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Abstract
We explore the extent to which misrecognitions and corrections
in spoken dialogue systems can be predicted from information
about other turn categories in the preceding or following con-
text. Features including whether or not subsequent turns rep-
resent ‘aware’ sites, in which users first become aware that the
system has misheard them, or corrections, and whether or not
prior turns represent ‘aware’ sites or are misrecognized are used
to identify following turns as potential correction sites and to
detect whether previous turns were in fact misrecognized. This
represents a new phase in our ongoing work identifying correc-
tions and misrecognitions to improve the performance of spo-
ken dialogue systems.

1. Introduction
This paper describes new results in our continuing investiga-
tion on the prosodic reaction of users to recognition errors in
Spoken Dialogue Systems (SDS). To date, we have explored
whether prosodic features of user turns can tell us a) whether
a speech recognition error has occurred (e.g. System hears ”I
want to go to Baltimore” when a user has said ”I want to go
to Boston”) [1, 2]; b) whether a user is reacting to evidence of
such a system error (e.g. System: ”Did you say you want to go
to Baltimore?” User: ”NO!”) [3]; and c) whether a user is in
fact correcting such a recognition error (e.g. User: ”I want to
go to BOSTON!”) [4, 5]. We have already found that prosodic
features do predict recognition errors directly with considerable
accuracy in the TOOT train information corpus dialogues. Using
machine learning techniques, we have shown that, in combina-
tion with information already available to the recognizer, such
as acoustic confidence scores, grammar, and recognized string,
prosodic information can distinguish speaker turns that are mis-
recognized far better than traditional methods for ASR rejection
using acoustic confidence scores alone (8.64% vs. 18.91% es-
timated error). More recently, we have demonstrated that mis-
recognitions and corrections are both prosodically distinct from
what we have termed “aware” sites, defined as turns where a
user first becomes aware that the system has made an error. Ma-

chine learning experiments show that these aware sites can be
distinguished from other user turns with 12.2% estimated clas-
sification error. Finally, we have examined user corrections of
system errors in the TOOT corpus, and have found significant
prosodic differences between corrections and non-corrections
that can be used to predict that a turn represents a user’s cor-
rection of a system error with some success (15.72% estimated
error); in addition we have uncovered interesting correlations
between system strategies and types of user corrections, as well
as evidence for what types of corrections are more successful,
which will be important in building more successful SDS.

In this paper, we explore whether we can gain in prediction
performance by combining predictors. Given that we can pre-
dict aware sites with some accuracy, we now use these predic-
tions as predictors of misrecognitions and of corrections. We
hypothesize that aware sites can function as both backward-
looking and forward-looking signaling cues, making it clear to
the system that something has gone wrong in the preceding con-
text [6] and signaling corrections to come. We will describe ex-
periments that use aware site predictions in combination with
other predictors in both these ways. We explore the usefulness
of features derived from hand-labeled turn classification in pre-
dicting other turn categories, to provide an upper bound on po-
tential performance, and also present preliminary results based
on predicted turn classification.

2. The TOOT Corpus
Our corpus is the TOOT SDS, which provides access to train
information over the phone [7]. Subjects were 39 students,
20 native speakers of standard American English and 19 non-
native speakers; 16 subjects were female and 23 male. They
were asked to perform four train information seeking tasks;
the exchanges were recorded and the system and user behav-
ior logged automatically. We examined 2328 user turns from
152 dialogues generated during these experiments.

Dialogues were manually transcribed and user turns auto-
matically compared to the corresponding ASR (one-best) rec-
ognized string to produce a word accuracy score (WA) for each
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turn. If there were any differences between the ASR output and
the transcription (WA � 1), the turn was labeled as a WA-based
misrecognition. Each turn’s concept accuracy (CA) was also
labeled by the experimenters from the dialogue recordings and
the system log. If the recognizer correctly captured all the task-
related information given in the user’s original input (e.g. date,
time, departure or arrival cities), the turn was given a CA score
of 1, indicating a semantically correct recognition. Otherwise
(CA � 1), the CA score reflected the percentage of correctly
recognized task concepts in the turn, and the turn was labeled
as a CA-based misrecognition. For example, if the user said
“I want to go to Baltimore on Saturday at ten o’clock” but the
system’s best hypothesis was “Go to Boston on Saturday”, the
CA score for this turn would be .33. 30% of the 2328 turns
were CA-based misrecognitions, while 39% were WA-based
misrecognitions.

