by usingN-gram grammars. Recall that
anN-gram grammar lets us assign a probability to a sentence by computing:

P(wn
1)≈

n∏

k=1

P(wk|wk−1
k−N+1)(9.8)

This chapter will show how the HMM we covered in Ch. 6 can be used to build
an Acoustic Model (AM) which computes the likelihoodP(O|W). Given the AM and
LM probabilities, the probabilistic model can be operationalized in a search algorithm
so as to compute the maximum probability word string for a given acoustic waveform.
Fig. 9.3 shows a rough block diagram of how the computation ofthe prior and likeli-
hood fits into a recognizer decoding a sentence.

We can see further details of the operationalization in Fig.9.4, which shows the
components of an HMM speech recognizer as it processes a single utterance. The fig-
ure shows the recognition process in three stages. In thefeature extraction or signal
processingstage, the acoustic waveform is sampled intoframes (usually of 10, 15,
or 20 milliseconds) which are transformed intospectral features. Each time window
is thus represented by a vector of around 39 features representing this spectral infor-
mation as well as information about energy and spectral change. Sec. 9.3 gives an
(unfortunately brief) overview of the feature extraction process.

DRAFT

Section 9.2. Applying the Hidden Markov Model to Speech 7

Figure 9.3 A block diagram of a speech recognizer decoding a single sentence, showing
the integration ofP(W) andP(O|W).

In the acoustic modelingor phone recognitionstage, we compute the likeli-
hood of the observed spectral feature vectors given linguistic units (words, phones,
subparts of phones). For example, we use Gaussian Mixture Model (GMM) classifiers
to compute for each HMM stateq, corresponding to a phone or subphone, the likeli-
hood of a given feature vector given this phonep(o|q). A (simplified) way of thinking
of the output of this stage is as a sequence of probability vectors, one for each time
frame, each vector at each time frame containing the likelihoods that each phone or
subphone unit generated the acoustic feature vector observation at that time.

Finally, in thedecodingphase, we take the acoustic model (AM), which consists
of this sequence of acoustic likelihoods, plus an HMM dictionary of word pronuncia-
tions, combined with the language model (LM) (generally anN-gram grammar), and
output the most likely sequence of words. An HMM dictionary,as we will see in
Sec. 9.2, is a list of word pronunciations, each pronunciation represented by a string of
phones. Each word can then be thought of as an HMM, where the phones (or some-
times subphones) are states in the HMM, and the Gaussian likelihood estimators supply
the HMM output likelihood function for each state. Most ASR systems use the Viterbi
algorithm for decoding, speeding up the decoding with wide variety of sophisticated
augmentations such as pruning, fast-match, and tree-structured lexicons.

9.2 APPLYING THE HIDDEN MARKOV MODEL TO SPEECH

Let’s turn now to how the HMM model is applied to speech recognition. We saw in
Ch. 6 that a Hidden Markov Model is characterized by the following components:

DRAFT

8 Chapter 9. Automatic Speech Recognition

Figure 9.4 Schematic architecture for a (simplified) speech recognizer decoding a sin-
gle sentence. A real recognizer is more complex since various kinds of pruning and fast
matches are needed for efficiency. This architecture is onlyfor decoding; we also need a
separate architecture for training parameters.

Q = q1q2 . . .qN a set ofstates

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.

∑n
j=1ai j = 1 ∀i

O = o1o2 . . .oN a set ofobservations, each one drawn from a vo-
cabularyV = v1,v2, ...,vV .

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of an observationot being generated
from a statei.

q0,qend a specialstart and end statewhich are not asso-
ciated with observations.

Furthermore, the chapter introduced theViterbi algorithm for decoding HMMs,
and theBaum-Welchor Forward-Backward algorithm for training HMMs.

All of these facets of the HMM paradigm play a crucial role in ASR. We begin

DRAFT

Section 9.2. Applying the Hidden Markov Model to Speech 9

here by discussing how the states, transitions, and observations map into the speech
recognition task. We will return to the ASR applications of Viterbi decoding in Sec. 9.6.
The extensions to the Baum-Welch algorithms needed to deal with spoken language are
covered in Sec. 9.4 and Sec. 9.7.

Recall the examples of HMMs we saw earlier in the book. In Ch. 5, the hid-
den states of the HMM were parts-of-speech, the observations were words, and the
HMM decoding task mapped a sequence of words to a sequence of parts-of-speech. In
Ch. 6, the hidden states of the HMM were weather, the observations were ‘ice-cream
consumptions’, and the decoding task was to determine the weather sequence from a
sequence of ice-cream consumption. For speech, the hidden states are phones, parts
of phones, or words, each observation is information about the spectrum and energy
of the waveform at a point in time, and the decoding process maps this sequence of
acoustic information to phones and words.

The observation sequence for speech recognition is a sequence ofacoustic fea-
ture vectors. Each acoustic feature vector represents information suchas the amount
of energy in different frequency bands at a particular pointin time. We will return in
Sec. 9.3 to the nature of these observations, but for now we’ll simply note that each
observation consists of a vector of 39 real-valued featuresindicating spectral informa-
tion. Observations are generally drawn every 10 milliseconds, so 1 second of speech
requires 100 spectral feature vectors, each vector of length 39.

The hidden states of Hidden Markov Models can be used to modelspeech in a
number of different ways. For small tasks, likedigit recognition, (the recognition ofDIGIT RECOGNITION

the 10 digit wordszerothroughnine), or foryes-norecognition (recognition of the two
wordsyesandno), we could build an HMM whose states correspond to entire words.
For most larger tasks, however, the hidden states of the HMM correspond to phone-like
units, and words are sequences of these phone-like units.

Let’s begin by describing an HMM model in which each state of an HMM corre-
sponds to a single phone (if you’ve forgotten what a phone is,go back and look again
at the definition in Ch. 7). In such a model, a word HMM thus consists of a sequence
of HMM states concatenated together.

In the HMMs described in Ch. 6, there were arbitrary transitions between states;
any state could transition to any other. This was also in principle true of the HMMs for
part-of-speech tagging in Ch. 5; although the probability of some tag transitions was
low, any tag could in principle follow any other tag. Unlike in these other HMM appli-
cations, HMM models for speech recognition usually do not allow arbitrary transitions.
Instead, they place strong constraints on transitions based on the sequential nature of
speech. Except in unusual cases, HMMs for speech don’t allowtransitions from states
to go to earlier states in the word; in other words, states cantransition to themselves or
to successive states. As we saw in Ch. 6, this kind ofleft-to-right HMM structure is
called aBakis network.BAKIS NETWORK

The most common model used for speech is even more constrained, allowing
a state to transition only to itself (self-loop) or to a single succeeding state. The use
of self-loops allows a single phone to repeat so as to cover a variable amount of the
acoustic input. Phone durations vary hugely, dependent on the phone identify, the the
speaker’s rate of speech, the phonetic context, and the level of prosodic prominence of
the word. Looking at the Switchboard corpus, the phone [aa] varies in length from 7

DRAFT

10 Chapter 9. Automatic Speech Recognition

to 387 milliseconds (1 to 40 frames), while the the phone [z] varies in duration from
7 milliseconds to more than 1.3 seconds (130 frames) in some utterances! Self-loops
thus allow a single state to be repeated many times.

Fig. 9.5 shows a schematic of the structure of a basic phone-state HMM, with
self-loops and forward transitions, for the wordsix.

Figure 9.5 An HMM for the wordsix, consisting of four emitting states and two non-
emitting states, the transition probabilities A, the observation probabilitiesB, and a sample
observation sequence.

For very simple speech tasks (recognizing small numbers of words such as the
10 digits), using an HMM state to represent a phone is sufficient. In general LVCSR
tasks, however, a more fine-grained representation is necessary. This is because phones
can last over 1 second, i.e., over 100 frames, but the 100 frames are not acoustically
identical. The spectral characteristics of a phone, and theamount of energy, vary dra-
matically across a phone. For example, recall from Ch. 7 thatstop consonants have
a closure portion, which has very little acoustic energy, followed by a release burst.
Similarly, diphthongs are vowels whose F1 and F2 change significantly. Fig. 9.6 shows
these large changes in spectral characteristics over time for each of the two phones in
the word “Ike”, ARPAbet [ay k].

To capture this fact about the non-homogeneous nature of phones over time,
in LVCSR we generally model a phone with more than one HMM state. The most
common configuration is to use three HMM states, a beginning,middle, and end state.
Each phone thus consists of 3 emitting HMM states instead of one (plus two non-
emitting states at either end), as shown in Fig. 9.7. It is common to reserve the word
model or phone modelto refer to the entire 5-state phone HMM, and use the wordMODEL

PHONE MODEL HMM state (or juststatefor short) to refer to each of the 3 individual subphone HMM
HMM STATE states.

To build a HMM for an entire word using these more complex phone models,
we can simply replace each phone of the word model in Fig. 9.5 with a 3-state phone
HMM. We replace the non-emitting start and end states for each phone model with
transitions directly to the emitting state of the precedingand following phone, leaving
only two non-emitting states for the entire word. Fig. 9.8 shows the expanded word.

In summary, an HMM model of speech recognition is parameterized by:

DRAFT

Section 9.2. Applying the Hidden Markov Model to Speech 11

Time (s)
0.48152 0.937203

0

5000

F
re

q
u
e
n
c
y
 (

H
z
)

ay k

Figure 9.6 The two phones of the word ”Ike”, pronounced [ay k]. Note the continuous
changes in the [ay] vowel on the left, as F2 rises and F1 falls,and the sharp differences
between the silence and release parts of the [k] stop.

Figure 9.7 A standard 5-state HMM model for a phone, consisting of threeemitting
states (corresponding to the transition-in, steady state,and transition-out regions of the
phone) and two non-emitting states.

Figure 9.8 A composite word model for “six”, [s ih k s], formed by concatenating four
phone models, each with three emitting states.

Q = q1q2 . . .qN a set ofstatescorresponding tosubphones

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot) being generated from subphone statei.

DRAFT

12 Chapter 9. Automatic Speech Recognition

Another way of looking at theA probabilities and the statesQ is that together
they represent alexicon: a set of pronunciations for words, each pronunciation consist-
ing of a set of subphones, with the order of the subphones specified by the transition
probabilitiesA.

We have now covered the basic structure of HMM states for representing phones
and words in speech recognition. Later in this chapter we will see further augmenta-
tions of the HMM word model shown in Fig. 9.8, such as the use oftriphone models
which make use of phone context, and the use of special phonesto model silence. First,
though, we need to turn to the next component of HMMs for speech recognition: the
observation likelihoods. And in order to discuss observation likelihoods, we first need
to introduce the actual acoustic observations: feature vectors. After discussing these in
Sec. 9.3, we turn in Sec. 9.4 the acoustic model and details ofobservation likelihood
computation. We then re-introduce Viterbi decoding and show how the acoustic model
and language model are combined to choose the best sentence.

9.3 FEATURE EXTRACTION

THIS SECTION STILL TO BE WRITTEN. IT WILL START FROM DIGITIZATION
AND WAVE FILE FORMATS AND GO THROUGH PRODUCTION OF MFCC
FILES.

9.4 COMPUTING ACOUSTIC L IKELIHOODS

The last section showed how we can extract MFCC features representing spectral infor-
mation from a wavefile, and produce a 39-dimensional vector every 10 milliseconds.
We are now ready to see how to compute the likelihood of these feature vectors given
an HMM state. Recall from Ch. 6 that this output likelihood iscomputed by theB
probability function of the HMM. Given an individual stateqi and an observationot ,
the observation likelihoods inB matrix gave usp(ot |qi), which we calledbt(i).

For part-of-speech tagging in Ch. 5, each observationot is a discrete symbol (a
word) and we can compute the likelihood of an observation given a part-of-speech tag
just by counting the number of times a given tag generates a given observation in the
training set. But for speech recognition, MFCC vectors are real-valued numbers; we
can’t compute the likelihood of a given state (phone) generating an MFCC vector by
counting the number of times each such vector occurs (since each one is likely to be
unique).

In both decoding and training, we need an observation likelihood function that
can computep(ot |qi) on real-valued observations. In decoding, we are given an obser-
vationot and we need to produce the probabilityp(ot |qi) for each possible HMM state,
so we can choose the most likely sequence of states. Once we have this observation
likelihoodB function, we need to figure out how to modify the Baum-Welch algorithm
of Ch. 6 to train it as part of training HMMs.

DRAFT

Section 9.4. Computing Acoustic Likelihoods 13

9.4.1 Vector Quantization

One way to make MFCC vectors look like symbols that we could count is to build a
mapping function that maps each input vector into one of a small number of symbols.
Then we could just compute probabilities on these symbols bycounting, just as we
did for words in part-of-speech tagging. This idea of mapping input vectors to discrete
quantized symbols is calledvector quantization or VQ (Gray, 1984). Although vectorVECTOR

QUANTIZATION

V quantization is too simple to act as the acoustic model in modern LVCSR systems, it is
a useful pedagogical step, and plays an important role in various areas of ASR, so we
use it to begin our discussion of acoustic modeling.

In vector quantization, we create the small symbol set by mapping each training
feature vector into a small number of classes, and then we represent each class by a
discrete symbol. More formally, a vector quantization system is characterized by a
codebook, aclustering algorithm, and adistance metric.

A codebookis a list of possible classes, a set of symbols constituting avocab-CODEBOOK

ulary V = {v1,v2, ...,vn}. For each symbolvk in the codebook we list aprototype
vector, also known as acodeword, which is a specific feature vector. For example ifPROTOTYPE VECTOR

CODEWORD we choose to use 256 codewords we could represent each vectorby a value from 0 to
255; (this is referred to as 8-bit VQ, since we can represent each vector by a single 8-bit
value). Each of these 256 values would be associated with a prototype feature vector.

The codebook is created by using aclustering algorithm to cluster all the featureCLUSTERING

vectors in the training set into the 256 classes. Then we chose a representative feature
vector from the cluster, and make it the prototype vector or codework for that cluster.
K-means clusteringis often used, but we won’t define clustering here; see Huang et al.KMEANS

CLUSTERING

(2001) or Duda et al. (2000) for detailed descriptions.
Once we’ve built the codebook, for each incoming feature vector, we compare it

to each of the 256 prototype vectors, select the one which is closest (by somedistance
metric), and replace the input vector by the index of this prototypevector. A schematic
of this process is shown in Fig. 9.9.

The advantage of VQ is that since there are a finite number of classes, for each
classvk, we can compute the probability that it is generated by a given HMM state/sub-
phone by simply counting the number of times it occurs in sometraining set when
labeled by that state, and normalizing.

Both the clustering process and the decoding process require adistance metricDISTANCE METRIC

or distortion metric, that specifies how similar two acoustic feature vectors are. The
distance metric is used to build clusters, to find a prototypevector for each cluster, and
to compare incoming vectors to the prototypes.

The simplest distance metric for acoustic feature vectors isEuclidean distance.EUCLIDEAN
DISTANCE

Euclidean distance is the distance in N-dimensional space between the two points de-
fined by the two vectors. In practice what we refer to as Euclidean distance is actually
the square of the distance. Thus given a vectorx and a vectory of length D, the (square
of the) Euclidean distance between them is defined as:

deuclidean(x,y) =

D∑

i=1

(xi−yi)
2(9.9)

DRAFT

14 Chapter 9. Automatic Speech Recognition

Figure 9.9 Schematic architecture of the (trained) vector quantization (VQ) process
for choosing a symbolvq for each input feature vector. The vector is compared to each
codeword in the codebook, the closest entry (by some distance metric) is selected, and the
index of the closest codeword is output.

The (squared) Euclidean distance described in (9.9) (and shown for two dimen-
sions in Fig. 9.10) is also referred to as the sum-squared error, and can also be expressed
using the vector transpose operator as:

deuclidean(x,y) = (x−y)T(x−y)(9.10)

Figure 9.10 Euclidean distance in two dimensions; by the Pythagorean theorem,
the distance between two points in a planex = (x1,y1) and y = (x2,y2) d(x,y) =
√

(x1−x2)2 +(y1−y2)2.

The Euclidean distance metric assumes that each of the dimensions of a feature
vector are equally important. But actually each of the dimensions have very different
variances. If a dimension tends to have a lot of variance, then we’d like it to count
less in the distance metric; a large difference in a dimension with low variance should

DRAFT

Section 9.4. Computing Acoustic Likelihoods 15

count more than a large difference in a dimension with high variance. A slightly more
complex distance metric, theMahalanobis distance, takes into account the differentMAHALANOBIS

DISTANCE

variances of each of the dimensions.
If we assume that each dimensioni of the acoustic feature vectors has a variance

σ2
i , then the Mahalanobis distance is:

dmahalanobis(x,y) =
D∑

i=1

(xi−yi)
2

σ2
i

(9.11)

For those readers with more background in linear algebra here’s the general form
of Mahalanobis distance, which includes a full covariance matrix (covariance matrices
will be defined below):

dmahalanobis(x,y) = (x−y)TΣ−1(x−y)(9.12)

In summary, when decoding a speech signal, to compute an acoustic likelihood
of a feature vectorot given an HMM stateq j using VQ, we compute the Euclidean or
Mahalanobis distance between the feature vector and each ofthe N codewords, choose
the closest codeword, getting the codeword indexvk. We then look up the likelihood of
the codeword indexvk given the HMM statej in the pre-computedB likelihood matrix
defined by the HMM:

b̂ j(ot) = b j(vk) s.t. vk is codeword of closest vector toot(9.13)

Since VQ is so rarely used, we don’t use up space here giving the equations for
modifying the EM algorithm to deal with VQ data; instead, we defer discussion of
EM training of continuous input parameters to the next section, when we introduce
Gaussians.

9.4.2 Gaussian PDFs

Vector quantization has the advantage of being extremely easy to compute and requires
very little storage. Despite these advantages, vector quantization is simply not a good
model of speech. A small number of codewords is insufficient to capture the wide
variability in the speech signal. Speech is simply not a categorical, symbolic process.

Modern speech recognition algorithms therefore do not use vector quantization
to compute acoustic likelihoods. Instead, they are based oncomputing observation
probabilities directly on the real-valued, continuous input feature vector. These acous-
tic models are based on computing aprobability density function or pdf over a con-PROBABILITY

DENSITY FUNCTION

tinuous space. By far the most common method for computing acoustic likelihoods is
theGaussian Mixture Model (GMM) pdfs, although neural networks, support vectorGAUSSIAN MIXTURE

MODEL

GMM machines (SVMs) and conditional random fields (CRFs) are also used.
Let’s begin with the simplest use of Gaussian probability estimators, slowly

building up the more sophisticated models that are used.

Univariate Gaussians

TheGaussiandistribution, also known as thenormal distribution , is the bell-curveGAUSSIAN

NORMAL
DISTRIBUTION

DRAFT

16 Chapter 9. Automatic Speech Recognition

function familiar from basic statistics. A Gaussian distribution is a function parame-
terized by amean, or average value, and avariance, which characterizes the averageMEAN

VARIANCE spread or dispersal from the mean. We will useµ to indicate the mean, andσ2 to
indicate the variance, giving the following formula for a Gaussian function:

f (x|µ,σ) =
1√

2πσ2
exp(− (x−µ)2

2σ2)(9.14)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
m=0,s=.5
m=1,s=1
m=−1,s=0.2
m=0,s=0.3

Figure 9.11 Gaussian functions with different means and variances.

Recall from basic statistics that the mean of a random variable X is the expected
value ofX. For a discrete variableX, this is the weighted sum over the values ofX (for
a continuous variable, it is the integral):

µ= E(X) =
N∑

i=1

p(Xi)Xi(9.15)

The variance of a random variableX is the squared average deviation from the
mean:

σ2 = E(Xi−E(X))2) =
N∑

i=1

p(Xi)(Xi−E(X))2(9.16)

When a Gaussian function is used as a probability density function, the area
under the curve is constrained to be equal to one. Then the probability that a random
variable takes on any particular range of values can be computed by summing the area

DRAFT

Section 9.4. Computing Acoustic Likelihoods 17

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

ba
bi

lit
y

D
en

si
ty

← P(shaded region) = .341

Figure 9.12 A Gaussian probability density function, showing a region from 0 to 1 with
a total probability of .341. Thus for this sample Gaussian, the probability that a value on
the X axis lies between 0 and 1 is .341.

under the curve for that range of values. Fig. 9.12 shows the probability expressed by
the area under an interval of a Gaussian.

