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ABSTRACT

This study analyzes user corrections of system errors in the TOOT
spoken dialogue system. We find that corrections differ from non-
corrections prosodically, in ways consistent with hyperarticulated
speech, although many corrections arenot hyperarticulated. Yet
both are misrecognized more frequently than non-corrections —
though no more likely to be rejected by the system. Corrections
more distant from the error they correct tend to exhibit greater
prosodic differences, and also to be recognized more poorly. Sys-
tem dialogue strategy affects users’ choice of correction type, sug-
gesting that strategy-specific methods of detecting or coaching
users on corrections may be useful. Strategies that produce longer
tasks but fewer misrecognitions and subsequent corrections are
preferred by users.

1. INTRODUCTION

Since spoken dialogue systems often make mistakes in recogniz-
ing user input, accurate methods of detecting and correcting sys-
tem errors are essential to supporting successful interactions. Un-
derstanding how users attempt to correct system failures and why
their attempts succeed or fail is important to improve the design of
future spoken dialogue systems. For example, knowing whether
they are more likely to repeat or rephrase their utterances, add new
information or shorten their input, and how system behavior influ-
ences these choices, can suggest appropriate on-line modifications
to the system’s interaction strategy or to the recognition procedure
it employs. Determining which speaker behaviors are more suc-
cessful in correcting system errors can also lead to improvements
in the help information such systems provide.

We are conducting studies focussing on the role prosody may play
in both detecting automatic speech recognition (ASR) errors and in
helping to understand user corrections of such errors. In two differ-
ent corpora of human-machine interactions, we found that prosodic
features can be used todetect recognition errors with considerable
accuracy[2, 8, 3]: in combination with information already avail-
able to the recognizer, such as acoustic confidence scores, grammar
and recognized string, they can distinguish speaker turns that are
misrecognized far better than traditional methods for ASR rejec-
tion using acoustic confidence scores alone. In the current study,
we turn to the question of how people try tocorrect ASR errors
in their interactions with machines, and the role that prosody may
play in identifying user corrections and in helping to analyze them.

Previous research has shown that users often have difficulty deal-
ing with errors made by current dialogue systems — and that sys-
tems also find it hard to handle user attempts to correct them. So,

repair strategies in human-machine interactions can be quite in-
effective. There is evidence that dialogue confirmation strategies
may hinder users’ ability to correct system error. For instance, if a
system wrongly presents information as being correct, as when it
verifies information implicitly, users become confused about how
to respond [5]. Other studies have shown that speakers tend to
switch to a prosodically ‘marked’ speaking style after communica-
tion errors, comparing repetition corrections with the speech being
repeated [13, 11, 7, 1]. While this speaking style may be effec-
tive in problematic human-human communicative settings, there is
evidence that suggests it leads to further errors in human-machine
interactions [7, 12], perhaps because it differs from the speech data
most recognizers are trained on.

In this paper, we describe an analysis of user corrections of system
error collected in the TOOT spoken dialogue system. In Section
2, we describe the corpus itself and how it was collected and la-
beled. In Section 3, we characterize the nature of corrections in
this corpus, in terms of when they occur, how well they are han-
dled by the system, what distinguishes their prosody from other ut-
terances, their relationship to the utterances they correct, and how
they differ according to dialogue strategy. We conclude with some
implications of our results for future spoken dialogue systems and
some goals of our future research.

2. THE TOOT CORPUS

Our corpus consists of dialogues between human subjects and
TOOT, a spoken dialogue system that allows access to train in-
formation from the web via telephone. TOOT was collected to
study variations in dialogue strategy and in user-adapted interac-
tion [9]. It is implemented using an IVR (interactive voice re-
sponse) platform developed at AT&T, combining ASR and text-
to-speech with a phone interface [4]. The system’s speech recog-
nizer is a speaker-independent hidden Markov model system with
context-dependent phone models for telephone speech and con-
strained grammars defining vocabulary at any dialogue state. The
platform supports barge-in. Subjects performed four tasks with
one of several versions of the system that differed in terms of locus
of initiative (system, user, or mixed), confirmation strategy (ex-
plicit, implicit, or none), and whether these conditions could be
changed by the user during the task (adaptive vs. non-adaptive).
Subjects were 39 students; 20 native speakers and 19 non-native,
16 female and 23 male. Dialogues were recorded and system and
user behavior logged automatically. Theconcept accuracy (CA)
of each turn was manually labeled. If the ASR correctly captured
all task-related information in the turn (e.g. time, departure and
arrival cities), the turn’s CA score was 1 (semantically correct).
Otherwise, the CA score reflected the percentage of correctly rec-