In addition to identifying turn categories representing user
reactions to such misrecognitions, two authors labeled each turn
as to whether or not it constituted a correction of a prior system
failure (and if so what turn was being corrected) or represented
an aware site for a prior failure (and if so which turn the sys-
tem had failed on). Labeler disagreement was subsequently re-
solved by consensus. The TOOT dialogue fragment in Figure 1
illustrates these labels. 30% of the turns in our corpus were
classified in this way as ‘aware’ sites and 29% of turns were
classified as corrections. Note that aware sites may or may not
also be corrections, since a user might not immediately provide
correcting information. Turns that were only corrections repre-
sent 13% of the turns in our corpus; turns that were only awares
represent 14%; and turns that were both account for 16%; 57%
of the turns in the corpus were neither awares nor corrections.
These hand-labeled turn classes as well as predicted versions
of them, together with information about which turns were mis-
recognized by the TOOT ASR system form the classes examined
below.

3. Machine Learning Experiments
For our machine learning experiments, we use RIPPER [8], a
machine learning program which takes as input the classes to
be learned, a set of features, and training data specifying the
class and feature values for each training example and outputs a
classification model, expressed as an ordered set of if-then rules
which can be used to classify unseen data. RIPPER also provides
methods for obtaining cross-validated estimates of the ruleset’s
likely performance on unseen data.

In this paper we discuss the predictability of three classes:
CA-based and WA-based misrecognition, as well as corrections.
As in our earlier studies [5, 3], our feature set includes prosodic
features, features based on the ASR inputs and outputs, and fea-
tures representing the experimental conditions; these features
represent properties of the current utterance, the two previous
utterances, and the global dialogue history. A full discussion of
these features is provided in [5].

In this paper, we evaluate a new set of features based upon
some of the turn categories that we have previously predicted
— i.e., upon some of our previous dependent variables. We
wanted to discover whether classification of a subsequent turn
as a correction or an ‘aware’ could improve our ability to predict
whether the current turn had been misrecognized, or whether
prediction of prior turns as misrecognized or as ‘aware’ turns
could improve our classification of the current turn as a correc-
tion or not.

To provide an upper bound for performance improvements

if (nextaware � T) � (timedur � 1.31) then F (406/14)
if (nextaware � T) � (asrconf � -4.34) then F (112/16)
if (asrconf � -2.71) � (nextaware � T) then F (67/27)
if (asrconf ���	� -3.73) � (pmnwordsstr � 2.43) � (pmnsyls �
5.33) � (ppreppau � 1.49) then F (27/5) (tempo � 0.88) �
(temponorm1 � 0.05) then F (18/1) (asrconf � -2.71) � (re-
jbool=T) then F (8/1) (asrconf � -2.25) � (tempo � 1.39) �
(syls � 3) then F (12/5) (nextaware=T) � (predur � 0.70) then
F (8/1) else T (1548/52)

Figure 2: Learned rules for predicting CA-based correct recog-
nition.

using this approach, we first evaluated these features assuming
perfect prediction, i.e., from actual observations. In particu-
lar, to predict both CA-based and WA-based prediction, we in-
cluded the following new features: is the next turn an ‘aware’;
is the next turn a correction; is the turn following the next turn
an ‘aware’; is the turn following the next a correction; and is
the current turn itself an ‘aware’. To predict corrections, we
added the following new features to our correction prediction
experiments: is the previous turn an ‘aware’; is the previous
turn misrecognized (in terms of CA or WA); is the turn before
the previous turn an ‘aware’; is the turn before the previous turn
misrecognized (again, in terms of CA or WA); and is the current
turn an ‘aware’. We considered only a window of two turns af-
ter misrecognized and two turns before corrections since, from
our data, this window would capture the vast majority of turns
in the categories of interest. Two thirds (67%) of corrections
occur within two turns of the misrecognized (in terms of CA)
turn they correct and 84% of ‘awares’.

Table 1 presents the best result for each of the three classes
that we are are predicting, comparing results from our earlier
experiments with our new experiments including prior and sub-
sequent turn classes as features. Adding aware and correction
labels appears to improve our ability to identify CA-defined er-
rors. The new predicted error of 7.22%, when we include infor-
mation about whether the next turn is an ‘aware’ or not, is sig-
nificantly better than our best earlier score of 10.48 [5]. How-
ever, adding information about whether the following turn is an
‘aware’ or whether the current turn is an ‘aware’, or whether
either of the next two turns is a correction or an ‘aware’, does
not significantly improve our ability to predict WA-defined mis-
recognition. However, the actual estimated error (7.60%) when
we add all these features is still lower than our previous best re-
sult. Our best predicting turn class features do not, however, sig-
nificantly improved our ability to predict WA-based misrecog-
nitions; although the estimated error (7.60%) is slighted lower
than our previous best results (8.64%). This is not surprising,
since only CA-based errors even come to the attention of users.
For correction prediction, adding information about whether the
two preceding turns represent ‘awares’ or WA-based misrecog-
nitions, or whether the current turn is itself an ‘aware’, again
yields a lower estimated error than any of our previous attempts
to predict corrections (13.78%). However, this estimate is not
significantly different from our previous best result (15.72%).