We can use a univariate Gaussian pdf to estimate the probability that a particular
HMM state j generates the value of a single dimension of a feature vectorby assuming
that the possible values of (this one dimension of the) observation feature vectorot are
normally distributed. In other words we represent the observation likelihood function
b j(ot) for one dimension of the acoustic vector as a Gaussian. Taking, for the moment,
our observation as a single real valued number (a single cepstral feature), and assuming
that each HMM statej has associated with it a mean valueµj and varianceσ2

j , we
compute the likelihoodb j(ot) via the equation for a Gaussian pdf:

b j(ot) =
1

√

2πσ2
j

exp

(

− (ot−µj)
2

2σ2
j

)

(9.17)

Equation (9.17) shows us how to computeb j(ot), the likelihood of an individual
acoustic observation given a single univariate Gaussian from statej with its mean and
variance. We can now use this probability in HMM decoding.

But first we need to solve the training problem; how do we compute this mean
and variance of the Gaussian for each HMM stateqi? Let’s start by imagining the sim-
pler situation of a completely labeled training set, in which each acoustic observation
was labeled with the HMM state that produced it. In such a training set, we could
compute the mean of each state just taking the average of the values for eachot that
corresponded to statei, as show in (9.18). The variance could just be computed from

DRAFT

18 Chapter 9. Automatic Speech Recognition

the sum-squared error between each observation and the mean, as shown in (9.19).

µ̂i =
1
T

T∑

t=1

ot s.t.qt is statei(9.18)

σ̂2
j =

1
T

T∑

t=1

(ot −µi)
2 s.t. qt is statei(9.19)

But since states are hidden in an HMM, we don’t know exactly which obser-
vation vectorot was produced by which state. What we would like to do is assign
each observation vectorot to every possible statei, prorated by the probability that the
HMM was in statei at timet. Luckily, we already know how to do this prorating; the
probability of being in statei at timet was defined in Ch. 6 asξt(i), and we saw how
to computeξt(i) as part of the Baum-Welch algorithm using the forward and backward
probabilities. Baum-Welch is an iterative algorithm, and we will need to do the prob-
ability computation ofξt(i) iteratively since getting a better observation probability b
will also help us be more sure of the probabilityξ of being in a state at a certain time.
Thus we give equations for computing an updated mean and varianceµ̂ andσ̂2:

µ̂i =

∑T
t=1 ξt(i)ot
∑T

t=1 ξt(i)
(9.20)

σ̂2
i =

∑T
t=1 ξt(i)(ot −µi)

2

∑T
t=1 ξt(i)

(9.21)

Equations (9.20) and (9.21) are then used in the forward-backward (Baum-Welch)
training of the HMM. As we will see, the values ofµi andσi are first set to some initial
estimate, which is then re-estimated until the numbers converge.

Multivariate Gaussians

Equation (9.17) shows how to use a Gaussian to compute an acoustic likelihood for a
single cepstral feature. Since an acoustic observation is avector of 39 features, we’ll
need to use a multivariate Gaussian, which allows us to assign a probability to a 39-
valued vector. Where a univariate Gaussian is defined by a mean µ and a variance
σ2, a multivariate Gaussian is defined by a mean vector~µ of dimensionality D and a
covariance matrixΣ, defined below. For a typical cepstral feature vector in LVCSR, D
is 39:

f (~x|~µ,Σ) =
1

√

2π|Σ|
exp
(
(x−µ)TΣ−1(ot −µj)

)
(9.22)

The covariance matrixΣ captures the variance of each dimension as well as the
covariance between any two dimensions.

Recall again from basic statistics that the covariance of two random variablesX
andY is the expected value of the product of their average deviations from the mean:

Σ = E[(X−E(X))(Y−E(Y)]) =

N∑

i=1

p(XiYi)(Xi−E(X))(Yi−E(Y))(9.23)

DRAFT

Section 9.4. Computing Acoustic Likelihoods 19

Thus for a given HMM state with mean vectorµj and covariance matrixΣ j , and
a given observation vectorot , the multivariate Gaussian probability estimate is:

b j(ot) =
1

√

2π|Σ j|
exp
(

(ot −µj)
T Σ−1

j (ot −µj)
)

(9.24)

The covariance matrixΣ j expresses the variance between each pair of feature
dimensions. Suppose we made the simplifying assumption that features in different
dimensions did not covary, i.e., that there was no correlation between the variances of
different dimensions of the feature vector. In this case, wecould simply keep a dis-
tinct variance for each feature dimension. It turns out thatkeeping a separate variance
for each dimension is equivalent to having a covariance matrix that is diagonal, i.e.DIAGONAL

non-zero elements only appear along the main diagonal of thematrix. The main di-
agonal of such a diagonal covariance matrix contains the variances of each dimension,
σ2

1,σ2
2, ...σ2

D;
Let’s look at some illustrations of multivariate Gaussians, focusing on the role of

the full versus diagonal covariance matrix. We’ll explore asimple multivariate Gaus-
sian with only 2 dimensions, rather than the 39 that are typical in ASR. Fig. 9.13 shows
three different multivariate Gaussians in two dimensions.The leftmost figure shows
a Gaussian with a diagonal covariance matrix, in which the variances of the two di-
mensions are equal. Fig. 9.14 shows 3 contour plots corresponding to the Gaussians in
Fig. 9.13; each is a slice through the Gaussian. The leftmostgraph in Fig. 9.14 shows
a slice through the diagonal equal-variance Gaussian. The slice is circular, since the
variances are equal in both the X and Y directions.

−4
−2

0
2

4

−4

−2

0

2

4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−4
−2

0
2

4

−4

−2

0

2

4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 9.13 Three different multivariate Gaussians in two dimensions.The first
two have diagonal covariance matrices, one with equal variance in the two dimensions
[

1 0
0 1

]

, the second with different variances in the two dimensions,

[
.6 0
0 2

]

, and the

third with non-zero elements in the off-diagonal of the covariance matrix:

[
1 .8
.8 1

]

.

The middle figure in Fig. 9.13 shows a Gaussian with a diagonalcovariance
matrix, but where the variances are not equal. It is clear from this figure, and especially
from the contour slice show in Fig. 9.14, that the variance ismore than 3 times greater
in one dimension than the other.

DRAFT

20 Chapter 9. Automatic Speech Recognition

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) (b) (c)

Figure 9.14 The same three multivariate Gaussians as in the previous figure. From left
to right, a diagonal covariance matrix with equal variance,diagonal with unequal variance,
and and nondiagonal covariance. With non-diagonal covariance, knowing the value on
dimension X tells you something about the value on dimensionY.

The rightmost graph in Fig. 9.13 and Fig. 9.14 shows a Gaussian with a non-
diagonal covariance matrix. Notice in the contour plot in Fig. 9.14 that the contour is
not lined up with the two axes, as it is in the other two plots. Because of this, knowing
the value in one dimension can help in predicting the value inthe other dimension. Thus
having a non-diagonal covariance matrix allows us to model correlations between the
values of the features in multiple dimensions.

A Gaussian with a full covariance matrix is thus a more powerful model of acous-
tic likelihood than one with a diagonal covariance matrix. And indeed, speech recog-
nition performance is better using full-covariance Gaussians than diagonal-covariance
Gaussians. But there are two problems with full-covarianceGaussians that makes them
difficult to use in practice. First, they are slow to compute.A full covariance matrix
hasD2 parameters, where a diagonal covariance matrix has onlyD. This turns out to
make a large difference in speed in real ASR systems. Second,a full covariance matrix
has many more parameters and hence requires much more data totrain than a diagonal
covariance matrix. Using a diagonal covariance model meanswe can save room for
using our parameters for other things like triphones.

For this reason, in practice most ASR systems use diagonal covariance. We will
assume diagonal covariance for the remainder of this section.

Equation (9.24) can thus be simplified to the version in (9.25) in which instead of
a covariance matrix, we simply keep a mean and variance for each dimension. Equation
(9.25) thus describes how to estimate the likelihoodb j(ot) of a D-dimensional feature
vectorot given HMM statej, using a diagonal-covariance multivariate Gaussian.

b j(ot) =

D∏

d=1

1
√

2πσ2
jd

exp

(

−1
2
[
(otd−µjd)2

σ jd
2]

)

(9.25)

Training a diagonal-covariance multivariate Gaussian is asimple generalization
of training univariate Gaussians. We’ll do the same Baum-Welch training, where we
use the value ofξt(i) to tell us the likelihood of being in statei at timet. Indeed, we’ll
use exactly same equation as in (9.21), except that now we aredealing with vectors
instead of scalars; the observationot is a vector of cepstral features, the mean vector~µ

DRAFT

Section 9.4. Computing Acoustic Likelihoods 21

is a vector of cepstral means, and the variance vector~σ2
i is a vector of cepstral variances.

µ̂i =

∑T
t=1 ξt(i)ot
∑T

t=1 ξt(i)
(9.26)

σ̂2
i =

∑T
t=1 ξt(i)(ot −µi)(ot −µi)

T

∑T
t=1 ξt(i)

(9.27)

Gaussian Mixture Models

The previous subsection showed that we can use a multivariate Gaussian model to as-
sign a likelihood score to an acoustic feature vector observation. This models each
dimension of the feature vector as a normal distribution. But a particular cepstral fea-
ture might have a very non-normal distribution; the assumption of a normal distribu-
tion may be too strong an assumption. For this reason, we often model the observation
likelihood not with a single multivariate Gaussian, but with a weighted mixture of mul-
tivariate Gaussians. Such a model is called aGaussian Mixture Model or GMM .GAUSSIAN MIXTURE

MODEL

GMM Equation (9.28) shows the equation for the GMM function; theresulting function is the
sum ofM Gaussians. Fig. 9.15 shows an intuition of how a mixture of Gaussians can
model arbitrary functions.

Figure 9.15 Add figure here showing a mixture of 3 guassians covering a function with
3 lumps; SHOW differences in VARIANCE, MEAN, AND WEIGHT.

f (x|µ,Σ) =
M∑

k=1

ck
1

√

2π|Σk|
exp[(x−µk)

T Σ−1(x−µk)](9.28)

Equation (9.29) shows the definition of the output likelihood functionb j(ot)

b j(ot) =

M∑

m=1

c jm
1

√
2π|Σ jm|

exp[(x−µjm)TΣ−1
jm(ot −µjm)](9.29)

Let’s turn to training the GMM likelihood function. This mayseem hard to do;
how can we train a GMM model if we don’t know in advance which mixture is sup-
posed to account for which part of each distribution? Recallthat a single multivariate
Gaussian could be trained even if we didn’t know which state accounted for each out-
put, simply by using the Baum-Welch algorithm to tell us the likelihood of being in
each statej at time t. It turns out the same trick will work for GMMs; we can use
Baum-Welch to tell us the probability of a certain mixture accounting for the observa-
tion, and iteratively update this probability.

We used theξ function above to help us compute the state probability. By anal-
ogy with this function, let’s defineξtm(j) to mean the probability of being in statej at
time t with themth mixture component accounting for the output observationot . We
can computeξtm(j) as follows:

DRAFT

22 Chapter 9. Automatic Speech Recognition

ξtm(j) =

∑

i=1Nαt−1(j)ai j c jmb jm(ot)βt(j)
αT(F)

(9.30)

Now if we had the values ofξ from a previous iteration of Baum-Welch, we can
useξtm(j) to recompute the mean, mixture weight, and covariance usingthe following
equations:

µ̂im =

∑T
t=1 ξtm(i)ot

∑T
t=1

∑M
m=1 ξtm(i)

(9.31)

ĉim =

∑T
t=1 ξtm(i)

∑T
t=1

∑M
k=1 ξtk(i)

(9.32)

Σ̂im =

∑T
t=1 ξt(i)(ot −µim)(ot −µim)T

∑T
t=1

∑M
k=1 ξtm(i)

(9.33)

9.4.3 Probabilities, log probabilities and distance functions

Up to now, all the equations we have given for acoustic modeling have used probabil-
ities. It turns out, however, that alog probability (or logprob) is much easier to workLOGPROB

with than a probability. Thus in practice throughout speechrecognition (and related
fields) we compute log-probabilities rather than probabilities.

One major reason that we can’t use probabilities is numeric underflow. To com-
pute a likelihood for a whole sentence, say, we are multiplying many small proba-
bility values, one for each 10ms frame. Multiplying many probabilities results in
smaller and smaller numbers, leading to underflow. The log ofa small number like
.00000001= 10−8, on the other hand, is a nice easy-to-work-with-number like−8. A
second reason to use log probabilities is computational speed. Instead of multiplying
probabilities, we add log-probabilities, and adding is faster than multiplying. Log-
probabilities are particularly efficient when we are using Gaussian models, since we
can avoid exponentiating.

Thus for example for a single multivariate diagonal-covariance Gaussian model,
instead of computing:

b j(ot) =

D∏

d=1

1
√

2πσ2
jd

exp

(

−1
2

(otd−µjd)2

σ2
jd

)

(9.34)

we would compute

logb j(ot) =−1
2

D∑

d=1

[

log(2π)+ σ2
jd +

(otd−µjd)2

σ2
jd

]

(9.35)

With some rearrangement of terms, we can rewrite this equation to pull out a constant
C:

logb j(ot) = C− 1
2

D∑

d=1

(otd−µjd)2

σ2
jd

(9.36)

DRAFT

Section 9.5. The Lexicon and Language Model 23

where C can be precomputed:

C =−1
2

D∑

d=1

(
log(2π)+ σ2

jd

)
(9.37)

In summary, computing acoustic models in log domain means a much simpler
computation, much of which can be precomputed for speed.

The perceptive reader may have noticed that equation (9.36)looks very much
like the equation for Mahalanobis distance (9.11). Indeed,one way to think about
Gaussian logprobs is as just a weighted distance metric.

A further point about Gaussian pdfs, for those readers with calculus. Although
the equations for observation likelihood such as (9.17) aremotivated by the use of
Gaussian probability density functions, the values they return for the observation like-
lihood, b j(ot), are not technically probabilities; they may in fact be greater than one.
This is because we are computing the value ofb j(ot) at a single point, rather than
integrating over a region. While the total area under the Gaussian PDF curve is con-
strained to one, the actual value at any point could be greater than one. (Imagine a
very tall skinny Gaussian; the value could be greater than one at the center, although
the area under the curve is still 1.0). If we were integratingover a region, we would be
multiplying each point by its widthdx, which would bring the value down below one.
The fact that the Gaussian estimate is not a true probabilitydoesn’t matter for choosing
the most likely HMM state, since we are comparing different Gaussians, each of which
is missing this dx factor.

In summary, the last few subsections introduced Gaussian models for acoustic
training in speech recognition. Beginning with simple univariate Gaussian, we ex-
tended first to multivariate Gaussians to deal with the multidimensionality acoustic
feature vectors. We then introduced the diagonal covariance simplification of Gaus-
sians, and then introduced Gaussians mixtures (GMMs).

9.5 THE LEXICON AND LANGUAGE MODEL

Since previous chapters had extensive discussions of theN-gram language model (Ch. 4)
and the pronunciation lexicon (Ch. 7), in this section we just briefly recall them to the
reader.

Language models for LVCSR tend to be trigrams or even fourgrams; good toolk-
its are available to build and manipulate them (Stolcke, 2002; Young et al., 2005). Bi-
grams and unigram grammars are rarely used for large-vocabulary applications. Since
trigrams require huge amounts of space, however, language models for memory-constrained
applications like cell phones tend to use smaller contexts.As we will discuss in Ch. 23,
some simple dialogue applications take advantage of their limited domain to use very
simple finite state or weighted-finite state grammars.

Lexicons are simply lists of words, with a pronunciation foreach word expressed
as a phone sequence. Publicly available lexicons like the CMU dictionary (CMU,
1993) can be used to extract the 64,000 word vocabularies commonly used for LVCSR.
Most words have a single pronunciation, although some wordssuch as homonyms and

DRAFT

24 Chapter 9. Automatic Speech Recognition

frequent function words may have more; the average number ofpronunciations per
word in most LVCSR systems seems to range from 1 to 2.5. Sec. 9.12.3 discusses the
issue of pronunciation modeling.

9.6 SEARCH AND DECODING

We are now very close to having described all the parts of a complete speech recog-
nizer. We have shown how to extract cepstral features for a frame, and how to compute
the acoustic likelihoodb j(ot) for that frame. We also know how to represent lexical
knowledge, that each word HMM is composed of a sequence of phones, and each of
phone of set of subphone states. Finally, in Ch. 4 we showed how to useN-grams to
build a model of word predictability.

In this section we show how to combine all of this knowledge tosolve the prob-
lem ofdecoding: combining all these probability estimators to produce themost prob-DECODING

able string of words. We can phrase the decoding question as:‘Given a string of
acoustic observations, how should we choose the string of words which has the highest
posterior probability?’

Recall from the beginning of the chapter the noisy channel model for speech
recognition. In this model, we use Bayes rule, with the result that the best sequence of
words is the one that maximizes the product of two factors, a language model prior and
an acoustic likelihood:

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.38)

Now that we have defined both the acoustic model (in this chapter) and language
model (in Ch. 4), we are ready to see how to find this maximum probability sequence
of words. First, though, it turns out that we’ll need to make amodification to Equa-
tion (9.38), because it relies on some incorrect independence assumptions. Recall that
we trained a multivariate Gaussian mixture classifier to compute the likelihood of a
particular acoustic observation (a frame) given a particular state (subphone). By com-
puting separate classifiers for each acoustic frame and multiplying these probabilities
to get the probability of the whole word, we are severely underestimating the proba-
bility of each subphone. This is because there is a lot of continuity across frames; if
we were to take into account the acoustic context, we would have a greater expectation
for a given frame and hence could assign it a higher probability. We must therefore
reweight the two probabilities. We do this by add in alanguage model scaling factor
or LMSF , also called thelanguage weight. This factor is an exponent on the languageLMSF

model probabilityP(W). BecauseP(W) is less than one and the LMSF is greater than
one (between 5 and 15, in many systems), this has the effect ofdecreasing the value of
the LM probability:

Ŵ = argmax
W∈L

P(O|W)P(W)LMSF(9.39)

DRAFT

Section 9.6. Search and Decoding 25

Reweighting the language model probabilityP(W) in this way requires us to
make one more change. This is becauseP(W) has a side-effect as a penalty for inserting
words. It’s simplest to see this in the case of a uniform language model, where every
word in a vocabulary of size|V| has an equal probability1|V| . In this case, a sentence

with N words will have a language model probability of1
|V| for each of theN words,

for a total penalty of ofN|V| . The largerN is (the more words in the sentence), the more

times this1
V penalty multiplier is taken, and the less probable the sentence will be. Thus

if (on average) the language model probability decreases (causing a larger penalty), the
decoder will prefer fewer, longer words. If the language model probability increases
(larger penalty), the decoder will prefer more shorter words. Thus our use of a LMSF to
balance the acoustic model has the side-effect of decreasing the word insertion penalty.
To offset this, we need to add back in a separateword insertion penalty:WORD INSERTION

PENALTY

Ŵ = argmax
W∈L

P(O|W)P(W)LMSFWIPN(9.40)

Since in practice we use logprobs, the goal of our decoder is:

Ŵ = argmax
W∈L

logP(O|W)+LMSF× logP(W)+N× logWIP(9.41)

Now that we have an equation to maximize, let’s look at how to decode. It’s the
job of a decoder to simultaneously segment the utterance into words and identify each
of these words. This task is made difficult by variation, bothin terms of how words are
pronounced in terms of phones, and how phones are articulated in acoustic features.
Just to give an intuition of the difficulty of the problem imagine a massively simplified
version of the speech recognition task, in which the decoderis given a series of discrete
phones. In such a case, we would know what each phone was with perfect accuracy,
and yet decoding is still difficult. For example, try to decode the following sentence
from the (hand-labeled) sequence of phones from the Switchboard corpus (don’t peek
ahead!):

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]

The answer is in the footnote.1 The task is hard partly because of coarticulation
and fast speech (e.g., [d] for the first phone ofjust!). But it’s also hard because speech,
unlike English writing, has no spaces indicating word boundaries. The true decoding
task, in which we have to identify the phones at the same time as we identify and
segment the words, is of course much harder.