����������	�
��	��
�������������������
�	���	����������
�����
���������

��
�
����
�
�	

���� ���!�"��������

ISCA Archive
����#$$%%%&
��	"������&���$	���
'�



ognized task information in the turn. The dialogues were also tran-
scribed and automatically scored in comparison to the ASR recog-
nized string to produce aword error rate (WER) for each turn. For
the study described below, we examined 2328 user turns (all user
input between two system inputs) from 152 dialogues.

3. TOOT CORPUS CORRECTIONS

To identify corrections in the corpus two authors independently
labeled each turn as to whether or not it constituted a correction
of a prior system failure (a rejection or CA error, which were the
only system failure subjects were aware of) and subsequently de-
cided upon a consensus label. Each turn labeled ‘correction’ was
further classified as belonging to one of the following categories:
REP (repetition, including repetitions with differences in pronun-
ciation or fluency), PAR (paraphrase); ADD (task-relevant content
added); OMIT (content omitted); and ADD/OMIT (content both
added and omitted). For user turns containing a correction plus
one or more additional dialogue acts, only the correction is used for
purposes of analysis below. We also labeled asrestarts user correc-
tions which followed non-initial system-initial prompts (e.g. “How
may I help you?” or “What city do you want to go to?”); in such
cases system and user essentially started the dialogue over from
the beginning. Each correction was also indexed with an identifier
representing the prior turn it was correcting, so that we could in-
vestigate “chains” of corrections of a single failed turn, by tracing
back through subsequent corrections of that turn. Figure 1 shows a
fragment of a TOOT dialogue with corrections labeled.

Figure 1: Toot Dialogue Fragment with Correction Labels

Turn Turn ID Corr of Corr Type
S: On which day of the week do you want to leave?
S: Sorry, I didn’t hear anything from you. Please tell me

your departure date.
U: Um tomorrow 776 NA NA
S: You can say the departure date. For example, you can

say ‘today’ or ‘tomorrow’. Or you can say ‘Monday’,
‘Tuesday’, ‘Wednesday’...

U: Tomorrow 777 776 REP
S: You can say the departure date. For example, you can

say ‘today’ or ‘tomorrow’. Or you can say ‘Monday’,
‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’...

U: Saturday 778 777 PAR
S: Do you want to leave on Saturday?
U: Yes 779 NA NA
S: What time do you want to leave?
U: Eight o’clock A M 780 NA NA
S: Do you want to leave around ten oclock p-m
U: Eight o’clock 781 780 OMIT
S: Do you want to leave around ten oclock p-m
U: No 782 NA NA
S: What time do you want to leave?
U: Eight o’clock A M 783 781 ADD

We identified 29% of the turns in the corpus as corrections. These
were a serious problem for the system, being misrecognized (in
terms of WER) about twice as often (61%) as non-corrections

(33%). Despite this higher misrecognition rate, the ASR system
rejected corrections at about the same rate (9% of the time vs. 8%)
as non-corrections. So, the system could not identify its own likely
errors accurately.

3.1. Correction Types

Of the correction types we labeled, the largest number were REPs
and OMITs, as shown in Table 1, which shows over-all distribution
of correction types, and distributions for each type of system fail-
ure corrected. Table 1 shows that 40% of TOOT corrections were

Table 1: Distribution of Correction Types

ADD ADD/OMIT OMIT PAR REP
All 8% 2% 32% 19% 39%
Post-Mrec 7% 3% 40% 18% 32%
Post-Rej 6% 0% 7% 28% 59%

simple repetitions of the previously misrecognized turn. While this
strategy is often suboptimal in correcting ASR errors [7], REPs
(45% error) and OMITs (52% error) were better recognized than
ADDs (90% error) and PARs (72% error).