Fig 2 presents the rules learned for predicting CA-based
misrecognition using our original features plus just the addi-
tional information as to whether the next turn is an ‘aware’ turn
— our best performing feature set to date for predicting CA-
based misrecognition. Note that the top three best rules do in-
deed make use of the ‘nextaware’ feature. Other useful features
in the rules are similar to those we have found important for pre-



Turn Turn ID Aware of Corr of Misrecognition Response Labels
S: How may I help you?
U: Get me the train to New York City from

Baltimore on Sunday at eight thirty pm 1158 NA NA
S: Which city do you want to go to?
U: New York City 1159 1158 1158 aware, correction
S: Which city do you want to leave from?
U: Baltimore 1160 1158 1158 aware, correction
S: Do you want me to find the trains from

Baltimore to New York City today at anytime now?
U: No 1161 1158 NA aware
S: How may I help you?
U: Get me the train to New York City from

Baltimore on Sunday at eight thirty pm 1162 NA 1158 correction
S: Do you want me to find the trains from

Baltimore to New York City today at anytime now?
U: No 1163 1162 NA aware
S: How may I help you?
U: Get me the train on Sunday at eight thirty pm 1164 NA 1162 correction

Figure 1: Dialogue fragment with correction and aware labels.

Table 1: Predicting Misrecognitions and Corrections: best-performing feature-sets with and without features derived from other turn
types.

Predicted Class Error w/o Turn Features Error w/ Turn Features Turn Features Used
CA-based misrecognition 10.48 +/- 0.57 7.22% +/- 0.37 nextaware
WA-based misrecognition 8.64 +/- .53 7.60% +/- 0.47 nextaware,nextcorr

Corrections 15.72 +/1 0.80 13.78% +/- 0.82 prevaware,2prevaware,prevwa,2prevwa,curaware

diction in the past, including the length in seconds (timedur) and
syllables (syls), speaking rate (tempo) and normalized speaking
rate (temponorm1) of the current turn; whether that turn was
rejected or not (rejbool) and its ASR acoustic confidence score;
the length in seconds of the preceding turn (predur); the length
of pause preceding the turn two turns before the current turn
(ppreppau); and the mean number of words (pmnwordsstr) and
syllables (pmnsyls) per turn calculated over all prior turns. In-
terestingly, the top four rules, and five of the rules in this ruleset,
include features of the current turn’s context.

Now we examine how the different categories of new in-
formation about the status of prior and subsequent turns as
‘awares’, corrections, or CA-based or WA-based misrecogni-
tions affect our ability to predict prior misrecognitions or fol-
lowing corrections. We see from Table 2 that, for predicting
misrecognitions in general, information about whether the next
turn is an ‘aware’ or not is the single best predictor of prior er-
ror.

When such information is absent (e.g. for the feature sets
that include only information about whether the next turns are
corrections), prediction is significantly poorer. Similarly, infor-
mation about whether a prior turn is misrecognized appears to
be a poor predictor for whether or not the current turn is a cor-
rection. Feature sets containing only such information, whether
based upon concept or transcription accuracy (prevca, 2 prevca,
prevwa, 2prevwa) rank at the bottom in performance of feature
sets predicting correction. From our prior experiments [3] we
have found that ‘awares’ can be predicted with some accuracy
(12.20% +/- 0.61% error over a baseline of 30% error) from
prosodic and other features. So our next step is to see whether
this potentially useful information for identifying misrecogni-

tions and corrections can itself be predicted accurately enough
to improve prediction when hand-annotated information is ab-
sent.

We next compare the performance of rules trained on a
training corpus when tested on a test set containing real obser-
vations with performance of these rules when tested on a test
set containing predicted values for the same turn-based features.
For this purpose we divided our 2328 turns into training and test
sets, randomly selecting one of the four tasks performed by each
subject for testing. This division produced an 1874 turn training
set and a 454 turn test set.