For decoding, we will start with the Viterbi algorithm that we introduced in Ch. 6,
in the domain ofdigit recognition, a simple task with with a vocabulary size of 11 (the
numbersonethroughninepluszeroandoh).

Recall the basic components of an HMM model for speech recognition:

1 I just heard something about moving recently.

DRAFT

26 Chapter 9. Automatic Speech Recognition

Q = q1q2 . . .qN a set ofstatescorresponding tosubphones

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.
Together,Q and A implement apronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot) being generated from subphone statei.

The HMM structure for each word comes from a lexicon of word pronunciations.
Generally we use an off-the-shelf pronunciation dictionary such as the free CMUdict
dictionary described in Ch. 7. Recall from page 9 that the HMMstructure for words in
speech recognition is a simple concatenation of phone HMMs,each phone consisting
of 3 subphone states, where every state has exactly two transitions: a self-loop and a
loop to the next phones. Thus the HMM structure for each digitword in our digit rec-
ognizer is computed simply by taking the phone string from the dictionary, expanding
each phone into 3 subphones, and concatenating together. Inaddition, we generally
add an optional silence phone at the end of each word, allowing the possibility of paus-
ing between words. We usually define the set of statesQ from some version of the
ARPAbet, augmented with silence phones, and expanded to create three subphones for
each phone.

TheA andB matrices for the HMM are trained by the Baum-Welch algorithm
in theembedded trainingprocedure that we will describe in Sec. 9.7. For now we’ll
assume that these probabilities have been trained.

Fig. 9.16 shows the resulting HMM for digit recognition. Note that we’ve added
non-emitting start and end states, with transitions from the end of each word to the end
state, and a transition from the end state back to the start state to allow for sequences
of digits. Note also the optional silence phones at the end ofeach word.

Digit recognizers often don’t use word probabilities, since in most digit situa-
tions (phone numbers or credit card numbers) each digit has an equal probability of
appearing. But we’ve included transition probabilities into each word in Fig. 9.16,
mainly to show where such probabilities would be for other kinds of recognition tasks.
As it happens, there are cases where digit probabilities do matter, such as in addresses
(which are often likely to end in 0 or 00) or in cultures where some numbers are lucky
and hence more frequent, such as the lucky number ‘8’ in Chinese.

Now that we have an HMM, we can use the same forward and Viterbialgorithms
that we introduced in Ch. 6. Let’s see how to use the forward algorithm to generate
P(O|W), the likelihood of an observation sequenceO given a sequence of wordsW;
we’ll use the single word “five”. In order to compute this likelihood, we need to sum
over all possible sequences of states; assumingfivehas the states [f], [ay], and [v], a
10-observation sequence includes many sequences such as the following:

f ay ay ay ay v v v v v

DRAFT

Section 9.6. Search and Decoding 27

Figure 9.16 An HMM for the digit recognition task. A lexicon specifies thephone
sequence, and each phone HMM is composed of three subphones each with a Gaussian
emission likelihood model. Combining these and adding an optional silence at the end of
each word, results in a single HMM for the whole task. Note thetransition from the End
state to the Start state to allow digit sequences of arbitrary length.

f f ay ay ay ay v v v v
f f f f ay ay ay ay v v
f f ay ay ay ay ay ay v v
f f ay ay ay ay ay ay ay v
f f ay ay ay ay ay v v v
...

The forward algorithm efficiently sums over this large number of sequences in
O(N2T) time.

Let’s quickly review the forward algorithm. It is a dynamic programming algo-
rithm, i.e. an algorithm that uses a table to store intermediate values as it builds up the
probability of the observation sequence. The forward algorithm computes the obser-
vation probability by summing over the probabilities of allpossible paths that could
generate the observation sequence.

Each cell of the forward algorithm trellisαt (j) or forward[t, j] represents the
probability of being in statej after seeing the firstt observations, given the automaton

DRAFT

28 Chapter 9. Automatic Speech Recognition

λ. The value of each cellαt(j) is computed by summing over the probabilities of
every path that could lead us to this cell. Formally, each cell expresses the following
probability:

αt(j) = P(o1,o2 . . .ot ,qt = j|λ)(9.42)

Hereqt = j means “the probability that thetth state in the sequence of states is
state j”. We compute this probability by summing over the extensions of all the paths
that lead to the current cell. For a given stateq j at timet, the valueαt(j) is computed
as:

αt(j) =

N−1∑

i=1

αt−1(i)ai j b j(ot)(9.43)

The three factors that are multiplied in Eq˙ 9.43 in extending the previous paths
to compute the forward probability at timet are:

αt−1(i) theprevious forward path probability from the previous time step

ai j the transition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

The algorithm is described in Fig. 9.17.

function FORWARD(observationsof lenT,state-graph) returns forward-probability

num-states←NUM-OF-STATES(state-graph)
Create a probability matrixforward[num-states+2,T+2]
forward[0,0]←1.0
for each time stept from 1 to T do

for each states from 1 to num-statesdo
forward[s,t]←

∑

1 ≤ s′≤ num-states

forward[s′,t−1] ∗ as′,s ∗ bs(ot)

return the sum of the probabilities in the final column offorward

Figure 9.17 The forward algorithm for computing likelihood of observation sequence
given a word model.a[s,s′] is the transition probability from current states to next states′,
andb[s′,ot] is the observation likelihood ofs’ givenot . The observation likelihoodb[s′,ot]
is computed by theacoustic model.

Let’s see a trace of the forward algorithm running on a simplified HMM for
the single wordfive given 10 observations; assuming 10ms per frame, this comes to
100ms. The HMM structure is shown vertically along the left of Fig. 9.18, followed by
the first 3 time-steps of the forward trellis. The complete trellis is shown in Fig. 9.19,
together withB values giving a vector of observation likelihoods for each frame. These
likelihoods could be computed by any acoustic model (Gaussians, HMMs, etc); in this
example we’ve hand-created simple values for pedagogical purposes.

DRAFT

Section 9.6. Search and Decoding 29

Figure 9.18 The first 3 time-steps of the forward trellis computation forthe wordfive.
TheA transition probabilities are shown along the left edge; theB observation likelihoods
are shown in Fig. 9.19.

V 0 0 0.008 0.0093 0.0114 0.00703 0.00345 0.00306 0.00206 0.00117
AY 0 0.04 0.054 0.0664 0.0355 0.016 0.00676 0.00208 0.000532 0.000109
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06

Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.19 The forward trellis for 10 frames of the wordfive, consisting of 3 emitting states (f, ay, v), plus non-
emitting start and end states (not shown). The bottom half ofthe table gives part of theB observation likelihood
vector for the observationo at each frame,p(o|q) for each phoneq. B values are created by hand for pedagogical
purposes. This table assumes the HMM structure forfive shown in Fig. 9.18, each emitting state having a .5
loopback probability.

Let’s now turn to the question of decoding. Recall the Viterbi decoding algorithm
from our description of HMMs in Ch. 6. The Viterbi algorithm returns the most likely
state sequence (which is not the same as the most likely word sequence, but is often a
good enough approximation) in timeO(N2T).

Each cell of the Viterbi trellis,vt(j) represents the probability that the HMM is
in state j after seeing the firstt observations and passing through the most likely state
sequenceq1...qt−1, given the automatonλ. The value of each cellvt(j) is computed by
recursively taking the most probable path that could lead usto this cell. Formally, each
cell expresses the following probability:

vt(j) = P(q0,q1...qt−1,o1,o2 . . .ot ,qt = j|λ)(9.44)

Like other dynamic programming algorithms, Viterbi fills each cell recursively.
Given that we had already computed the probability of being in every state at timet−1,
We compute the Viterbi probability by taking the most probable of the extensions of

DRAFT

30 Chapter 9. Automatic Speech Recognition

the paths that lead to the current cell. For a given stateq j at timet, the valuevt(j) is
computed as:

vt(j) = max
1≤i≤N−1

vt−1(i) ai j b j(ot)(9.45)

The three factors that are multiplied in Eq. 9.45 for extending the previous paths
to compute the Viterbi probability at timet are:

vt−1(i) theprevious Viterbi path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

Fig. 9.20 shows the Viterbi algorithm, repeated from Ch. 6.

function V ITERBI(observationsof lenT,state-graph) returns best-path

num-states←NUM-OF-STATES(state-graph)
Create a path probability matrixviterbi[num-states+2,T+2]
viterbi[0,0]←1.0
for each time stept from 1 to T do

for each states from 1 to num-statesdo
viterbi[s,t]← max

1 ≤ s′≤ num-states
viterbi[s′,t−1] ∗ as′,s ∗ bs(ot)

back-pointer[s,t]← argmax
1 ≤ s′≤ num-states

viterbi[s′,t−1] ∗ as′,s

Backtrace from highest probability state in final column ofviterbi[] and return path

Figure 9.20 Viterbi algorithm for finding optimal sequence of hidden states. Given
an observation sequence of words and an HMM (as defined by theA and B matrices),
the algorithm returns the state-path through the HMM which assigns maximum likelihood
to the observation sequence.a[s′,s] is the transition probability from previous states′ to
current states, andbs(ot) is the observation likelihood ofsgivenot . Note that states 0 and
N+1 are non-emitting start and end states.

Recall that the goal of the Viterbi algorithm is to find the best state sequence
q= (q1q2q3 . . .qt) given the set of observationso= (o1o2o3 . . .ot). It needs to also find
the probability of this state sequence. Note that the Viterbi algorithm is identical to the
forward algorithm except that it takes the MAX over the previous path probabilities
where forward takes the SUM.

Fig. 9.21 shows the computation of the first three time-stepsin the Viterbi trellis
corresponding to the forward trellis in Fig. 9.18. We have again used the made-up
probabilities for the cepstral observations; here we also follow common convention in
not showing the zero cells in the upper left corner. Note thatonly the middle cell in the
third column differs from Viterbi to forward. Fig. 9.19 shows the complete trellis.

DRAFT

Section 9.6. Search and Decoding 31

Figure 9.21 The first 3 time-steps of the viterbi trellis computation forthe wordfive.
TheA transition probabilities are shown along the left edge; theB observation likelihoods
are shown in Fig. 9.22.

V 0 0 0.008 0.0072 0.00672 0.00403 0.00188 0.00161 0.000667 0.000493
AY 0 0.04 0.048 0.0448 0.0269 0.0125 0.00538 0.00167 0.000428 8.78e-05
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06

Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.22 The Viterbi trellis for 10 frames of the wordfive, consisting of 3 emitting states (f, ay, v), plus non-
emitting start and end states (not shown). The bottom half ofthe table gives part of theB observation likelihood
vector for the observationo at each frame,p(o|q) for each phoneq. B values are created by hand for pedagogical
purposes. This table assumes the HMM structure forfive shown in Fig. 9.18, each emitting state having a .5
loopback probability.

Note the difference between the final values from the Viterbiand forward al-
gorithms for this (made-up) example. The forward algorithmgives the probability of
the observation sequence as .00128, which we get by summing the final column. The
Viterbi algorithm gives the probability of the observationsequence given the best path,
which we get from the Viterbi matrix as .000493. The Viterbi probability is much
smaller than the forward probability, as we should expect since Viterbi comes from a
single path, where the forward probability is the sum over all paths.

The real usefulness of the Viterbi decoder, of course, lies in its ability to de-
code a string of words. In order to do cross-word decoding, weneed to augment the
A matrix, which only has intra-word state transitions, with the inter-word probability
of transitioning from the end of one word to the beginning of another word. The digit
HMM model in Fig. 9.16 showed that we could just treat each word as independent,
and use only the unigram probability. Higher-orderN-grams are much more common.

DRAFT

32 Chapter 9. Automatic Speech Recognition

Figure 9.23 A bigram grammar network for the digit recognition task. Thebigrams
give the probability of transitioning from the end of one word to the beginning of the next.

Fig. 9.23, for example, shows an augmentation of the digit HMM with bigram proba-
bilities.

A schematic of the HMM trellis for such a multi-word decodingtask is shown
in Fig. 9.24. The intraword transitions are exactly as shownin Fig. 9.21. But now
between words we’ve added a transition. The transition probability on this arc, rather
than coming from theA matrix inside each word, comes from the language model
P(W).

Once the entire Viterbi trellis has been computed for the utterance, we can start
from the most-probable state at the final time step and followthe backtrace pointers
backwards to get the most probable string of states, and hence the most probable string
of words. Fig. 9.25 shows the backtrace pointers being followed back from the best
state, which happens to be atw2, eventually throughwN andw1, resulting in the final
word stringw1wN · · ·w2.

The Viterbi algorithm is much more efficient than exponentially running the for-
ward algorithm for each possible word string. Nonetheless,it is still slow, and much
modern research in speech recognition has focused on speeding up the decoding pro-
cess. For example in practice in large-vocabulary recognition we do not consider all
possible words when the algorithm is extending paths from one state-column to the
next. Instead, low-probability paths arepruned at each time step and not extended toPRUNING

the next state column.
This pruning is usually implemented viabeam search(Lowerre, 1968). In beamBEAM SEARCH

search, at each timet, we first compute the probability of the best (most-probable)
state/pathD. We then prune away any state which is worse thanD by some fixed
threshold (beam width) θ. We can talk about beam-search in both the probabilityBEAM WIDTH

and negative log probability domain. In the probability domain any path/state whose

DRAFT

Section 9.6. Search and Decoding 33

Figure 9.24 The HMM Viterbi trellis for a bigram language model. The intraword
transitions are exactly as shown in Fig. 9.21. Between words, a potential transition is
added (shown as a dotted line) from the end state of each word to the beginning state of
every word, labeled with the bigram probability of the word pair.

Figure 9.25 Viterbi backtrace in the HMM trellis. The backtrace starts in the final state,
and results in a best phone string from which a word string is derived.

probability is less thanθ∗D is pruned away; in the negative log domain, any path whose
cost is greater thenθ+D is pruned. Beam search is implemented by keeping for each

DRAFT

34 Chapter 9. Automatic Speech Recognition

time step anactive list of states. Only transitions from these words are extended whenACTIVE LIST

moving to the next time step.
Making this beam search approximation allows a significant speed-up at the cost

of a degradation to the decoding performance. Huang et al. (2001) suggest that em-
pirically a beam size of 5-10% of the search space is sufficient; 90-95% of the states
are thus not considered. Because in practice most implementations of Viterbi use beam
search, some of the literature uses the termbeam searchor time-synchronous beam
searchinstead of Viterbi.

9.7 EMBEDDED TRAINING

We turn now to see how an HMM-based speech recognition systemis trained. We’ve
already seen some aspects of training. In Ch. 4 we showed how to train a language
model. In Sec. 9.4, we saw how GMM acoustic models are trainedby augmenting the
EM algorithm to deal with training the means, variances, andweights. We also saw
how posterior AM classifiers like SVMs or neural nets could betrained, although for
neural nets we haven’t yet seen how we get training data in which each frame is labeled
with a phone identity.

In this section we complete the picture of HMM training by showing how this
augmented EM training algorithm fits into the whole process of training acoustic mod-
els. For review, here are three components of theacoustic model:

Q = q1q2 . . .qN a set ofstatescorresponding tosubphones

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.
Together,Q and A implement apronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot) being generated from subphone statei.

We will assume that the pronunciation lexicon, and thus the basic HMM state
graph structure for each word, is pre-specified as the simplelinear HMM structures
with loopbacks on each state that we saw in Fig. 9.8 and Fig. 9.16. In general, speech
recognition systems do not attempt to learn the structure ofthe individual word HMMs.
Thus we only need to train theB matrix, and we need to train the probabilities of the
non-zero (self-loop and next-subphone) transitions in theA matrix.

The simplest possible training method, ishand-labeled isolated wordtraining,
in which we train separate theB andA matrices for the HMMs for each word based
on hand-aligned training data. We are given a training corpus of digits, where each
instance of a spoken digit is stored in a wavefile, and with thestart and end of each word

DRAFT

Section 9.7. Embedded Training 35

and phone hand-segmented. Given such a hand-labeled database, we can compute theB
Gaussians observation likelihoods and theA transition probabilities by merely counting
in the training data! TheA transition probability are specific to each word, but theB
Gaussians would be shared across words if the same phone occurred in multiple words.

Unfortunately, hand-segmented training data is rarely used in training systems
for continuous speech. One reason is that it is very expensive to use humans to hand-
label phonetic boundaries; it can take up to 400 times real time (i.e. 400 labeling hours
to label each 1 hour of speech). Another reason is that humansdon’t do phonetic
labeling very well for units smaller than the phone; people are bad at consistently
finding the boundaries of subphones.

For this reason, speech recognition systems train each phone HMM embedded
in an entire sentence, and the segmentation and phone alignment are done automat-
ically as part of the training procedure. This entire acoustic model training process
is therefore calledembedded training. Hand phone segmentation do still play someEMBEDDED

TRAINING

role, however, for example for bootstrapping initial systems for discriminative (SVM;
non-Gaussian) likelihood estimators.

In order to train a simple digits system, we’ll need a training corpus of spoken
digit sequences. For simplicity assume that the training corpus is separated into sepa-
rate wavefiles, each containing a sequence of spoken digits.For each wavefile, we’ll
need to know the correct sequence of digit words. We’ll thus associate with each wave-
file a transcription (a string of words). We’ll also need a pronunciation lexicon and a
phoneset, defining a set of (untrained) phone HMMs. From the transcription, lexicon,
and phone HMMs, we can build a “whole sentence” HMM for each sentence, as shown
in Fig. 9.26.

We are now ready to train the transition matrix A and output likelihood estimator
B for the HMMs. The beauty of the Baum-Welch-based paradigm for embedded train-
ing of HMMs is that this is all the training data we need. In particular, we don’t need
phonetically transcribed data. We don’t even need to know where each word starts and
ends. The Baum-Welch algorithm will sum over all possible segmentations of words
and phones, usingξ j(t), the probability of being in statej at timet and generating the
observation sequence O.

We will, however, need an initial estimate for the transition and observation prob-
abilitiesai j andb j(ot). The simplest way to do this is with aflat start . In flat start, weFLAT START

first set to zero any HMM transitions that we want to be ‘structurally zero’; transitions
from later phones to earlier phones, for example, Theγ probability computation in
Baum-Welch includes the previous value ofai j , so those zero values will never change.
Then we make all the rest of the (non-zero) HMM transitions equiprobable. Thus the
two transitions out of each state (the self-loop and the transition to the following sub-
phone) each would have a probability of 0.5. For the Gaussians, a flat start initializes
the mean and variance for each Gaussian identically, to the global mean and variance
for the entire training data.

Now we have initial estimates for theA and B probabilities. For a standard
Gaussian HMM system, we now run multiple iterations of the Baum-Welch algorithm
on the entire training set. Each iteration modifies the HMM parameters, and we stop
when the system converges. During each iteration, as discussed in Ch. 6, we compute
the forward and backward probabilities for each sentence given the initialA and B

DRAFT

36 Chapter 9. Automatic Speech Recognition

Figure 9.26 The input to the embedded training algorithm; a wavefile of spoken digits with a corresponding
transcription. The transcription is converted into a raw HMM, ready to be aligned and trained against the cepstral
features extracted from the wavefile.

probabilities, and use them to re-estimate theA andB probabilities. We also apply the
various modifications to EM discussed in the previous section to correctly update the
Gaussian means and variances for multivariate Gaussians. We will discuss in Sec. 9.10
how to modify the embedded training algorithm to handle mixture Gaussians.

In summary, the basicembedded training procedureis as follows:

Given: phoneset, pronunciation lexicon, and the transcribed wavefiles

1. Build a “whole sentence” HMM for each sentence, as shown inFig. 9.26.

2. InitializeA probabilities to 0.5 (for loop-backs or for the correct next
subphone) or to zero (for all other transitions).