What the user was correcting also influenced the type of correction
chosen. Table 1 shows that corrections of misrecognitions (Post-
Mrec) were more likely to omit information present in the original
turn (OMITs), while corrections of rejections (Post-Rej) were more
likely to be simple repetitions. The latter finding is not surprising,
since the rejection message for tasks was always a close paraphrase
of “Sorry, I can’t understand you. Can you please repeat your ut-
terance?” However, it does suggest the surprising power of system
directions, and how important it is to craft prompts tofavor the
type of correction most easily recognized by the system.

3.2. Prosodic Features of Corrections

In part to test the hypothesis that corrections tend to be hyperar-
ticulated (slower and louder speech which contains wider pitch
excursions and more internal silence), we examined the follow-
ing features for each user turn: maximum and mean fundamental
frequency values (F0 Max, F0 Mean); maximum and mean en-
ergy values (RMS Max, RMS Mean); total duration; length of
pause preceding the turn (Prior Pause); speaking rate (Tempo); and
amount of silence within the turn (% Silence).1 F0 and RMS val-
ues, representing measures of pitch excursion and loudness, were
calculated from the output of Entropic Research Laboratory’s pitch
tracker,get f0, with no post-correction. Timing variation was rep-
resented by four features: Duration of turn and length of pause
between turns was hand labeled. Speaking rate was approximated
in terms of syllables in the recognized string per second. % Si-
lence was defined as the percentage of zero frames in the turn, i.e.,
roughly the percentage of time within the turn that the speaker was
silent.

1While the features were automatically computed, turn beginnings and
endings were hand segmented in dialogue-level speech files, as the turn-
level files created byTOOT were not available. Because of some sys-
tem/user overlap in the recordings, we were able to calculate prosodic fea-
tures for only 1975 user turns.



To ensure that our results were speaker independent, we calculated
mean values for each speaker’s corrections and non-corrections
for every feature. Then, for each feature, we created vectors of
speaker means for recognized and misrecognized turns and per-
formed paired t-tests on the paired vectors. For example, for the
feature “F0 max”, we calculated mean maxima for corrections
turns and for non-corrections for each of our thirty-nine speak-
ers. We then performed a paired t-test on these thirty-nine pairs
of means to derive speaker-independent results for differences in
F0 maxima between corrections and non-corrections.

Our results provide some explanation for why corrections are more
poorly recognized than non-corrections, since they indicate that
corrections are indeed characterized by prosodic features associ-
ated with hyperarticulation. Table 2 shows that corrections differ
from other turns in that they are longer, louder, higher in pitch ex-
cursion, follow longer pauses, and contain less internal silence than
non-corrections. All but the latter difference supports the hypothe-
sis that corrections tend to be hyperarticulated.

Table 2: Corrections vs. Non-Corrections by Prosodic Feature

Feature T-stat Mean Corr P
- !Corr

*F0 Max 3.79 17.76 Hz 0
F0 Mean 0.23 -4.12 Hz 0.823
*RMS Max 4.88 347.75 0
*RMS Mean 2.57 63.44 0.014
*Duration 6.68 1.16 sec 0
*Prior Pause 2.17 .186 sec 0.036
Tempo 1.78 -0.15 sps 0.246
*% Silence 4.75 -.05% 0

*significant at a 95% confidence level (p� :05)

To confirm this hypothesis, two of the authors labeled each turn in
the corpus for evidence of perceptual hyperarticulation, following
[13]. 52% of corrections in the corpus has some perceptual hyper-
articulation, compared with only 12% of other turns. Too, hyper-
articulated corrections are more likely to be misrecognized than
other corrections (70% misrecognitions vs. 52%). However, it is
important to note that the hyperarticulation explanation accounts
for only 59% of misrecognized corrections in the corpus. There
are still a large number of misrecognized corrections that show no
perceptual evidence of hyperarticulation.

In our earlier analysis of prosodic differences between correct and
incorrectly recognized turns [8], we also found that misrecognized
turns differed from correctly recognized turns in f0, loudness, du-
ration, and timing — all features associated with hyperarticulation.
And more misrecognitions are hyperarticulated than are correctly
recognized turns. But when we excluded perceptually hyperartic-
ulated turns from our prosodic analysis, we found that misrecog-
nized turns were still prosodically different from correctly recog-
nized turns, in the same ways. We hypothesized there that mis-
recognitions might exhibit tendencies toward hyperarticulation that
are imperceptible to human listeners, but not to ASR engines. The
same may also be true of non-hyperarticulated, but still prosodi-
cally distinct corrections. When we exclude hyperarticulated utter-

ances from our corpus and re-analyze prosodic features of correc-
tions vs. non-corrections, we find significant differences in dura-
tion, rms maximum, rms mean, tempo, and amount of turn-internal
silence as we did with the corpus as a whole. So, again, even when
corrections are not perceptibly hyperarticulated, they share some
acoustic tendencies with turns that are.