Preliminary investigations of the use of predicted turn class
features for the prediction of CA-based misrecognitions sug-
gest, however, that we are not yet able to predict the classes
from which the features are derived with sufficient accuracy to
improve misrecognition prediction, as the observed values do.
Table 3 compares results of predicting CA-based misrecogni-
tions from observation-derived turn class features vs. predicted
features; note that results for the observed feature prediction
are somewhat higher than those presented for the feature sets in
Table 2 since the rules are those for the best performing rule-
set, i.e., not cross-validated. Neither the best-performing fea-
ture set from Table 2, using only information about whether the
next turn is an ‘aware’ or not, nor the entire set of turn class
based features, improves our prediction accuracy when these
turn classes are predicted, rather than observed. Nor do they
approach the cross-validated estimates of Table 2 for CA-based
misrecognition prediction. If we examine the noise in the pre-
dicted class-based features, we find a likely explanation. The
error on the test set for the prediction of the ‘aware’ class, which
was used to generate the features ‘nextaware’ and ‘2nextaware’



Feature-Set Estimated Error
CA-Based Misrecognition

nextaware 7.22% (+- 0.40%)
nextaware, nextcorr 7.30% (+- 0.37%)
nextaware, 2nextaware 7.30% (+- 0.54%)
nextaware, 2nextaware, nextcorr, 7.39% (+- 0.51%)
2nextcorr, curaware
nextcorr, 2nextcorr 10.52% (+- 0.51%)
nextcorr 10.99% (+- 0.57%)

WA-Based Misrecognition
nextaware, nextcorr 7.60% (+/- 0.47%)
nextaware, 2nextaware, nextcorr, 7.73% (+/- 0.51%)
2nextcorr, curaware
nextaware 7.98% (+/- 0.51%)
nextaware, 2nextaware 7.98% (+/- 0.51%)
nextcorr 10.48% (+/- 0.52%)
nextcorr, 2nextcorr 11.13% (+/- 0.69%)

Corrections
prevaware, 2prevaware, prevwa, 13.78% (+/- 0.82%)
2prevwa, curaware
prevaware, 2prevaware, prevca, 14.08% (+/- 0.72%)
2prevca, curaware
prevaware, prevca 14.95% (+/- 0.66%)
prevaware, 2prevaware 14.99% (+/- 0.57%)
prevaware, k25 14.99% (+/- 0.57%)
prevca, 2prevca 15.51% (+/- 0.64%)
prevaware, prevwa 15.85% (+/- 0.79%)
prevca 16.53% (+/- 0.80%)
prevwa 16.70% (+/- 1.04%)
prevwa, 2prevwa 16.87% (+/- 0.70%)

Table 2: Performance of Turn-Based Feature Sets on Class Pre-
dictions

Feature-Set Estimated Error
Observed Feature Values

nextaware 6.61% +/- 1.17%
nextaware, 2nextaware, nextcorr 6.61% +/- 1.17%
2nextcorr, curaware

Predicted Values
nextaware 14.54% +/- 1.66%
nextaware, 2nextaware, nextcorr 14.54% +/- 1.66%
2nextcorr, curaware

Table 3: Performance of Predicted vs. Observed Turn-Based
Feature Sets on CA-based Misrecognition Prediction

was 14%, and that for the prediction of corrections was 17%.
Both of these are somewhat larger than our cross-validated er-
ror estimates of earlier experiments, of 12% and 16%, but even
these error rates would probably hurt performance.

Using machine learning techniques more robust to noise,
or training prediction rules on predicted values rather than ob-
servations for the class-based features (using a separate train-
ing set to predict the class features), or finding new features
which improve our prediction in particular of ‘aware’ turns are
all measures which might improve our ability to use class-based
features to improve the prediction of other classes.

4. Conclusions
In this paper we present results of experiments which explore
the utility of class-based turn features — whether subsequent
turns are ‘aware’ sites or corrections and whether previous turns
are ‘aware’ sites or misrecognitions — to predict misrecogni-
tions and corrections in spoken dialogue system. Our experi-
ments have demonstrated that performance can be improved at
least in the prediction of concept-based (CA) recognition accu-
racy by including such information, if the information is accu-
rate. They have also shown that ‘aware’ site information is of
more value in predicting both misrecognitions and corrections
than are other class-based turn features. However, further explo-
ration of the use of predicted class values in place of observed
values indicates that errors in that prediction seriously degrade
performance. In future we will continue these experiments to
discover how such errors themselves and how their effect on
prediction can be minimized.
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