3. Initialize B probabilities by setting the mean and variance for each
Gaussian to the global mean and variance for the entire training set.

4. Run multiple iterations of the Baum-Welch algorithm.

The Baum-Welch algorithm is used repeatedly as a component of the embedded
training process. Baum-Welch computesξt(i), the probability of being in statei at
time t, by using forward-backward to sum over all possible paths that were in state
i emitting symbolot at time t. This lets us accumulate counts for re-estimating the
emission probabilityb j(ot) from all the paths that pass through statej at timet. But
Baum-Welch itself can be time-consuming.

There is an efficient approximation to Baum-Welch training that makes use of the
Viterbi algorithm. InViterbi training , instead of accumulating counts by a sum overVITERBI TRAINING

DRAFT
Section 9.8. Evaluation: Word Error Rate 37

all paths that pass through a statej at timet, we approximate this by only choosing
the Viterbi (most-probable) path. Thus instead of running EM at every step of the
embedded training, we repeatedly run Viterbi.

Running the Viterbi algorithm over the training data in thisway is calledforced
Viterbi alignment or just forced alignment. In Viterbi training (unlike in ViterbiFORCED ALIGNMENT

decoding on the test set) we know which word string to assign to each observation
sequence, So we can ‘force’ the Viterbi algorithm to pass through certain words, by
setting theai j s appropriately. A forced Viterbi is thus a simplification ofthe regular
Viterbi decoding algorithm, since it only has to figure out the correct state (subphone)
sequence, but doesn’t have to discover the word sequence. The result is aforced align-
ment: the single best state path corresponding to the training observation sequence.
We can now use this alignment of HMM states to observations toaccumulate counts
for re-estimating the HMM parameters.

The equations for retraining a (non-mixture) Gaussian froma Viterbi alignment
are as follows:

µ̂i =
1
T

T∑

t=1

ot s.t.qt is statei(9.46)

σ̂2
j =

1
T

T∑

t=1

(ot −µi)
2 s.t. qt is statei(9.47)

We saw these equations already, as (9.18) and (9.19) on page 18, when we were
‘imagining the simpler situation of a completely labeled training set’.

It turns out that this forced Viterbi algorithm is also used in the embedded train-
ing of hybrid models like HMM/MLP or HMM/SVM systems. We begin with an
untrained MLP, and using its noisy outputs as theB values for the HMM, perform a
forced Viterbi alignment of the training data. This alignment will be quite errorful,
since the MLP was random. Now this (quite errorful) Viterbi alignment give us a la-
beling of feature vectors with phone labels. We use this labeling to retrain the MLP.
The counts of the transitions which are taken in the forced alignments can be used to
estimate the HMM transition probabilities. We continue this hill-climbing process of
neural-net training and Viterbi alignment until the HMM parameters begin to converge.

9.8 EVALUATION : WORD ERRORRATE

The standard evaluation metric for speech recognition systems is theword error rate.WORD ERROR

The word error rate is based on how much the word string returned by the recognizer
(often called thehypothesizedword string) differs from a correct orreferencetran-
scription. Given such a correct transcription, the first step in computing word error is
to compute theminimum edit distance in words between the hypothesized and cor-
rect strings, as described in Ch. 3. The result of this computation will be the minimum
number of wordsubstitutions, word insertions, and worddeletionsnecessary to map
between the correct and hypothesized strings. The word error rate (WER) is then de-

DRAFT

38 Chapter 9. Automatic Speech Recognition

fined as follows (note that because the equation includes insertions, the error rate can
be greater than 100%):

Word Error Rate= 100× Insertions+Substitutions+Deletions
Total Words in Correct Transcript

We sometimes also talk about the SER (Sentence Error Rate), which tells us how
many sentences had at least one error:

Sentence Error Rate= 100× # of sentences with at least one word error
total # of sentences

Here is an example of thealignmentsbetween a reference and a hypothesizedALIGNMENTS

utterance from the CALLHOME corpus, showing the counts usedto compute the word
error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STORES last night
Eval: I I S D S S S I S S

This utterance has six substitutions, three insertions, and one deletion:

Word Error Rate= 100
6+3+1

13
= 76.9%

The standard method for implementing minimum edit distanceand computing
word error rates is a free script calledsclite, available from the National Institute
of Standards and Technologies (NIST) (NIST, 2005).sclite is given a series of
reference (hand-transcribed, gold-standard) sentences and a matching set of hypothe-
sis sentences. Besides performing alignments, and computing word error rate, sclite
performs a number of other useful tasks. For example, it gives useful information for
error analysis, such as confusion matrices showing which words are often misrecog-
nized for others, and gives summary statistics of words which are often inserted or
deleted.sclite also gives error rates by speaker (if sentences are labeled for speaker
id), as well as useful statistics like thesentence error rate, the percentage of sentencesSENTENCE ERROR

RATE

with at least one word error.
Finally, sclite can be used to compute significance tests. Suppose we make

some changes to our ASR system and find that our word error ratehas decreased by
1%. In order to know if our changes really improved things, weneed a statistical test
to make sure that the 1% difference is not just due to chance. The standard statistical
test for determining if two word error rates are different isthe Matched-Pair Sentence
Segment Word Error (MAPSSWE) test, which is also available in sclite.

The MAPSSWE test is a parametric test that looks at the difference between the
number of word errors the two systems produce, averaged across a number of segments.
The segments may be quite short or as long as an entire utterance; in general we want to
have the largest number of (short) segments in order to justify the normality assumption
and for maximum power. The test requires that the errors in one segment be statistically
independent of the errors in another segment. Since ASR systems tend to use trigram

DRAFT

Section 9.9. Advanced Search Algorithms 39

LMs, this can be approximated by defining a segment as a regionbounded on both
sides by words that both recognizers get correct (or turn/utterance boundaries).

Here’s an example from (?) with four segments, labeled in roman numerals:
EXAMPLE TO BE REPLACED

I II III IV

REF: |it was|the best|of|times it|was the worst|of times| |it was

| | | | | | | |

SYS A:|ITS |the best|of|times it|IS the worst |of times|OR|it was

| | | | | | | |

SYS B:|it was|the best| |times it|WON the TEST |of times| |it wa

In region I, system A has 2 errors (a deletion and an insertion) and system B
has 0; in region III system A has 1 (substitution) error and system B has 2. Let’s
defineNi

A is the number of errors made on segmenti by systemA, Ni
B is the number

of errors made on segmenti by systemB, andZ = Ni
A−Ni

B, i = 1,2, · · · ,n wheren
is the number of segments. For example we can see above that the sequence ofZ
values is{2,−1,−1,1}. Intuitively, if the two systems are identical, we would expect
the average difference, i.e. the average of theZ values, to be zero. If we call the true
average of the differencesmuz, we would thus like to know whethermuz = 0. Following
closely the original proposal and notation of Gillick and Cox (1989), we can estimate
the true average from our limited sample as ˆµz =

∑n
i=1Zi/n.

The estimate of the variance of theZi ’s is:

σ2
z =

1
n−1

n∑

i=1

(Zi−µz)
2(9.48)

Let

W =
µ̂z

σz/
√

n
(9.49)

For a large enoughn (> 50) W will approximately have a normal distribution with unit
variance. The null hypothesis isH0 : µz = 0, and it can thus be rejected if 2∗P(Z≥
|w|)≤ 0.05 (two-tailed) orP(Z≥ |w|)≤ 0.05 (one-tailed). whereZ is standard normal
andw is the realized valueW; these probabilities can be looked up in the standard
tables of the normal distribution.

Could we improve on word error rate as a metric? It would be nice, for exam-
ple, to have something which didn’t give equal weight to every word, perhaps valuing
content words likeTuesdaymore than function words likea or of. While researchers
generally agree that this would be a good idea, it has proved difficult to agree on a
metric that works in every application of ASR. For dialogue systems, however, where
the desired semantic output is more clear, a metric calledconcept error ratehas proved
extremely useful, and will be discussed in Ch. 23 on page??.

9.9 ADVANCED SEARCH ALGORITHMS

There are two main limitations of the Viterbi decoder. First, the Viterbi decoder does
not actually compute the sequence of words which is most probable given the input

DRAFT

40 Chapter 9. Automatic Speech Recognition

acoustics. Instead, it computes an approximation to this: the sequence ofstates(i.e.,
phonesor subphones) which is most probable given the input. More formally, recall
that the true likelihood of an observation sequenceO is computed by the forward algo-
rithm by summing over all possible paths:

P(O|W) =
∑

S∈ST
1

P(O,S|W)(9.50)

The Viterbi algorithm only approximates this sum by using the probability of the best
path:

P(O|W)≈max
S∈ST

1

P(O,S|W)(9.51)

It turns out that thisViterbi approximation is not too bad, since the most prob-VITERBI
APPROXIMATION

able sequence of phones usually turns out to correspond to the most probable sequence
of words. But not always. Consider a speech recognition system whose lexicon has
multiple pronunciations for each word. Suppose the correctword sequence includes a
word with very many pronunciations. Since the probabilities leaving the start arc of
each word must sum to 1.0, each of these pronunciation-pathsthrough this multiple-
pronunciation HMM word model will have a smaller probability than the path through
a word with only a single pronunciation path. Thus because the Viterbi decoder can
only follow one of these pronunciation paths, it may ignore this word in favor of an in-
correct word with only one pronunciation path. In essence, the Viterbi approximation
penalizes words with many pronunciations.

A second problem with the Viterbi decoder is that it is impossible or expensive
for it to take advantage of many useful knowledge sources. For example the Viterbi
algorithm as we have defined it cannot take complete advantage of any language model
more complex than a bigram grammar. This is because of the fact mentioned earlier
that a trigram grammar, for example, violates thedynamic programming invariant .
Recall that this invariant is the simplifying (but incorrect) assumption that if the ulti-
mate best path for the entire observation sequence happens to go through a stateqi , that
this best path must include the best path up to and including stateqi . Since a trigram
grammar allows the probability of a word to be based on the twoprevious words, it is
possible that the best trigram-probability path for the sentence may go through a word
but not include the best path to that word. Such a situation could occur if a particular
word wx has a high trigram probability givenwy,wz, but that conversely the best path
to wy didn’t includewz (i.e., P(wy|wq,wz) was low for allq). Advanced probabilistic
LMs like SCFGs also violate the same dynamic programming assumptions.

There are two solutions to these problems with Viterbi decoding. The most com-
mon is to modify the Viterbi decoder to return multiple potential utterances, instead
of just the single best, and then use other high-level language model or pronunciation-
modeling algorithms to re-rank these multiple outputs (?; Schwartz and Austin, 1991;
?; Murveit et al., 1993).

The second solution is to employ a completely different decoding algorithm,
such as thestack decoder, or A∗ decoder (Jelinek, 1969; Jelinek et al., 1975). This isSTACK DECODER

A
∗ an example of theA∗ searchdeveloped in artificial intelligence, although stack decod-

A
∗

SEARCH

DRAFT

Section 9.9. Advanced Search Algorithms 41

ing actually came from the information theory literature and the link with AI best-first
search was noticed only later (Jelinek, 1976).

9.9.1 Multipass Decoding:N-best lists and lattices

In multiple-pass decodingwe break up the decoding process into two stages. In the
first stage we use fast, efficient knowledge sources or algorithms to perform a non-
optimal search. So for example we might use an unsophisticated but time-and-space
efficient language model like a bigram, or use simplified acoustic models. In the second
decoding pass we can apply more sophisticated but slower decoding algorithms on a
reduced search space. The interface between these passes isan N-best list or word
lattice.

The simplest algorithm for multipass decoding is to modify the Viterbi algorithm
to return theN-bestsentences (word sequences) for a given speech input. Suppose forNBEST

example a bigram grammar is used with such anN-best-Viterbi algorithm to return
the 1000 most highly-probable sentences, each with their AMlikelihood and LM prior
score. This 1000-best list can now be passed to a more sophisticated language model
like a trigram grammar. This new LM is used to replace the bigram LM score of
each hypothesized sentence with a new trigram LM probability. These priors can be
combined with the acoustic likelihood of each sentence to generate a new posterior
probability for each sentence. Sentences are thusrescoredand re-ranked using thisRESCORED

more sophisticated probability. Fig. 9.27 shows an intuition for this algorithm.

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Figure 9.27 The use ofN-best decoding as part of a two-stage decoding model. Effi-
cient but unsophisticated knowledge sources are used to return theN-best utterances. This
significantly reduces the search space for the second pass models, which are thus free to
be very sophisticated but slow.

There are a number of algorithms for augmenting the Viterbi algorithm to gen-
erateN-best hypotheses. It turns out that there is no polynomial-time admissible al-
gorithm for finding theN most likely hypotheses (?). There are however, a number
of approximate (non-admissible) algorithms; we will introduce just one of them, the
“Exact N-best” algorithm of Schwartz and Chow (1990). In ExactN-best, instead of
each state maintaining a single path/backtrace, we maintain up toN different paths for
each state. But we’d like to insure that these paths correspond to different word paths;
we don’t want to waste ourN paths on different state sequences that map to the same

DRAFT

42 Chapter 9. Automatic Speech Recognition

words. To do this, we keep for each path theword history , the entire sequence of
words up to the current word/state. If two paths with the sameword history come to a
state at the same time, we merge the paths and sum the path probabilities. To keep the
N best word sequences, the resulting algorithm requiresO(N) times the normal Viterbi
time.

AM LM
Rank Path logprob logprob
1. it’s an area that’s naturally sort of mysterious -7193.53 -20.25
2. that’s an area that’s naturally sort of mysterious -7192.28 -21.11
3. it’s an area that’s not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189.19 -22.08
5. there’s an area that’s naturally sort of mysterious -7198.35 -21.34
6. that’s an area that’s not really sort of mysterious -7220.44 -19.77
7. the scenario that’s naturally sort of mysterious -7205.42 -21.50
8. so it’s an area that’s naturally sort of mysterious -7195.92 -21.71
9. that scenario that’s not really sort of mysterious -7217.34 -20.70
10. there’s an area that’s not really sort of mysterious -7226.51 -20.01

Figure 9.28 An example 10-Best list from the Broadcast News corpus, produced by the
CU-HTK BN system (thanks to Phil Woodland). Logprobs use log10; the language model
scale factor (LMSF) is 15.

The result of any of these algorithms is anN-best list like the one shown in
Fig. 9.28. In this case the correct hypothesis is the first one, but of course the reason
to useN-best lists is that isn’t always the case. Each sentence in anN-best list is also
annotated with an acoustic model probability and a languagemodel probability. This
allows a second-stage knowledge source to replace one of those two probabilities with
an improved estimate.

One problem with anN-best list is that whenN is large, listing all the sentences
is extremely inefficient. Another problem is thatN-best lists don’t give quite as much
information as we might want for a second-pass decoder. For example, we might want
distinct acoustic model information for each word hypothesis so that we can reapply a
new acoustic model for the word. Or we might want to have available different start
and end times of each word so that we can apply a new duration model.

For this reason, the output of a first-pass decoder is usuallya more sophisticated
representation called aword lattice (Murveit et al., 1993; Aubert and Ney, 1995).WORD LATTICE

A word lattice is a directed graph that efficiently represents much more information
about possible word sequences.In some systems, nodes in thegraph are words and arcs
are transitions between words. In others, arcs represent word hypotheses and nodes are
points in time. Let’s use this latter model, and so each arc represents lots of information
about the word hypothesis, including the start and end time,the acoustic model and
language model probabilities, the sequence of phones (the pronunciation of the word),
or even the phone durations. Fig. 9.29 shows a sample latticecorresponding to theN-
best list in Fig. 9.28. Note that the lattice contains many distinct links (records) for the
same word, each with a slightly different starting or endingtime. Such lattices are not
produced fromN-best lists; instead, a lattice is produced during first-pass decoding by

DRAFT

Section 9.9. Advanced Search Algorithms 43

including some of the word hypotheses which were active (in the beam) at each time-
step. Since the acoustic and language models are context-dependent, distinct links
need to be created for each relevant context, resulting in a large number of links with
the same word but different times and contexts.N-best lists like Fig. 9.28 can also be
produced by first building a lattice like Fig. 9.29 and then tracing through the paths to
produceN word strings.

Figure 9.29 Word lattice corresponding to theN-best list in Fig. 9.28. The arcs beneath
each word show the different start and end times for each wordhypothesis in the lattice;
for most of these we’ve shown schematically how each word hypothesis must start at the
end of a previous hypothesis. Not shown in this figure are the acoustic and language model
probabilities that decorate each arc.

The fact that each word hypothesis in a lattice is augmented separately with its
acoustic model likelihood and language model probability allows us to rescore any
path through the lattice, using either a more sophisticatedlanguage model or a more
sophisticated acoustic model. As withN-best lists, the goal of this rescoring is to
replace the1-best utterancewith a different utterance that perhaps had a lower score
on the first decoding pass. For this second-pass knowledge source to get perfect word
error rate, the actual correct sentence would have to be in the lattice orN-best list. If
the correct sentence isn’t there, the rescoring knowledge source can’t find it. Thus it
is important when working with a lattice orN-best list to consider the baselinelattice
error rate (Woodland et al., 1995; Ortmanns et al., 1997): the lower bound word errorLATTICE ERROR

RATE

rate from the lattice. The lattice error rate is the word error rate we get if we chose
the lattice path (the sentence) that has the lowest word error rate. Because it relies on
perfect knowledge of which path to pick, we call this anoracle error rate, since weORACLE

need some oracle to tell us which sentence/path to pick.
Another important lattice concept is thelattice density, which is the number ofLATTICE DENSITY

edges in a lattice divided by the number of words in the reference transcript. As we saw
schematically in Fig. 9.29, real lattices are often extremely dense, with many copies of
individual word hypotheses at slightly different start andend times. Because of this

DRAFT

44 Chapter 9. Automatic Speech Recognition

density, lattices are often pruned (?, ?).
Besides pruning, lattices are often simplified into a different, more schematic

kind of lattice that is sometimes called aword graph or finite state machine, al-WORD GRAPH

though often it’s still just referred to as a word lattice. Inthese word graphs, the timing
information is removed and multiple overlapping copies of the same word are merged.
The timing of the words is left implicit in the structure of the graph. In addition, the
acoustic model likelihood information is removed, leavingonly the language model
probabilities. The resulting graph is a weighted FSA, whichis a natural extension of
an N-gram language model; the word graph corresponding to Fig. 9.29 is shown in
Fig. 9.30. This word graph can in fact be used as the language model for another de-
coding pass. Since such a wordgraph language model vastly restricts the search space,
it can make it possible to use a complicated acoustic model which is too slow to use in
first-pass decoding.

Figure 9.30 Word graph corresponding to theN-best list in Fig. 9.28. Each word hy-
pothesis in the lattice also has language model probabilities (not shown in this figure).

A final type of lattice is used when we need to represent the posterior probabil-
ity of individual words in a lattice. It turns out that in speech recognition, we almost
never see the true posterior probability of anything, despite the fact that the goal of
speech recognition is to compute the sentence with the maximum a posteriori proba-
bility. This is because in the fundamental equation of speech recognition we ignore the
denominator in our maximization:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(9.52)

The product of the likelihood and the prior isnot the posterior probability of the
utterance. Why does it matter that we don’t have a true probability? The reason is that
without having true probability, we can choose the best hypothesis, but we can’t know
how good it is. Perhaps the best hypothesis is still really bad, and we need to ask the
user to repeat themselves. If we had the posterior probability of a word it could be used
as a confidence metric, since the posterior is an absolute rather than relative measure.
We’ll return to the use of confidence in Ch. 23.

In order to compute the posterior probability of a word, we’ll need to normalize
over all the different word hypotheses available at a particular point in the utterances.
At each point we’ll need to know which words are competing or confusable. The

DRAFT

Section 9.9. Advanced Search Algorithms 45

lattices that show these sequences of word confusions are called confusion networks,CONFUSION
NETWORKS

meshes, sausages, orpinched lattices. A confusion network consists of a sequence ofMESHES

SAUSAGES

PINCHED LATTICES

word positions. At each position is a set of mutually exclusive word hypotheses. The
network represents the set of sentences that can be created by choosing one word from
each position.

Figure 9.31 Confusion network corresponding to the word lattice in Fig.9.29. Each
word is associated with a posterior probability. Note that some of the words from the
lattice have been pruned away. (Probabilities computed by the SRI-LM toolkit).

Note that unlike lattices or word graphs, the process of constructing a confusion
network actually adds paths that were not in the original lattice. Confusion networks
have other uses besides computing confidence. They were originally proposed for
use in minimizing word error rate, by focusing on maximizingimproving the word
posterior probability rather than the sentence likelihood. Recently confusion networks
have been used to train discriminative classifiers that distinguish between words.

Roughly speaking, confusion networks are built by taking the different hypothe-
sis paths in the lattice and aligning them with each other. The posterior probability for
each word is computing by first summing over all paths passingthrough a word, and
then normalizing by the sum of the probabilities of all competing words. For further
details see Mangu et al. (2000), Evermann and Woodland (2000), Kumar and Byrne
(2002), Doumpiotis et al. (2003b).

Standard publicly available language modeling toolkits like SRI-LM (Stolcke,
2002) (http://www.speech.sri.com/projects/srilm/)and the HTK lan-
guage modeling toolkit (Young et al., 2005) (http://htk.eng.cam.ac.uk/)
can be used to generate and manipulate lattices,N-best lists, and confusion networks.

There are many other kinds of multiple-stage search, such astheforward-backwardFORWARD
BACKWARD

search algorithm (not to be confused with theforward-backward algorithm for HMM
parameter setting) (Austin et al., 1991) which performs a simple forward search fol-
lowed by a detailed backward (i.e., time-reversed) search.

9.9.2 A∗ Decoding

Recall that the Viterbi algorithm approximated the forwardcomputation, computing
the likelihood of the single best (MAX) path through the HMM,while the forward al-
gorithm computes the likelihood of the total (SUM) of all thepaths through the HMM.
The A∗ decoding algorithm allows us to use the complete forward probability, avoiding

DRAFT

46 Chapter 9. Automatic Speech Recognition

the Viterbi approximation. A∗ decoding also allows us to use any arbitrary language
model.

The A∗ decoding algorithm is a best-first search of the tree that implicitly defines
the sequence of allowable words in a language. Consider the tree in Fig. 9.32, rooted in
the START node on the left. Each leaf of this tree defines one sentence of the language;
the one formed by concatenating all the words along the path from START to the leaf.
We don’t represent this tree explicitly, but the stack decoding algorithm uses the tree
implicitly as a way to structure the decoding search.

Figure 9.32 A visual representation of the implicit lattice of allowable word sequences
that defines a language. The set of sentences of a language is far too large to represent
explicitly, but the lattice gives a metaphor for exploring prefixes.

The algorithm performs a search from the root of the tree toward the leaves,
looking for the highest probability path, and hence the highest probability sentence.
As we proceed from root toward the leaves, each branch leaving a given word node
represents a word which may follow the current word. Each of these branches has
a probability, which expresses the conditional probability of this next word given the
part of the sentence we’ve seen so far. In addition, we will use the forward algorithm
to assign each word a likelihood of producing some part of theobserved acoustic data.
The A∗ decoder must thus find the path (word sequence) from the root to a leaf which
has the highest probability, where a path probability is defined as the product of its
language model probability (prior) and its acoustic match to the data (likelihood). It
does this by keeping apriority queue of partial paths (i.e., prefixes of sentences, eachPRIORITY QUEUE

annotated with a score). In a priority queue each element hasa score, and thepopoper-
ation returns the element with the highest score. The A∗ decoding algorithm iteratively
chooses the best prefix-so-far, computes all the possible next words for that prefix, and
adds these extended sentences to the queue. Fig. 9.33 shows the complete algorithm.

Let’s consider a stylized example of an A∗ decoder working on a waveform for
which the correct transcription isIf music be the food of love. Fig. 9.34 shows the search
space after the decoder has examined paths of length one fromthe root. Afast matchFAST MATCH

is used to select the likely next words. A fast match is one of aclass of heuristics
designed to efficiently winnow down the number of possible following words, often
by computing some approximation to the forward probability(see below for further
discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a subset of the

DRAFT

Section 9.9. Advanced Search Algorithms 47

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentences off the queue.
If (s is marked end-of-sentence (EOS)) outputsand terminate.
Get list of candidate next words by doing fast matches.
For each candidate next wordw:

Create a new candidate sentences+w.
Use forward algorithm to compute acoustic likelihoodL of s+w
Compute language model probabilityP of extended sentences+w
Compute “score” fors+w (a function ofL, P, and ???)
if (end-of-sentence) set EOS flag fors+w.
Inserts+w into the queue together with its score and EOS flag

Figure 9.33 The A∗ decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to compute thescore for a sentence is not
completely defined here; possible evaluation functions arediscussed below.

possible next words, and assigned each of them a score. The word Alicehas the highest
score. We haven’t yet said exactly how the scoring works.

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

Figure 9.34 The beginning of the search for the sentenceIf music be the food of love.
At this early stageAlice is the most likely hypothesis. (It has a higher score than theother
hypotheses.)

Fig. 9.35a show the next stage in the search. We have expandedtheAlice node.
This means that theAlicenode is no longer on the queue, but its children are. Note that
now the node labeledif actually has a higher score than any of the children ofAlice.
Fig. 9.35b shows the state of the search after expanding theif node, removing it, and
addingif music, if muscle, andif messyon to the queue.

We clearly want the scoring criterion for a hypothesis to be related to its proba-
bility. Indeed it might seem that the score for a string of wordswi

1 given an acoustic

DRAFT

48 Chapter 9. Automatic Speech Recognition

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)

if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

(a) (b)

Figure 9.35 The next steps of the search for the sentenceIf music be the food of love. In
(a) we’ve now expanded theAlicenode and added three extensions which have a relatively
high score; the highest-scoring node isSTART if, which is not along theSTART Alicepath
at all. In (b) we’ve expanded theif node. The hypothesisSTART if musicthen has the
highest score.

stringy j
1 should be the product of the prior and the likelihood:

P(y j
1|wi

1)P(wi
1)

Alas, the score cannot be this probability because the probability will be much
smaller for a longer path than a shorter one. This is due to a simple fact about prob-
abilities and substrings; any prefix of a string must have a higher probability than the
string itself (e.g., P(START the . . .) will be greater than P(START the book)). Thus
if we used probability as the score, the A∗ decoding algorithm would get stuck on the
single-word hypotheses.

Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984)f ∗(p),
given a partial pathp:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is theestimatedscore of the best complete path (complete sentence) which
starts with the partial pathp. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. The A∗ algorithm builds this
estimate from two components:

• g(p) is the score from the beginning of utterance to the end of the partial path
p. This g function can be nicely estimated by the probability ofp given the
acoustics so far (i.e., asP(O|W)P(W) for the word stringW constitutingp).

• h∗(p) is an estimate of the best scoring extension of the partial path to the end of
the utterance.

Coming up with a good estimate ofh∗ is an unsolved and interesting problem.
A very simple approach is to chose anh∗ estimate which correlates with the number

DRAFT

Section 9.10. Advanced Acoustic Models: Triphones 49

of words remaining in the sentence (Paul, 1991). Slightly smarter is to estimate the
expected likelihood per frame for the remaining frames, andmultiple this by the esti-
mate of the remaining time. This expected likelihood can be computed by averaging
the likelihood per frame in the training set. See Jelinek (1997) for further discussion.

Tree Structured Lexicons

We mentioned above that both the A∗ and various other two-stage decoding algorithms
require the use of afast match for quickly finding which words in the lexicon are
likely candidates for matching some portion of the acousticinput. Many fast match
algorithms are based on the use of atree-structured lexicon, which stores the pronun-TREESTRUCTURED

LEXICON

ciations of all the words in such a way that the computation ofthe forward probability
can be shared for words which start with the same sequence of phones. The tree-
structured lexicon was first suggested by Klovstad and Mondshein (1975); fast match
algorithms which make use of it include Gupta et al. (1988), Bahl et al. (1992) in the
context of A∗ decoding, and Ney et al. (1992) and Nguyen and Schwartz (1999) in the
context of Viterbi decoding. Fig. 9.36 shows an example of a tree-structured lexicon
from the Sphinx-II recognizer (Ravishankar, 1996). Each tree root represents the first
phone of all words beginning with that context dependent phone (phone context may
or may not be preserved across word boundaries), and each leaf is associated with a
word.

AX(#,B)

B(#,EY)

B(AX,AW)

B(AX,AH)

EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

Figure 9.36 A tree-structured lexicon from the Sphinx-II recognizer (after Ravishankar
(1996)). Each node corresponds to a particular triphone in aslightly modified version of
the ARPAbet; thus EY(B,KD) means the phone EY preceded by a B and followed by the
closure of a K.

9.10 ADVANCED ACOUSTICMODELS: TRIPHONES

In our discussion in Sec. 9.4 of how the HMM architecture is applied to ASR, we
showed how an HMM could be created for each phone, with its three emitting states
corresponding to subphones at the beginning, middle, and end of the phone. We thus

DRAFT

50 Chapter 9. Automatic Speech Recognition

represent each subphone (“beginning of [eh]”, “beginning of [t]”, “middle of [ae]”)
with its own GMM.

There is a problem with using a fixed GMM for a subphone like ”beginning of
[eh]”. The problem is that phones vary enormously based on the phones on either side.
This is because the movement of the articulators (tongue, lips, velum) during speech
production is continuous and is subject to physical constraints like momentum. Thus
an articulator may start moving during one phone to get into place in time for the next
phone. In Ch. 7 we defined the wordcoarticulation as the movement of articulatorsCOARTICULATION

to anticipate the next sound, or perseverating movement from the last sound. Fig. 9.37
shows coarticulation due to neighboring phone contexts forthe vowel [eh].

Time (s)
0 1.19175

0

5000

F
re

q
u
e
n
c
y
 (

H
z
)

WED YELL BEN

Figure 9.37 The vowel [eh] in three different triphone contexts, in the wordswed, yell,
andBen. Notice the marked differences in the second formant (F2) atthe beginning and
end of the [eh] in all three cases.

In order to model the marked variation that a phone exhibits in different contexts,
most LVCSR systems replace the idea of a context-independent (CI phone) HMMCI PHONE

with a context-dependent orCD phones. The most common kind of context-dependentCD PHONES

model is atriphone HMM (Schwartz et al., 1985; Deng et al., 1990). A triphone modelTRIPHONE

represents a phone in a particular left and right context. For example the triphone[y-
eh+l] means “[eh] preceded by [y] and followed by [l]”. In general,[a-b+c] will mean
“[b] preceded by [a] and followed by [c]”. In situations where we don’t have a full
triphone context, we’ll use [a-b] to mean “[b] preceded by [a]” and [b+c] to mean “[b]
followed by [c]”.

Context-dependent phones capture an important source of variation, and are a
key part of modern ASR systems. But unbridled context-dependency also introduces
the same problem we saw in language modeling: training data sparsity. The more com-
plex the model we try to train, the less likely we are to have seen enough observations
of each phone-type to train on. For a phoneset with 50 phones,in principle we would

DRAFT

Section 9.10. Advanced Acoustic Models: Triphones 51

need 503 or 125,000 triphones. In practice not every sequence of three phones is pos-
sible (English doesn’t seem to allow triphone sequences like [ae-eh+ow] or [m-j+t]).
Young et al. (1994) found that 55,000 triphones are needed inthe 20K Wall Street Jour-
nal task. But they found that only 18,500 of these triphones,i.e. less than half, actually
occurred in the SI84 section of the WSJ training data.

Because of the problem of data sparsity, we must reduce the number of triphone
parameters that we need to train. The most common way to do this is by clustering
some of the contexts together andtying subphones whose contexts fall into the sameTYING

cluster (Young and Woodland, 1994). For example, the beginning of a phone with an
[n] on its left may look much like the beginning of a phone withan [m] on its left. We
can therefore tie together the first (beginning) subphone of, say, the [m-eh+d] and [n-
eh+d] triphones. Tying two states together means that they share the same Gaussians.
So we only train a single Gaussian model for the first subphoneof the [m-eh+d] and [n-
eh+d] triphones. Likewise, it turns out that the left context phones [r] and [w] produce
a similar effect on the initial subphone of following phones.

Fig. 9.38 shows, for example the vowel [iy] preceded by the consonants [w], [r],
[m], and [n]. Notice that the beginning of [iy] has a similar rise in F2 after [w] and [r].
And notice the similarity of the beginning of [m] and [n]; as Ch. 7 noted, the position
of nasal formants varies strongly across speakers, but thisspeaker (the first author) has
a nasal formant (N2) around 1000 Hz.

Time (s)
0 3.12079

0

5000

F
re

q
u
e
n
c
y
 (

H
z
)

[w iy] [r iy] [m iy] [n iy]

Figure 9.38 The wordswe, re, me, andknee. The glides [w] and [r] have similar effects
on the beginning of the vowel [iy], as do the two nasals [n] and[m].

Fig. 9.39 shows an example of the kind of triphone tying learned by the clustering
algorithm. Each mixture Gaussian model is shared by the subphone states of various
triphone HMMs.

How do we decide what contexts to cluster together? The most common method
is to use a decision tree. For each state (subphone) of each phone, a separate tree is
built. Fig. 9.40 shows a sample tree from the first (beginning) state of the phone /ih/,
modified from Odell (1995). We begin at the root node of the tree with a single large
cluster containing (the beginning state of) all triphones centered on /ih/. At each node
in the tree, we split the current cluster into two smaller clusters by asking questions
about the context. For example the tree in Fig. 9.40 first splits the initial cluster into

DRAFT

52 Chapter 9. Automatic Speech Recognition

Figure 9.39 PLACEHOLDER FIGURE. Four triphones showing the result of cluster-
ing. Notice that the initial subphone of [t-iy+n] and [t-iy+ng] is tied together, i.e. shares
the same Gaussian mixture acoustic model. From Young et al. (1994).

two clusters, one with nasal phone on the left, and one without. As we descend the tree
from the root, each of these clusters is progressively split. The tree in Fig. 9.40 would
split all beginning-state /ih/ triphones into 5 clusters, labeled A-E in the figure.

Figure 9.40 Decision tree for choosing which triphone states (subphones) to tie to-
gether. This particular tree will cluster state 0 (the beginning state) of the triphones /n-
ih+l/, /ng-ih+l/, /m-ih+l/, into cluster class A, and various other triphones into classes B-E.
Adapted from Odell (1995).

The questions used in the decision tree ask whether the phoneto the left or right
has a certainphonetic feature, of the type introduced in Ch. 7. Fig. 9.41 shows a few

DRAFT

Section 9.10. Advanced Acoustic Models: Triphones 53

decision tree questions; note that there are separate questions for vowels and conso-
nants. Real trees would have many more questions.

Feature Phones
Stop b d g k p t
Nasal m n ng
Fricative ch dh f jh s sh th v z zh
Liquid l r w y
Vowel aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw
Front Vowel ae eh ih ix iy
Central Vowel aa ah ao axr er
Back Vowel ax ow uh uw
High Vowel ih ix iy uh uw
Rounded ao ow oy uh uw w
Reduced ax axr ix
Unvoiced ch f hh k p s sh t th
Coronal ch d dh jh l n r s sh t th z zh

Figure 9.41 Sample decision tree questions on phonetic features. Modified from Odell
(1995).

How are decision trees like the one in Fig. 9.40 trained? The trees are grown top
down from the root. At each iteration, the algorithm considers each possible question
q and each noden in the tree. For each such question, it considers how the new split
would impact the acoustic likelihood of the training data. The algorithm computes the
difference between the current acoustic likelihood of the training data, and the new
likelihood if the models were tied based on splitting via question q. The algorithm
picks the noden and questionq which give the maximum likelihood. The procedure
then iterates, stopping when each each leaf node has some minimum threshold number
of examples.

We also need to modify the embedded training algorithm we sawin Sec. 9.7
to deal with context-dependent phones and also to handle mixture Gaussians. In both
cases we use a more complex process that involvescloning and using extra iterationsCLONING

of EM, as described in Young et al. (1994).
To train context-dependent models, for example, we first usethe standard em-

bedded training procedure to train context-independent models, using multiple passes
of EM and resulting in separate single-Gaussians models foreach subphone of each
monophone /aa/, /ae/, etc. We thencloneeach monophone model, i.e. make identical
copies of the model with its 3 substates of Gaussians, one clone for each potential tri-
phone. TheA transition matrices are not cloned, but tied together for all the triphone
clones of a monophone. We then run an iteration of EM again andretrain the triphone
Gaussians. Now for each monophone we cluster all the context-dependent triphones
using the clustering algorithm described on page 52 to get a set of tied state clusters.
One typical state is chosen as the exemplar for this cluster and the rest are tied to it.

We use this same cloning procedure to learn Gaussian mixtures. We first use
embedded training with multiple iterations of EM to learn single-mixture Gaussian
models for each tied triphone state as described above. We then clone (split) each state
into 2 identical Gaussians, perturb the values of each by some epsilon, and run EM
again to retrain these values. We then split each of the two mixtures, resulting in four,
perturb them, retrain. We continue until we have an appropriate number of mixtures

DRAFT

54 Chapter 9. Automatic Speech Recognition

for the amount of observations in each state.
A full context-depending GMM triphone model is thus createdby applying these

two cloning-and-retraining procedures in series, as shownschematically in Fig. 9.42.

Figure 9.42 PLACEHOLDER FIGURE. From (Young et al., 1994).

9.11 ADVANCED: DISCRIMINATIVE TRAINING

The Baum-Welch and embedded training models we have presented for training the
HMM parameters (theA andB matrices) are based on maximizing the likelihood of
the training data. An alternative to thismaximum likelihood estimation (MLE) is to

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE focus not on fitting the best model to the data, but rather ondiscriminating the best
DISCRIMINATING model from all the other models. Such training procedures include Maximum Mu-

tual Information Estimation (MMIE) (Woodland and Povey, 2002) the use of neural
net/SVM classifiers (Bourlard and Morgan, 1994) as well as other techniques like Min-
imum Classification Error training (Chou et al., 1993; McDermott and Hazen, 2004) or
Minimum Bayes Risk estimation (Doumpiotis et al., 2003a). We summarize the first
two of these in the next two subsections.

DRAFT

Section 9.11. Advanced: Discriminative Training 55

9.11.1 Maximum Mutual Information Estimation

Recall that in Maximum Likelihood Estimation (MLE), we train our acoustic model
parameters (A andB) so as to maximize the likelihood of the training data. Consider a
particular observation sequenceO, and a particular HMM modelMk corresponding to
word sequenceWk, out of all the possible sentencesW′ ∈ L. The MLE criterion thus
maximizes

FMLE(λ) = Pλ(O|Mk)(9.53)

Since our goal in speech recognition is to have the correct transcription for the
largest number of sentences, we’d like on average for the probability of thecorrect
word stringWk to be high; certainly higher than the probability of all thewrong word
stringsWjs.t. j 6= k. But the MLE criterion above does not guarantee this. Instead, we’d
like to pick some other criterion which will let us chose the modelλ which assigns the
highest probability to the correct model, i.e. maximizesPλ(Mk|O). Maximizing the
probability of the word string rather than the probability of the observation sequence is
calledconditional maximum likelihood estimation or CMLE:

FCMLE(λ) = Pλ(Mk|O)(9.54)

Using Bayes Law, we can express this as

FCMLE(λ) = Pλ(Mk|O) =
Pλ(O|Mk)P(Mk)

Pλ(O)
(9.55)

Let’s now expandPλ(O) by marginalizing (summing over all sequences which
could have produced it). The total probability of the observation sequence is the
weighted sum over all word strings of the observation likelihood given that word string:

P(O) =
∑

W∈L

P(O|W)P(W)(9.56)

So a complete expansion of Eq. 9.55 is:

FCMLE(λ) = Pλ(Mk|O) =
Pλ(O|Mk)P(Mk)

∑

M∈L Pλ(O|M)P(M)
(9.57)

In a slightly confusing bit of standard nomenclature, CMLE is generally referred
to instead as Maximum Mutual Information Estimation (MMIE). This is because it
turns out that maximizing the posteriorP(W|O) and maximizing the mutual infor-
mation I(W,O) are equivalent if we assume that the language model probability of
each sentenceW is constant (fixed) during acoustic training, an assumptionwe usually
make. Thus from here on we will refer to this criterion as the MMIE criterion rather
than the CMLE criterion, and so here is Eq. 9.57 restated:

FMMIE (λ) = Pλ(Mk|O) =
Pλ(O|Mk)P(Mk)

∑

M∈L Pλ(O|M)P(M)
(9.58)

In a nutshell, then, the goal of MMIE estimation is to maximize (9.58) rather
than (9.53). Now if our goal is to maximizePλ(Mk|O), we not only need to maximize

DRAFT

56 Chapter 9. Automatic Speech Recognition

the numerator of (9.58), but also minimize the denominator.Notice that we can rewrite
the denominator to make it clear that it includes a term equalto the model we are trying
to maximize and a term for all other models:

Pλ(Mk|O) =
Pλ(O|Mk)P(Mk)

Pλ(O|Mk)P(Mk)+
∑

i6=k Pλ(O|Mi)P(Mi)
(9.59)

Thus in order to maximizePλ(Mk|O), we will need to incrementally changeλ so
that it increases the probability of the correct model, while simultaneously decreasing
the probability of each of the incorrect models. Thus training with MMIE clearly
fulfills the important goal ofdiscriminating between the correct sequence and all other
sequences.

The implementation of MMIE is quite complex, and we don’t discuss it here
except to mention that it relies on a variant of Baum-Welch training called Extended
Baum-Welch that maximizes (9.58) instead of (9.53). Briefly, we can view this as a
two step algorithm; we first use standard MLE Baum-Welch to compute the forward-
backward counts for the training utterances. Then we compute another forward-backward
pass using all other possible utterances and subtract thesefrom the counts. Of course it
turns out that computing this full denominator is computationally extremely expensive,
because it requires running a full recognition pass on all the training data. Recall that
in normal EM, we don’t need to run decoding on the training data, since we are only
trying to maximize the likelihood of thecorrect word sequence; in MMIE, we need
to compute the probabilities ofall possible word sequences. Decoding is very time-
consuming because of complex language models. Thus in practice MMIE algorithms
estimate the denominator by summing over only the paths thatoccur in a word lattice,
as an approximation to the full set of possible paths.

CMLE was first proposed by Nadas (1983) and MMIE by Bahl et al. (1986), but
practical implementations that actually reduced word error rate came much later; see
Woodland and Povey (2002) or Normandin (1996) for details.

9.11.2 Acoustic Models based on Posterior Classifiers

Another way to think about discriminative training is to choose a classifier at the frame
level which is discriminant. Thus while the Gaussian classifier is by far the most com-
monly used acoustic likelihood classifier, it is possible toinstead use classifiers that
are naturally discriminative or posterior estimators, such as neural networks or SVMs
(support vector machines).

The posterior classifier (neural net or SVM) is generally integrated with an HMM
architecture, is often called aHMM-SVM or HMM-MLP hybrid approach (Bourlard
and Morgan, 1994).

The SVM or MLP approaches, like the Gaussian model, estimatethe probability
of a cepstral feature vector at a single timet. Unlike the Gaussian model, the posterior
approaches often uses a larger window of acoustic information, relying on cepstral
feature vectors from neighboring time periods as well. Thusthe input to a typical
acoustic MLP or SVM might be feature vectors for the current frame plus the four
previous and four following frame, i.e. a total of 9 cepstralfeature vectors instead of
the single one that the Gaussian model uses. Because they have such a wide context,

DRAFT

Section 9.12. Advanced: Modeling Variation 57

SVM or MLP models generally use phones rather than subphonesor triphones, and
compute a posterior for each phone.

The SVM or MLP classifiers are thus computing the posterior probability of a
state j given the observation vectors, i.e.P(q j |ot). (also conditioned on the context,
but let’s ignore that for the moment). But the observation likelihood we need for the
HMM, b j(ot), is P(ot |q j). The Bayes rule can help us see how to compute one from
the other. The net is computing:

p(q j |ot) =
P(ot |q j)p(q j)

p(ot)
(9.60)

We can rearrange the terms as follows:

p(ot |q j)

p(ot)
=

P(q j |ot)

p(q j)
(9.61)

The two terms on the right-hand side of (9.61) can be directlycomputed from
the posterior classifier; the numerator is the output of the SVM or MLP, and the de-
nominator is the total probability of a given state, summingover all observations (i.e.,
the sum over allt of ξ j(t)). Thus although we cannot directly computeP(ot |q j), we

canuse (9.61) to compute
p(ot |q j)

p(ot)
, which is known as ascaled likelihood(the likeli-SCALED LIKELIHOOD

hood divided by the probability of the observation). In fact, the scaled likelihood is
just as good as the regular likelihood, since the probability of the observationp(ot) is
a constant during recognition and doesn’t hurt us to have in the equation.

The supervised training algorithms for training a SVM or MLPposterior phone
classifiers require that we know the correct phone labelq j for each observationot .
We can use the sameembedded training algorithm that we saw for Gaussians; we
start with some initial version of our classifier and a word transcript for the training
sentences. We run a forced alignment of the training data, producing a phone string,
and now we retrain the classifier, and iterate.

9.12 ADVANCED: MODELING VARIATION

As we noted at the beginning of this chapter, variation is oneof the largest obstacles to
successful speech recognition. We mentioned variation dueto speaker differences from
vocal characteristics or dialect, due to genre (such as spontaneous versus read speech),
and due to the environment (such as noisy versus quiet environments). Handling this
kind of variation is a major subject of modern research.

9.12.1 Environmental Variation and Noise

Environmental variation has received the most attention from the speech literature, and
a number of techniques have been suggested for dealing with environmental noise.
Spectral subtraction, for example, is used to combatadditive noise. Additive noiseSPECTRAL

SUBTRACTION

ADDITIVE NOISE is noise from external sound sources like engines or wind or fridges that is relatively

DRAFT

58 Chapter 9. Automatic Speech Recognition

constant and can be modeled as a noise signal that is just added to the speech wave-
form to produce the observed signal. In spectral subtraction, we estimate the average
noise during non-speech regions and then subtract this average value from the speech
signal. Interestingly, speakers often compensate for highbackground noise levels by
increasing their amplitude, F0, and formant frequencies. This change in speech pro-
duction due to noise is called theLombard effect, named for Etienne Lombard whoLOMBARD EFFECT

first described it in 1911 (Junqua, 1993).
Other noise robustness techniques likecepstral mean normalizationare used toCEPSTRAL MEAN

NORMALIZATION

deal withconvolutional noise, noise introduced by channel characteristics like differ-CONVOLUTIONAL
NOISE

ent microphones. Here we compute the average of the cepstrumover time and subtract
it from each frame; intuitively the average cepstrum corresponds to the spectral char-
acteristics of the microphone and the room acoustics (?).

Finally, some kinds of short non-verbal sounds like coughs,loud breathing, and
throat clearing, or environmental sounds like beeps, telephone rings, and door slams,
can be modeled explicitly. For each of these non-verbal sounds, we create a special
phone and add to the lexicon a word consisting only of that phone. We can then use
normal Baum-Welch training to train these phones just by modifying the training data
transcripts to include labels for these new non-verbal ’words’ (Ward, 1989).

9.12.2 Speaker and Dialect Adaptation: Variation due to speaker
differences

Speech recognition systems are generally designed to be speaker-independent, since
it’s rarely practical to collect sufficient training data tobuild a system for a single
user. But in cases where we have enough data to build speaker-dependent systems,
they function better than speaker-independent systems. This only makes sense; we can
reduce the variability and increase the precision of our models if we are guaranteed that
the test data will look like the training data.

While it is rare to have enough data to train on an individual speaker, we do
have enough data to train separate models for two important groups of speakers: men
versus women. Since women and men have different vocal tracts and other acoustic
and phonetic characteristics, we can split the training data by gender, and train separate
acoustic models for men and for women. Then when a test sentence comes in, we use
a gender detector to decide if it is male or female, and switchto those acoustic models.
Gender detectors can be built out of binary GMM classifiers based on cepstral features.
Suchgender-dependent acoustic modelingis used in most LVCSR systems.

Although we rarely have enough data to train on a specific speaker, there are
techniques that work quite well at adapting the acoustic models to a new speaker very
quickly. For example theMLLR (Maximum Likelihood Linear Regression) tech-MLLR

nique (Leggetter and Woodland, 1995) is used to adapt Gaussian acoustic models to a
small amount of data from a new speaker. The idea is to use the small amount of data
to train a linear transform to warp the means of the Gaussians. MLLR and other such
techniques forspeaker adaptationhave been one of the largest sources of improve-SPEAKER

ADAPTATION

ment in ASR performance in recent years.
The MLLR algorithm begins with a trained acoustic model and asmall adapta-

tion dataset from a new speaker. The adaptation set can be as small as 3 sentences or

DRAFT

Section 9.12. Advanced: Modeling Variation 59

10 seconds of speech. The idea is to learn a linear transform matrix (W) and a bias
vector (ω) to transform the means of the acoustic model Gaussians. If the old mean of
a Gaussian isµ, the equation for the new mean ˆµ is thus:

µ̂= Wµ+ ω(9.62)

In the simplest case, we can learn a single global transform and apply it to each Gaus-
sian models. The resulting equation for the acoustic likelihood is thus only very slightly
modified:

b j(ot) =
1

√

2π|Σ j|
exp

(

−1
2
(ot − (Wµj + ω))TΣ−1

j (ot − (Wµj + ω))

)

(9.63)

The transform is learned by using linear regression to maximize the likelihood of
the adaptation dataset. We first run forward-backward alignment on the adaptation set
to compute the state occupation probabilitiesξ j(t). We then computeW by solving a
system of simultaneous equations involvingξ j(t). If enough data is available, it’s also
possible to learn a larger number of transforms.

MLLR is an example of thelinear transform approach to speaker adaptation,
one of the three major classes of speaker adaptation methods; the other two areMAP
adaptationandSpeaker Clustering/Speaker Spaceapproaches. See Woodland (2001)
for a comprehensive survey of speaker adaptation which covers all three families.

MLLR and other speaker adaptation algorithms can also be used to address an-
other large source of error in LVCSR, the problem of foreign or dialect accented speak-
ers. Word error rates go up when the test set speaker speaks a dialect or accent (such as
Spanish-accented English or southern accented Mandarin Chinese) that differs from the
(usually standard) training set, Here we can take an adaptation set of a few sentences
from say 10 speakers, and adapt to them as a group, creating anMLLR transform that
addresses whatever characteristics are present in the dialect or accent (Huang et al.,
2000; Tomokiyo and Waibel, 2001; Wang et al., 2003; Zheng et al., 2005).

Another useful speaker adaptation technique is to control for the differing vocal
tract lengths of speakers by usingVTLN (Vocal Tract Length Normalization) (?).VTLN

9.12.3 Pronunciation Modeling: Variation due to Genre

We said at the beginning of the chapter that recognizing conversational speech is harder
for ASR systems than recognizing read speech. What are the causes of this difference?
Is it the difference in vocabulary? Grammar? Something about the speaker themselves?
Perhaps it’s a fact about the microphones or telephone used in the experiment.

None of these seems to be the cause. In a well-known experiment, Weintraub
et al. (1996) compared ASR performance on natural conversational speech versus per-
formance on read speech, controlling for the influence of possible causal factors. Pairs
of subjects in the lab had spontaneous conversations on the telephone. Weintraub et al.
(1996) then hand-transcribed the conversations, and invited the participants back into
the lab to read their own transcripts to each other over the same phone lines as if they
were dictating. Both the natural and read conversations were recorded. Now Weintraub
et al. (1996) had two speech corpora from identical transcripts; one original natural

DRAFT

60 Chapter 9. Automatic Speech Recognition

conversation, and one read speech. In both cases the speaker, the actual words, and
the microphone were identical; the only difference was the naturalness or fluency of
the speech. They found that read speech was much easier (WER=29%) than conver-
sational speech (WER=53%). Since the speakers, words, and channel were controlled
for, this difference must be somewhere in the acoustic modelor pronunciation lexicon.

Saraclar et al. (2000) tested the hypothesis that this difficulty with conversational
speech was due to changed pronunciations, i.e., to a mismatch between the phone
strings in the lexicon and what people actually said. Recallfrom Ch. 7 that conver-
sational corpora like Switchboard contain many different pronunciations for words,
(such as 12 different pronunciations forbecauseand hundreds forthe). Saraclar et al.
(2000) showed in an oracle experiment that if a Switchboard recognizer is told which
pronunciations to use for each word, the word error rate drops from 47% to 27%.

If knowing which pronunciation to use improves accuracy, perhaps we could im-
prove recognition by simply adding more pronunciations foreach word to the lexicon,
either as a simple list for each word, or as a more complex weighted FSA (Fig. 9.43)
(Cohen, 1989; Tajchman et al., 1995; Sproat and Riley, 1996;Wooters and Stolcke,
1994).

t

ax

ow

m

ey

aa

0.95

0.05 t

dx

ow

.60

.35

t ow m

ey

aa t ow

.95

.05

.05 .95

.05

.8

.2

Word model with dialect variation:

Word model with coarticulation and dialect variation:

Figure 9.43 You say [t ow m ey t ow] and I say [t ow m aa t ow]. Two sample pronun-
ciation networks (weighted FSAs) for the wordtomato, adapted from Russell and Norvig
(1995). The top one models sociolinguistic variation (someBritish or eastern American
dialects); the bottom one adds in coarticulatory effects.

Recent research shows that these sophisticated multiple-pronunciationapproaches
turn out not to work well. Adding extra pronunciations adds more confusability; if a
common pronunciation of the word “of” is the single vowel [ax], it is now very con-
fusable with the word “a”. Another problem with multiple pronunciations is the use of
Viterbi decoding. Recall our discussion on 40 that since theViterbi decoder finds the
best phone string, rather than the best word string, it biases against words with many
pronunciations. Finally, using multiple pronunciations to model coarticulatory effects
may be unnecessary because CD phones (triphones) are already quite good at model-
ing the contextual effects in phones due to neighboring phones, like the flapping and
vowel-reduction handled by Fig. 9.43 (Jurafsky et al., 2001).

DRAFT

Section 9.13. Human Speech Recognition 61

Instead, most current LVCSR systems use a very small number of pronunciations
per word. What is commonly done is to start with a multiple pronunciation lexicon,
where the pronunciations are found in dictionaries or are generated via phonological
rules of the type described in Ch. 7. A forced Viterbi phone alignment is then run of the
training set, using this dictionary. The result of the alignment is a phonetic transcription
of the training corpus, showing which pronunciation was used, and the frequency of
each pronunciation. We can then collapse similar pronunciations (for example if two
pronunciations differ only in a single phone substitution we chose the more frequent
pronunciation). We then chose the maximum likelihood pronunciation for each word.
For frequent words which have multiple high-frequency pronunciations, some systems
chose multiple pronunciations, and annotate the dictionary with the probability of these
pronunciations; the probabilities are used in computing the acoustic likelihood (Cohen,
1989; Hain et al., 2001; Hain, 2002).

Finding a better method to deal with pronunciation variation remains an unsolved
research problem. One promising avenue is to focus on non-phonetic factors that affect
pronunciation. For example words which are highly predictable, or at the beginning
or end of intonation phrases, or are followed by disfluencies, are pronounced very
differently (Jurafsky et al., 1998; Fosler-Lussier and Morgan, 1999; Bell et al., 2003).
Fosler-Lussier (1999) shows an improvement in word error rate by using these sorts
of factors to predict which pronunciation to use. Another exciting line of research
in pronunciation modeling uses a dynamic Bayesian network to model the complex
overlap in articulators that produces phonetic reduction (Livescu and Glass, 2004; ?).

9.13 HUMAN SPEECHRECOGNITION

Humans are of course much better at speech recognition than machines; current ma-
chines are roughly about five times worse than humans on cleanspeech, and the gap
seems to increase with noisy speech.

Speech recognition in humans shares some features with ASR algorithms. We
mentioned above that signal processing algorithms like PLPanalysis (Hermansky,
1990) were in fact inspired by properties of the human auditory system. In addition,
three properties of humanlexical access(the process of retrieving a word from theLEXICAL ACCESS

mental lexicon) are also true of ASR models:frequency, parallelism, andcue-based
processing. For example, as in ASR with itsN-gram language models, human lexi-
cal access is sensitive to wordfrequency. High-frequency spoken words are accessed
faster or with less information than low-frequency words. They are successfully rec-
ognized in noisier environments than low frequency words, or when only parts of the
words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter alia). Like ASR
models, human lexical access isparallel: multiple words are active at the same time
(Marslen-Wilson and Welsh, 1978; Salasoo and Pisoni, 1985,inter alia).

Finally, human speech perception iscue based: speech input is interpreted by
integrating cues at many different levels. Human phone perception combines acous-
tic cues, such as formant structure or the exact timing of voicing, (Oden and Mas-
saro, 1978; Miller, 1994) visual cues, such as lip movement (McGurk and Macdon-

DRAFT

62 Chapter 9. Automatic Speech Recognition

ald, 1976; Massaro and Cohen, 1983; Massaro, 1998) and lexical cues such as the
identity of the word in which the phone is placed (Warren, 1970; Samuel, 1981; Con-
nine and Clifton, 1987; Connine, 1990). For example, in whatis often called the
phoneme restoration effect, Warren (1970) took a speech sample and replaced one

PHONEME
RESTORATION

EFFECT

phone (e.g. the [s] inlegislature) with a cough. Warren found that subjects listening
to the resulting tape typically heard the entire wordlegislatureincluding the [s], and
perceived the cough as background. In theMcGurk effect , (McGurk and Macdon-MCGURK EFFECT

ald, 1976) showed that visual input can interfere with phoneperception, causing us to
perceive a completely different phone. They showed subjects a video of someone say-
ing the syllablega in which the audio signal was dubbed instead with someone saying
the syllableba. Subjects reported hearing something likeda instead. It is definitely
worth trying this out yourself from video demos on the web; see for examplehttp:
//www.haskins.yale.edu/featured/heads/mcgurk.html. Other cues
in human speech perception include semanticword association(words are accessedWORD ASSOCIATION

more quickly if a semantically related word has been heard recently) andrepetition
priming (words are accessed more quickly if they themselves have just been heard).REPETITION PRIMING

The intuitions of both these results are incorporated into recent language models dis-
cussed in Ch. 4, such as the cache model of Kuhn and de Mori (1990), which models
repetition priming, or the trigger model of Rosenfeld (1996) and the LSA models of
Coccaro and Jurafsky (1998) and Bellegarda (1999), which model word association.
In a fascinating reminder that good ideas are never discovered only once, Cole and
Rudnicky (1983) point out that many of these insights about context effects on word
and phone processing were actually discovered by William Bagley (1901). Bagley
achieved his results, including an early version of the phoneme restoration effect, by
recording speech on Edison phonograph cylinders, modifying it, and presenting it to
subjects. Bagley’s results were forgotten and only rediscovered much later.2

One difference between current ASR models and human speech recognition is
the time-course of the model. It is important for the performance of the ASR algorithm
that the the decoding search optimizes over the entire utterance. This means that the
best sentence hypothesis returned by a decoder at the end of the sentence may be very
different than the current-best hypothesis, halfway into the sentence. By contrast, there
is extensive evidence that human processing ison-line: people incrementally segmentONLINE

and utterance into words and assign it an interpretation as they hear it. For example,
Marslen-Wilson (1973) studiedclose shadowers: people who are able to shadow (re-
peat back) a passage as they hear it with lags as short as 250 ms. Marslen-Wilson
found that when these shadowers made errors, they were syntactically and semanti-
cally appropriate with the context, indicating that word segmentation, parsing, and in-
terpretation took place within these 250 ms. Cole (1973) andCole and Jakimik (1980)
found similar effects in their work on the detection of mispronunciations. These results
have led psychological models of human speech perception (such as the Cohort model
(Marslen-Wilson and Welsh, 1978) and the computational TRACE model (McClelland
and Elman, 1986)) to focus on the time-course of word selection and segmentation.
The TRACE model, for example, is a connectionist interactive-activation model, based
on independent computational units organized into three levels: feature, phoneme, and

2 Recall the discussion on page?? of multiple independent discovery in science.

DRAFT

Section 9.14. Summary 63

word. Each unit represents a hypothesis about its presence in the input. Units are acti-
vated in parallel by the input, and activation flows between units; connections between
units on different levels are excitatory, while connections between units on single level
are inhibitatory. Thus the activation of a word slightly inhibits all other words.

We have focused on the similarities between human and machine speech recog-
nition; there are also many differences. In particular, many other cues have been shown
to play a role in human speech recognition but have yet to be successfully integrated
into ASR. The most important class of these missing cues is prosody. To give only
one example, Cutler and Norris (1988), Cutler and Carter (1987) note that most mul-
tisyllabic English word tokens have stress on the initial syllable, suggesting in their
metrical segmentation strategy (MSS) that stress should beused as a cue for word
segmentation. Another difference is that human lexical access exhibitsneighborhood
effects (the neighborhood of a word is the set of words which closely resemble it).
Words with large frequency-weighted neighborhoods are accessed slower than words
with less neighbors (Luce et al., 1990). Current models of ASR don’t general focus on
this word-level competition.

9.14 SUMMARY

Together with Ch. 4 and Ch. 6, this chapter introduced the fundamental algorithms for
addressing the problem ofLarge Vocabulary Continuous Speech Recognition.

• The input to a speech recognizer is a series of acoustic waves. Thewaveform,
spectrogramandspectrumare among the visualization tools used to understand
the information in the signal.
• In the first step in speech recognition, sound waves aresampled, quantized,

and converted to some sort ofspectral representation; A commonly used spec-
tral representation is themel cepstrum or MFCC which provides a vector of
features for each frame of the input.
• GMM acoustic models are used to estimate thephonetic likelihoods(also called

observation likelihoods) of thesefeature vectorsfor each frame.
• Decodingor searchor inference is the process of finding the optimal sequence

of model states which matches a sequence of input observations. (The fact that
there are three terms for this process is a hint that speech recognition is inherently
inter-disciplinary, and draws its metaphors from more thanone field;decoding
comes from information theory, andsearchandinferencefrom artificial intelli-
gence).
• We introduced two decoding algorithms: time-synchronousViterbi decoding

(which is usually implemented with pruning and can then be calledbeam search)
andstack or A∗ decoding. Both algorithms take as input a sequence of cepstral
feature vectors, a GMM acoustic model, and anN-gram language model, and
produce a string of words.
• Theembedded trainingparadigm is the normal method for training speech rec-

ognizers. Given an initial lexicon with hand-built pronunciation structures, it will
train the HMM transition probabilities and the HMM observation probabilities.

DRAFT

64 Chapter 9. Automatic Speech Recognition

• Advanced acoustic models make use of context-dependenttriphones, which are
clustered.

• Acoustic models can beadaptedto new speakers.

• Pronunciation variation is a source of errors in human-human speech recogni-
tion, but one that is not successfully handled by current technology.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The first machine which recognized speech was probably a commercial toy named
“Radio Rex” which was sold in the 1920s. Rex was a celluloid dog that moved (via
a spring) when the spring was released by 500 Hz acoustic energy. Since 500 Hz is
roughly the first formant of the vowel in “Rex”, the dog seemedto come when he was
called (David, Jr. and Selfridge, 1962).

By the late 1940s and early 1950s, a number of machine speech recognition
systems had been built. An early Bell Labs system could recognize any of the 10 digits
from a single speaker (Davis et al., 1952). This system had 10speaker-dependentstored
patterns, one for each digit, each of which roughly represented the first two vowel
formants in the digit. They achieved 97–99% accuracy by choosing the pattern which
had the highest relative correlation coefficient with the input. Fry (1959) and Denes
(1959) built a phoneme recognizer at University College, London, which recognized
four vowels and nine consonants based on a similar pattern-recognition principle. Fry
and Denes’s system was the first to use phoneme transition probabilities to constrain
the recognizer.

The late 1960s and early 1970s produced a number of importantparadigm shifts.
First were a number of feature-extraction algorithms, include the efficient Fast Fourier
Transform (FFT) (Cooley and Tukey, 1965), the application of cepstral processing to
speech (Oppenheim et al., 1968), and the development of LPC for speech coding (Atal
and Hanauer, 1971). Second were a number of ways of handlingwarping; stretchingWARPING

or shrinking the input signal to handle differences in speaking rate and segment length
when matching against stored patterns. The natural algorithm for solving this problem
was dynamic programming, and, as we saw in Ch. 6, the algorithm was reinvented
multiple times to address this problem. The first application to speech processing was
by Vintsyuk (1968), although his result was not picked up by other researchers, and
was reinvented by Velichko and Zagoruyko (1970) and Sakoe and Chiba (1971) (and
(1984)). Soon afterward, Itakura (1975) combined this dynamic programming idea
with the LPC coefficients that had previously been used only for speech coding. The
resulting system extracted LPC features for incoming wordsand used dynamic pro-
gramming to match them against stored LPC templates.

The third innovation of this period was the rise of the HMM. Hidden Markov
Models seem to have been applied to speech independently at two laboratories around
1972. One application arose from the work of statisticians,in particular Baum and
colleagues at the Institute for Defense Analyses in Princeton on HMMs and their ap-
plication to various prediction problems (Baum and Petrie,1966; Baum and Eagon,

DRAFT

Section 9.14. Summary 65

1967). James Baker learned of this work and applied the algorithm to speech process-
ing (Baker, 1975) during his graduate work at CMU. Independently, Frederick Jelinek,
Robert Mercer, and Lalit Bahl (drawing from their research in information-theoretical
models influenced by the work of Shannon (1948)) applied HMMsto speech at the
IBM Thomas J. Watson Research Center (Jelinek et al., 1975).IBM’s and Baker’s sys-
tems were very similar, particularly in their use of the Bayesian framework described
in this chapter. One early difference was the decoding algorithm; Baker’s DRAGON
system used Viterbi (dynamic programming) decoding, whilethe IBM system applied
Jelinek’s stack decoding algorithm (Jelinek, 1969). Bakerthen joined the IBM group
for a brief time before founding the speech-recognition company Dragon Systems. The
HMM approach to speech recognition would turn out to completely dominate the field
by the end of the century; indeed the IBM lab was the driving force in extending sta-
tistical models to natural language processing as well, including the development of
class-basedN-grams, HMM-based part-of-speech tagging, statistical machine transla-
tion, and the use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech community. One cause
was a number of research and development programs sponsoredby the Advanced Re-
search Projects Agency of the U.S. Department of Defense (ARPA). The first five-
year program starting in 1971, and is reviewed in Klatt (1977). The goal of this first
program was to build speech understanding systems based on afew speakers, a con-
strained grammar and lexicon (1000 words), and less than 10%semantic error rate.
Four systems were funded and compared against each other: the System Develop-
ment Corporation (SDC) system, Bolt, Beranek & Newman (BBN)’s HWIM system,
Carnegie-Mellon University’s Hearsay-II system, and Carnegie-Mellon’s Harpy sys-
tem (Lowerre, 1968). The Harpy system used a simplified version of Baker’s HMM-
based DRAGON system and was the best of the tested systems, and according to Klatt
the only one to meet the original goals of the ARPA project (with a semantic accuracy
rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speech research
programs. The first was the “Resource Management” (RM) task (Price et al., 1988),
which like the earlier ARPA task involved transcription (recognition) of read-speech
(speakers reading sentences constructed from a 1000-word vocabulary) but which now
included a component that involved speaker-independent recognition. Later tasks in-
cluded recognition of sentences read from the Wall Street Journal (WSJ) beginning
with limited systems of 5,000 words, and finally with systemsof unlimited vocabulary
(in practice most systems use approximately 60,000 words).Later speech-recognition
tasks moved away from read-speech to more natural domains; the Broadcast News
domain (LDC, 1998; Graff, 1997) (transcription of actual news broadcasts, including
quite difficult passages such as on-the-street interviews)and the Switchboard,CALL -
HOME, CALLFRIEND, and Fisher domains (LDC, 1999; ?; Godfrey et al., 1992; ?)
(natural telephone conversations between friends or strangers) . The Air Traffic Infor-
mation System (ATIS) task (Hemphill et al., 1990) was an earlier speech understanding
task whose goal was to simulate helping a user book a flight, byanswering questions
about potential airlines, times, dates, and so forth.

Each of the ARPA tasks involved an approximately annualbake-off at whichBAKEOFF

all ARPA-funded systems, and many other ‘volunteer’ systems from North American

DRAFT

66 Chapter 9. Automatic Speech Recognition

and Europe, were evaluated against each other in terms of word error rate or seman-
tic error rate. In the early evaluations, for-profit corporations did not generally com-
pete, but eventually many (especially IBM and ATT) competedregularly. The ARPA
competitions resulted in widescale borrowing of techniques among labs, since it was
easy to see which ideas had provided an error-reduction the previous year, and were
probably an important factor in the eventual spread of the HMM paradigm to virtual
every major speech recognition lab. The ARPA program also resulted in a number of
useful databases, originally designed for training and testing systems for each evalua-
tion (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard, Fisher) but then made
available for general research use.

There are many new directions in current speech recognitionresearch involving
alternatives to the HMM model. There are many new architectures based on graphi-
cal models (dynamic bayes nets, factorial HMMs, etc) (Zweig, 1998; Bilmes, 2003; ?;
Bilmes and Bartels, 2005; ?). There are attempts to replace the frame-basedHMMFRAMEBASED

acoustic model (that make a decision about each frame) withsegment-based rec-
ognizers that attempt to detect variable-length segments (phones) (Digilakis, 1992;SEGMENTBASED

RECOGNIZERS

Ostendorf et al., 1996; Glass, 2003). Landmark-based recognizers and articulatory
phonology-based recognizers focus on the use of distinctive features, defined acousti-
cally or articulatorily (respectively) (Niyogi et al., 1998; Livescu, 2005; et al, 2005;
Juneja and Espy-Wilson, 2003). Attempts to improve performance specifically on
human-human speech have begin to focus on improved recognition of disfluencies (Liu
et al., 2005).

Speech research includes a number of areas besides speech recognition; we al-
ready saw computational phonology in Ch. 7, speech synthesis in Ch. 8, and we will
discuss spoken dialogue systems in Ch. 23. Another important area isspeaker iden-
tification andspeaker verification, in which we identify a speaker (for example forSPEAKER

IDENTIFICATION

SPEAKER
VERIFICATION security when accessing personal information over the telephone) (Reynolds and Rose,

1995; Shriberg et al., 2005; Doddington, 2001). This task isrelated tolanguage iden-
tification , in which we are given a wavefile and have to identify which language isLANGUAGE

IDENTIFICATION

being spoken; this is useful for automatically directing callers to human operators that
speak appropriate languages.

There are a number of textbooks and reference books on speechrecognition that
are good choices for readers who seek a more in-depth understanding of the material in
this chapter: Huang et al. (2001) is by far the most comprehensive and up-to-date ref-
erence volume and is highly recommended. Jelinek (1997), Gold and Morgan (1999),
and Rabiner and Juang (1993) are good comprehensive textbooks. The last two text-
books also have discussions of the history of the field, and together with the survey
paper of Levinson (1995) have influenced our short history discussion in this chap-
ter. Our description of the forward-backward algorithm wasmodeled after Rabiner
(1989), and we were also influence by another useful tutorialpaper, Knill and Young
(1997). Research in the speech recognition field often appears in the proceedings of
the annual INTERSPEECH conference, (which is called ICSLP and EUROSPEECH
in alternate years) as well as the annual IEEE InternationalConference on Acoustics,
Speech, and Signal Processing (ICASSP). Journals includeSpeech Communication,
Computer Speech and Language, the IEEE Transactions on Audio, Speech, and Lan-
guage Processing, and theACM Transactions on Speech and Language Processing.

DRAFT

Section 9.14. Summary 67

EXERCISES

9.1 Analyze each of the errors in the incorrectly recognized transcription of “um the
phone is I left the. . . ” on page 38. For each one, give your bestguess as to whether you
think it is caused by a problem in signal processing, pronunciation modeling, lexicon
size, language model, or pruning in the decoding search.

9.2 In practice, speech recognizers do all their probability computation using thelog
probability (or logprob) rather than actual probabilities. This helps avoid underflowLOGPROB

for very small probabilities, but also makes the Viterbi algorithm very efficient, since
all probability multiplications can be implemented by adding log probabilities. Rewrite
the pseudocode for the Viterbi algorithm in Fig. 9.20 on page30 to make use of log-
probs instead of probabilities.

9.3 Now modify the Viterbi algorithm in Fig. 9.20 on page 30 to implement the beam
search described on page 32. Hint: You will probably need to add in code to check
whether a given state is at the end of a word or not.

9.4 Finally, modify the Viterbi algorithm in Fig. 9.20 on page 30with more detailed
pseudocode implementing the array of backtrace pointers.

9.5 Implement the Stack decoding algorithm of Fig. 9.33 on 47. Pick a very simple
h∗ function like an estimate of the number of words remaining inthe sentence.

9.6 Modify the forward algorithm of Fig. 9.17 to use the tree-structured lexicon of
Fig. 9.36 on page 49.

9.7 Using the tutorials available as part of a publicly available recognizer like HTK
or Sonic, build a digit recognizer.

9.8 Take the digit recognizer above and dump the phone likelihoods for a sentence.
Now take your implementation of the Viterbi algorithm and show that you can success-
fully decode these likelihoods.

9.9 Many ASR systems, including the Sonic and HTK systems, use a different al-
gorithm for Viterbi called thetoken-passing Viterbi algorithm (Young et al., 1989).
Read this paper and implement this algorithm.

DRAFT

68 Chapter 9. Automatic Speech Recognition

Atal, B. S. and Hanauer, S. (1971). Speech analysis and synthe-
sis by prediction of the speech wave.Journal of the Acoustical
Society of America, 50, 637–655.

Aubert, X. and Ney, H. (1995). Large vocabulary continu-
ous speech recognition using word graphs. InIEEE ICASSP,
Vol. 1, pp. 49–52.

Austin, S., Schwartz, R., and Placeway, P. (1991). The forward-
backward search algorithm. InIEEE ICASSP-91, Vol. 1, pp.
697–700. IEEE.

Bagley, W. C. (1900–1901). The apperception of the spoken
sentence: A study in the psychology of language.The Ameri-
can Journal of Psychology, 12, 80–130. †.

Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L.
(1986). Maximum mutual information estimation of hidden
Markov model parameters for speech recognition. InIEEE
ICASSP-86, Tokyo, pp. 49–52. IEEE.

Bahl, L. R., de Souza, P. V., Gopalakrishnan, P. S., Nahamoo,
D., and Picheny, M. A. (1992). A fast match for continu-
ous speech recognition using allophonic models. InIEEE
ICASSP-92, San Francisco, CA, pp. I.17–20. IEEE.

Baker, J. K. (1975). The DRAGON system – An overview.
IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, ASSP-23(1), 24–29.

Baum, L. E. and Eagon, J. A. (1967). An inequality with appli-
cations to statistical estimation for probabilistic functions of
Markov processes and to a model for ecology.Bulletin of the
American Mathematical Society, 73(3), 360–363.

Baum, L. E. and Petrie, T. (1966). Statistical inference forprob-
abilistic functions of finite-state Markov chains.Annals of
Mathematical Statistics, 37(6), 1554–1563.

Bayes, T. (1763).An Essay Toward Solving a Problem in the
Doctrine of Chances, Vol. 53. Reprinted inFacsimiles of
two papers by Bayes, Hafner Publishing Company, New York,
1963.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory,
M., and Gildea, D. (2003). Effects of disfluencies, predictabil-
ity, and utterance position on word form variation in English
conversation.Journal of the Acoustical Society of America,
113(2), 1001–1024.

Bellegarda, J. R. (1999). Speech recognition experiments using
multi-span statistical language models. InIEEE ICASSP-99,
pp. 717–720. IEEE.

Bilmes, J. (2003). Buried markov models: A graphical-
modeling approach to automatic speech recognition.Com-
puter Speech and Language, 17(2-3).

Bilmes, J. and Bartels, C. (2005). Graphical model architec-
tures for speech recognition.IEEE Signal Processing Maga-
zine, 22(5), 89–100.

Bledsoe, W. W. and Browning, I. (1959). Pattern recognition
and reading by machine. In1959 Proceedings of the Eastern
Joint Computer Conference, pp. 225–232. Academic, New
York.

Bourlard, H. and Morgan, N. (1994).Connectionist Speech
Recognition: A Hybrid Approach. Kluwer Press.

Chou, W., Lee, C.-H., and Juang, B.-H. (1993). Minimum error
rate training based onn-best string models. InIEEE ICASSP-
93, pp. 2.652–655.

CMU (1993). The Carnegie Mellon Pronouncing Dictionary
v0.1. Carnegie Mellon University.

Coccaro, N. and Jurafsky, D. (1998). Towards better integra-
tion of semantic predictors in statistical language modeling.
In ICSLP-98, Sydney, Vol. 6, pp. 2403–2406.

Cohen, M. H. (1989). Phonological Structures for Speech
Recognition. Ph.D. thesis, University of California, Berkeley.

Cohen, P. R., Johnston, M., McGee, D., Oviatt, S. L., Clow, J.,
and Smith, I. (1998). The efficiency of multimodal interac-
tion: a case study. InICSLP-98, Sydney, Vol. 2, pp. 249–252.

Cole, R. A. (1973). Listening for mispronunciations: A mea-
sure of what we hear during speech.Perception and Psy-
chophysics, 13, 153–156.

Cole, R. A. and Jakimik, J. (1980). A model of speech percep-
tion. In Cole, R. A. (Ed.),Perception and Production of Fluent
Speech, pp. 133–163. Lawrence Erlbaum, Hillsdale, NJ.

Cole, R. A. and Rudnicky, A. I. (1983). What’s new in speech
perception? The research and ideas of William Chandler
Bagley.Psychological Review, 90(1), 94–101.

Connine, C. M. (1990). Effects of sentence context and lexi-
cal knowledge in speech processing. In Altmann, G. T. M.
(Ed.), Cognitive Models of Speech Processing, pp. 281–294.
MIT Press, Cambridge, MA.

Connine, C. M. and Clifton, C. (1987). Interactive use of lexi-
cal information in speech perception.Journal of Experimental
Psychology: Human Perception and Performance, 13, 291–
299.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the
machine calculation of complex Fourier series.Mathematics
of Computation, 19(90), 297–301.

Cutler, A. and Carter, D. M. (1987). The predominance of
strong initial syllables in the English vocabulary.Computer
Speech and Language, 2, 133–142.

Cutler, A. and Norris, D. (1988). The role of strong syllables in
segmentation for lexical access.Journal of Experimental Psy-
chology: Human Perception and Performance, 14, 113–121.

David, Jr., E. E. and Selfridge, O. G. (1962). Eyes and ears for
computers.Proceedings of the IRE (Institute of Radio Engi-
neers), 50, 1093–1101.

Davis, K. H., Biddulph, R., and Balashek, S. (1952). Automatic
recognition of spoken digits.Journal of the Acoustical Society
of America, 24(6), 637–642.

Denes, P. (1959). The design and operation of the mechani-
cal speech recognizer at University College London.Journal
of the British Institution of Radio Engineers, 19(4), 219–234.
Appears together with companion paper (Fry 1959).

Deng, L., Lennig, M., Seitz, F., and Mermelstein, P. (1990).
Large vocabulary word recognition using context-dependent
allophonic hidden Markov models.Computer Speech and
Language, 4, 345–357.

DRAFT

Section 9.14. Summary 69

Deng, L. and Huang, X. (2004). Challenges in adopting speech
recognition..

Digilakis, V. V. (1992). Segment-based stochastic models of
spectral dynamics for continuous speech recognition. Ph.D.
thesis, Boston University.

Doddington, G. (2001). Speaker recognition based on idiolec-
tal differences between speakers. InEUROSPEECH-01, Bu-
dapest, pp. 2521–2524.

Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003a). Dis-
criminative training for segmental minimum bayes-risk de-
coding. InIEEE ICASSP-03.

Doumpiotis, V., Tsakalidis, S., , and Byrne, W. (2003b). Lattice
segmentation and minimum bayes risk discriminative train-
ing. In EUROSPEECH-03.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000).Pattern Clas-
sification. Wiley-Interscience Publication.

et al, M. H.-J. (2005). Landmark-based speech recognition:Re-
port of the 2004 johns hopkins summer workshop. InIEEE
ICASSP-05.

Evermann, G. and Woodland, P. C. (2000). Large vocabu-
lary decoding and confidence estimation using word poste-
rior probabilities. InIEEE ICASSP-00, Istanbul, Vol. III, pp.
1655–1658.

Fosler-Lussier, E. (1999). Multi-level decision trees forstatic
and dynamic pronunciation models. InEUROSPEECH-99,
Budapest.

Fosler-Lussier, E. and Morgan, N. (1999). Effects of speaking
rate and word predictability on conversational pronunciations.
Speech Communication, 29(2-4), 137–158.

Fry, D. B. (1959). Theoretical aspects of mechanical speech
recognition. Journal of the British Institution of Radio En-
gineers, 19(4), 211–218. Appears together with companion
paper (Denes 1959).

Gillick, L. and Cox, S. (1989). Some statistical issues in
the comparison of speech recognition algorithms. InIEEE
ICASSP-89, pp. 532–535. IEEE.

Glass, J. R. (2003). A probabilistic framework for segment-
based speech recognition.Computer Speech and Language,,
17(1–2), 137–152.

Godfrey, J., Holliman, E., and McDaniel, J. (1992). SWITCH-
BOARD: Telephone speech corpus for research and devel-
opment. InIEEE ICASSP-92, San Francisco, pp. 517–520.
IEEE.

Gold, B. and Morgan, N. (1999).Speech and Audio Signal Pro-
cessing. Wiley Press.

Graff, D. (1997). The 1996 Broadcast News speech and
language-model corpus. InProceedings DARPA Speech
Recognition Workshop, Chantilly, VA, pp. 11–14. Morgan
Kaufmann.

Gray, R. M. (1984). Vector quantization.IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-1(2), 4–29.

Grosjean, F. (1980). Spoken word recognition processes and
the gating paradigm.Perception and Psychophysics, 28, 267–
283.

Gupta, V., Lennig, M., and Mermelstein, P. (1988). Fast search
strategy in a large vocabulary word recognizer.Journal of the
Acoustical Society of America, 84(6), 2007–2017.

Hain, T. (2002). Implicit pronunciation modelling in asr. In
Proceedings of ISCA Pronunciation Modeling Workshop.

Hain, T., Woodland, P. C., Evermann, G., and Povey, D. (2001).
New features in the CU-HTK system for transcription of con-
versational telephone speech. InIEEE ICASSP-01, Salt Lake
City, Utah.

Hemphill, C. T., Godfrey, J., and Doddington, G. R. (1990).
The ATIS spoken language systems pilot corpus. InProceed-
ings DARPA Speech and Natural Language Workshop, Hid-
den Valley, PA, pp. 96–101. Morgan Kaufmann.

Hermansky, H. (1990). Perceptual linear predictive (PLP) anal-
ysis of speech.Journal of the Acoustical Society of America,
87(4), 1738–1752.

Howes, D. (1957). On the relation between the intelligibility
and frequency of occurrence of English words.Journal of the
Acoustical Society of America, 29, 296–305.

Huang, C., Chang, E., Zhou, J., and Lee, K.-F. (2000). Ac-
cent modeling based on pronunciation dictionary adaptation
for large vocabulary mandarin speech recognition. InICSLP-
00, Beijing, China.

Huang, X., Acero, A., and Hon, H.-W. (2001).Spoken Lan-
guage Processing: A Guide to Theory, Algorithm, and System
Development. Prentice Hall, Upper Saddle River, NJ.

Itakura, F. (1975). Minimum prediction residual principleap-
plied to speech recognition.IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-32, 67–72.

Jelinek, F. (1969). A fast sequential decoding algorithm using
a stack.IBM Journal of Research and Development, 13, 675–
685.

Jelinek, F. (1976). Continuous speech recognition by statistical
methods.Proceedings of the IEEE, 64(4), 532–557.

Jelinek, F. (1997).Statistical Methods for Speech Recognition.
MIT Press, Cambridge, MA.

Jelinek, F., Mercer, R. L., and Bahl, L. R. (1975). Design of a
linguistic statistical decoder for the recognition of continuous
speech.IEEE Transactions on Information Theory, IT-21(3),
250–256.

Juneja, A. and Espy-Wilson, C. (2003). Speech segmenta-
tion using probabilistic phonetic feature hierarchy and support
vector machines. InIJCNN 2003.

Junqua, J. C. (1993). The Lombard reflex and its role on hu-
man listeners and automatic speech recognizers.Journal of
the Acoustical Society of America, 93(1), 510–524.

Jurafsky, D., Ward, W., Jianping, Z., Herold, K., Xiuyang, Y.,
and Sen, Z. (2001). What kind of pronunciation variation is
hard for triphones to model?. InIEEE ICASSP-01, Salt Lake
City, Utah, pp. I.577–580.

DRAFT

70 Chapter 9. Automatic Speech Recognition

Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., andRay-
mond, W. D. (1998). Reduction of English function words in
Switchboard. InICSLP-98, Sydney, Vol. 7, pp. 3111–3114.

Klatt, D. H. (1977). Review of the ARPA speech understanding
project. Journal of the Acoustical Society of America, 62(6),
1345–1366.

Klovstad, J. W. and Mondshein, L. F. (1975). The CASPERS
linguistic analysis system.IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-23(1), 118–123.

Knill, K. and Young, S. J. (1997). Hidden Markov Mod-
els in speech and language processing. In Young, S. J. and
Bloothooft, G. (Eds.),Corpus-based Methods in Language
and Speech Processing, pp. 27–68. Kluwer, Dordrecht.

Kuhn, R. and de Mori, R. (1990). A cache-based natural lan-
guage model for speech recognition.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(6), 570–583.

Kumar, S. and Byrne, W. (2002). Risk based lattice cutting
for segmental minimum Bayes-risk decoding. InICSLP-02,
Denver, CO.

LDC (1998). LDC Catalog: Hub4 project. University
of Pennsylvania. www.ldc.upenn.edu/Catalog/
LDC98S71.htmlorwww.ldc. upenn.edu/Catalog/
Hub4.html.

LDC (1999). LDC Catalog: Hub5-LVCSR project. University
of Pennsylvania. www.ldc.upenn.edu/ldc/about/
chenglish.htmlorwww.ldc.upenn.edu/Catalog/Hub5-LVCSR.html.

Leggetter, C. J. and Woodland, P. C. (1995). Maximum likeli-
hood linear regression for speaker adaptation ofHMMs.Com-
puter Speech and Language,, 9(2), 171–186.

Levinson, S. E. (1995). Structural methods in automatic speech
recognition.Proceedings of the IEEE, 73(11), 1625–1650.

Liu, Y., Shriberg, E., Stolcke, A., Peskin, B., Ang, J., Hillard,
D., Ostendorf, M., Tomalin, M., Woodland, P., and Harper,
M. (2005). Structural metadata research in the ears program.
In IEEE ICASSP-05.

Livescu, K. (2005).Feature-Based Pronuncaition Modeling for
Automatic Speech Recognition. Ph.D. thesis, Massachusetts
Institute of Technology.

Livescu, K. and Glass, J. (2004). Feature-based pronunciation
modeling with trainable asynchrony probabilities. InICSLP-
04, Jeju, South Korea.

Lowerre, B. T. (1968).The Harpy Speech Recognition System.
Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

Luce, P. A., Pisoni, D. B., and Goldfinger, S. D. (1990). Simi-
larity neighborhoods of spoken words. In Altmann, G. T. M.
(Ed.), Cognitive Models of Speech Processing, pp. 122–147.
MIT Press, Cambridge, MA.

Mangu, L., Brill, E., and Stolcke, A. (2000). Finding consen-
sus in speech recognition: Word error minimization and other
applications of confusion networks.Computer Speech and
Language, 14(4), 373–400.

Marslen-Wilson, W. D. and Welsh, A. (1978). Processing inter-
actions and lexical access during word recognition in contin-
uous speech.Cognitive Psychology, 10, 29–63.

Marslen-Wilson, W. D. (1973). Linguistic structure and speech
shadowing at very short latencies.Nature, 244, 522–523.

Massaro, D. W. (1998).Perceiving Talking Faces: From Speech
Perception to a Behavioral Principle. MIT Press.

Massaro, D. W. and Cohen, M. M. (1983). Evaluation and in-
tegration of visual and auditory information in speech percep-
tion. Journal of Experimental Psychology: Human Perception
and Performance, 9, 753–771.

McClelland, J. L. and Elman, J. L. (1986). Interactive processes
in speech perception: The TRACE model. In McClelland,
J. L., Rumelhart, D. E., and the PDP Research Group (Eds.),
Parallel Distributed Processing Volume 2: Psychological and
Biological Models, pp. 58–121. MIT Press, Cambridge, MA.

McDermott, E. and Hazen, T. (2004). Minimum Classification
Error training of landmark models for real-time continuous
speech recognition. InIEEE ICASSP-04.

McGurk, H. and Macdonald, J. (1976). Hearing lips and seeing
voices.Nature, 264, 746–748.

Miller, J. L. (1994). On the internal structure of phonetic cate-
gories: a progress report.Cognition, 50, 271–275.

Mosteller, F. and Wallace, D. L. (1964).Inference and Disputed
Authorship: The Federalist. Springer-Verlag, New York. 2nd
Edition appeared in 1984 and was calledApplied Bayesian
and Classical Inference.

Murveit, H., Butzberger, J. W., Digalakis, V. V., and Weintraub,
M. (1993). Large-vocabulary dictation using SRI’s decipher
speech recognition system: Progressive-search techniques. In
IEEE ICASSP-93, Vol. 2, pp. 319–322. IEEE.

Nadas, A. (1983). A decision theorectic formulation of a train-
ing problem in speech recognition and a comparison of train-
ing by unconditional versus conditional maximum likelihood.
IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 31(4), 814–817.

Ney, H., Haeb-Umbach, R., Tran, B.-H., and Oerder, M. (1992).
Improvements in beam search for 10000-word continuous
speech recognition. InIEEE ICASSP-92, San Francisco, CA,
pp. I.9–12. IEEE.

Nguyen, L. and Schwartz, R. (1999). Single-tree method for
grammar-directed search. InIEEE ICASSP-99, pp. 613–616.
IEEE.

Nilsson, N. J. (1980).Principles of Artificial Intelligence. Mor-
gan Kaufmann, Los Altos, CA.

NIST (2005). Speech recognition scoring toolkit (sctk) version
2.1. Available at http://www.nist.gov/speech/tools/.

Niyogi, P., Burges, C., and Ramesh, P. (1998). Distinctive
feature detection using support vector machines. InIEEE
ICASSP-98. IEEE.

Normandin, Y. (1996). Maximum mutual information estima-
tion of hidden Markov models. In Lee, C., Soong, F., and
Paliwal, K. (Eds.),Automatic Speech and Speaker Recogni-
tion, pp. 57–82. Kluwer Academic Publishers.

DRAFT

Section 9.14. Summary 71

Odell, J. J. (1995).The Use of Context in Large Vocabulary
Speech Recognition. Ph.D. thesis, Queen’s College, Univer-
sity of Cambridge.

Oden, G. C. and Massaro, D. W. (1978). Integration of featural
information in speech perception.Psychological Review, 85,
172–191.

Oppenheim, A. V., Schafer, R. W., and Stockham, T. G. J.
(1968). Nonlinear filtering of multiplied and convolved sig-
nals.Proceedings of the IEEE, 56(8), 1264–1291.

Ortmanns, S., Ney, H., and Aubert, X. (1997). A word graph
algorithm for large vocabulary continuous speech recognition.
Computer Speech and Language,, 11, 43–72.

Ostendorf, M., Digilakis, V., and Kimball, O. (1996). From
HMMs to segment models: A unified view of stochastic mod-
eling for speech recognition.IEEE Transactions on Speech
and Audio, 4(5), 360–378.

Paul, D. B. (1991). Algorithms for an optimal A∗ search and
linearizing the search in the stack decoder. InIEEE ICASSP-
91, Vol. 1, pp. 693–696. IEEE.

Pearl, J. (1984).Heuristics. Addison-Wesley, Reading, MA.

Price, P., Fisher, W., Bernstein, J., and Pallet, D. (1988).The
DARPA 1000-word resource management database for con-
tinuous speech recognition. InIEEE ICASSP-88, New York,
Vol. 1, pp. 651–654. IEEE.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models
and selected applications in speech recognition.Proceedings
of the IEEE, 77(2), 257–286.

Rabiner, L. R. and Juang, B. (1993).Fundamentals of Speech
Recognition. Prentice Hall, Englewood Cliffs, NJ.

Ravishankar, M. K. (1996).Efficient Algorithms for Speech
Recognition. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh. Available as CMU
CS tech report CMU-CS-96-143.

Reynolds, D. and Rose, R. (1995). Robust text- independent
speaker identification using gaussian mixture speaker mod-
els.IEEE Transactions on Speech and Audio Processing, 3(1),
72–83.

Rosenfeld, R. (1996). A maximum entropy approach to adap-
tive statistical language modeling.Computer Speech and Lan-
guage, 10, 187–228.

Russell, S. and Norvig, P. (1995).Artificial Intelligence: A
Modern Approach. Prentice Hall, Englewood Cliffs, NJ.

Sakoe, H. and Chiba, S. (1971). A dynamic programming ap-
proach to continuous speech recognition. InProceedings of
the Seventh International Congress on Acoustics, Budapest,
Budapest, Vol. 3, pp. 65–69. Akadémiai Kiadó.

Sakoe, H. and Chiba, S. (1984). Dynamic programming algo-
rithm optimization for spoken word recognition.IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, ASSP-
26(1), 43–49.

Salasoo, A. and Pisoni, D. B. (1985). Interaction of knowledge
sources in spoken word identification.Journal of Memory and
Language, 24, 210–231.

Samuel, A. G. (1981). Phonemic restoration: Insights from a
new methodology.Journal of Experimental Psychology: Gen-
eral, 110, 474–494.

Saraclar, M., Nock, H., and Khudanpur, S. (2000). Pronunci-
ation modeling by sharing gaussian densities across phonetic
models.Computer Speech and Language, 14(2), 137–160.

Schwartz, R. and Austin, S. (1991). A comparison of several
approximate algorithms for finding multiple (N-BEST) sen-
tence hypotheses. Inicassp91, Toronto, Vol. 1, pp. 701–704.
IEEE.

Schwartz, R. and Chow, Y.-L. (1990). The N-best algorithm:
An efficient and exact procedure for finding the N most likely
sentence hypotheses. InIEEE ICASSP-90, Vol. 1, pp. 81–84.
IEEE.

Schwartz, R., Chow, Y.-L., Kimball, O., Roukos, S., Krasnwer,
M., and Makhoul, J. (1985). Context-dependent modeling for
acoustic-phonetic recognition of continuous speech. InIEEE
ICASSP-85, Vol. 3, pp. 1205–1208. IEEE.

Shannon, C. E. (1948). A mathematical theory of communica-
tion. Bell System Technical Journal, 27(3), 379–423. Contin-
ued in following volume.

Shriberg, E., Ferrer, L., adn A. Venkataraman, S. K., and Stol-
cke, A. (2005). Modeling prosodic feature sequences for
speaker recognition.Speech Communication, 46(3-4), 455–
472.

Sproat, R. and Riley, M. D. (1996). Compilation of weighted
finite-state transducers from decision trees. InProceedings of
ACL-96, Santa Cruz, CA, pp. 215–222. ACL.

Stolcke, A. (2002). Srilm - an extensible language modeling
toolkit. In ICSLP-02, Denver, CO.

Tajchman, G., Fosler, E., and Jurafsky, D. (1995). Build-
ing multiple pronunciation models for novel words using ex-
ploratory computational phonology. InEurospeech-95, pp.
2247–2250.

Tomokiyo, L. M. (2001). Recognizing non-native speech:
Characterizing and adapting to non-native usage in speech
recognition. Ph.D. thesis, Carnegie Mellon University.

Tomokiyo, L. M. and Waibel, A. (2001). Adaptation methods
for non-native speech. InProceedings of Multilinguality in
Spoken Language Processing, Aalborg, Denmark.

Tyler, L. K. (1984). The structure of the initial cohort: Evidence
from gating.Perception & Psychophysics, 36(5), 417–427.

Velichko, V. M. and Zagoruyko, N. G. (1970). Automatic
recognition of 200 words. International Journal of Man-
Machine Studies, 2, 223–234.

Vintsyuk, T. K. (1968). Speech discrimination by dynamic pro-
gramming. Cybernetics, 4(1), 52–57. Russian Kibernetika
4(1):81-88 (1968).

Wang, Z., Schultz, T., and Waibel, A. (2003). Comparison of
acoustic model adaptation techniques on non-native speech.
In IEEE ICASSP, Vol. 1, pp. 540–543.

DRAFT

72 Chapter 9. Automatic Speech Recognition

Ward, W. (1989). Modelling non-verbal sounds for speech
recognition. InHLT ’89: Proceedings of the Workshop on
Speech and Natural Language, Cape Cod, Massachusetts, pp.
47–50. Association for Computational Linguistics.

Warren, R. M. (1970). Perceptual restoration of missing speech
sounds.Science, 167, 392–393.

Weintraub, M., Taussig, K., Hunicke-Smith, K., and Snodgras,
A. (1996). Effect of speaking style on LVCSR performance.
In ICSLP-96, Philadelphia, PA, pp. 16–19.

Woodland, P. C., Leggetter, C. J., Odell, J. J., Valtchev, V., and
Young, S. J. (1995). The 1994 htk large vocabulary speech
recognition system. InIEEE ICASSP.

Woodland, P. and Povey, D. (2002). Large scale discrimina-
tive training of hidden Markov models for speech recognition.
Computer Speech and Language,, 16, 25–47.

Woodland, P. C. (2001). Speaker adaptation for continuous
density HMMs: A review. In Juncqua, J.-C. and Wellekens,
C. (Eds.),Proceedings of the ITRW ‘Adaptation Methods For
Speech Recognition’, Sophia-Antipolis, France.

Wooters, C. and Stolcke, A. (1994). Multiple-pronunciation
lexical modeling in a speaker-independent speech understand-
ing system. InICSLP-94, Yokohama, Japan, pp. 1363–1366.

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-
based state tying for high accuracy acoustic modelling. In
Proceedings ARPA Workshop on Human Language Technol-
ogy, pp. 307–312.

Young, S. J., Russell, N. H., and Thornton, J. H. S. (1989). To-
ken passing: A simple conceptual model for connected speech
recognition systems.. Tech. rep. CUED/F-INFENG/TR.38,
Cambridge University Engineering Department, Cambridge,
England.

Young, S. J. and Woodland, P. C. (1994). State clustering
in HMM-based continuous speech recognition.Computer
Speech and Language, 8(4), 369–394.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D.,
Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., and
Woodland, P. (2005).The HTK Book. Cambridge University
Engineering Department.

Zheng, Y., Sproat, R., Gu, L., Shafran, I., Zhou, H., Su, Y., Ju-
rafsky, D., Starr, R., and Yoon, S.-Y. (2005). Accent detection
and speech recognition for shanghai-accented mandarin. In
InterSpeech 2005, Lisbon, Portugal.

Zweig, G. (1998).Speech Recognition with Dynamic Bayesian
Networks. Ph.D. thesis, University of California, Berkeley.