3.3. Correction Chains

As noted above, corrections in the TOOT corpus often take the
form of chains of corrections of a single original error. Looking
back at Figure 1, for example, we see two chains of corrections: In
the first, which begins with the misrecognition of turn 776 (“Um,
tomorrow”), the user repeats the original phrase and then provides
a paraphrase (“Saturday”), which is correctly recognized. In the
second, beginning with turn 780, the time of departure is misrec-
ognized. The user omits some information (“A.M.”) in turn 781,
but without success; an ADD correction follows, with the previ-
ously omitted information restored, in turn 783.

Distance of a correction from the original misrecognized turn
— whether calculated as position in chain (e.g. “Saturday” in
Figure 1 is the second in the chain correcting turn 776) or fur-
ther in number of turns from that original error (e.g. “Sat-
urday” here is also 2 turns from the original error), correlates
significantly with prosodic variation. An analysis of the rela-
tionship between both distance measures and our prosodic fea-
tures (using Pearson’s product moment correlation) shows sig-
nificant correlations of distance in chain or from original er-
ror with f0 maximum (r=.20,p<.001; r=.21,p<.001) and mean
(r=.27,p<.001; r=.29, p<.001), rms maximum (r=-.09, p<.02;
r=-.12,p<.005) and mean (r=-.12,p<.0025; r=-.16,p<.001), ab-
solute duration (r=.14,p<0; r=.16,p<.001) and duration in num-
ber of words (r=.11,p<.01; r=.12,p<.005), length of preced-
ing pause (r=.11,p<.005; r=.10,p<.01), and speaking rate (r=-
.05,p<.01; r=-.10,p<.02). The more distant a correction is, in
short, the higher it is in pitch, the softer it is, the longer it is,
the greater is its preceding pause, and the more slowly it is spo-
ken. In addition, more distant corrections are also more likely to
be misrecognized; for distance in turns there is a (negative) sig-
nificant correlation for concept accuracy (r=-.13,p<.001), while
both word and concept accuracy decline significantly by position
in chain (r=-.08,p<.05; r=-.15,p<.001). And final corrections in
a chain are significantly (t=4.41,df=38,p<.001) more likely to be
misrecognized than first corrections (47% vs. 41%). So, the more
times speakers try to correct an error, the less likely they are to
succeed, perhaps because their prosodic behavior changes in ways
that do not help the speech recognizer. Curiously, however, our
perceptual measure of hyperarticulation is not significantly corre-
lated with either of this distance measures. So, although speakers
modify their speech in ways generally consistent with hyperartic-
ulation, their corrections do not necessarily become more hyper-
articulated as their attempts to correct continue. Another curious
finding is that corrections that are more distant from the turn they
immediately correct (e.g. in Figure 1 turn 783 is more distant from
the turn it corrects (781) than turn 781 is from the turnit corrects,
which is 780) tend to bemore accurately recognized than turns
which are closer. Yet prosodically these turns are very like distant
turns in a chain or from the original error, being higher in f0 max-



imum and mean, lower in rms maximum and mean, and longer in
seconds and number of words. So in the one case these prosodic
changes might be thought to lead to recognition error, where in the
other they occur with better recognized corrections.

3.4. Variation by Dialogue Strategy

Dialogue strategy clearly affects the type of correction users make
and whether it is successful or not. For example, users more fre-
quently repeat their misrecognized utterance in the SystemExplicit
(75% of corrections are repetitions) condition, than in the Mixed-
Implicit or UserNoConfirm (both 37% REP); the latter conditions
have larger proportions of OMITs and paraphrases. Perhaps this
disparity is partly explained by the larger proportion of correc-
tions that follow rejections in the SystemExplicit condition (39%
vs. 22% and 19%). Over all, SystemExplicit turns are rejected
6% of the time, while the other conditions have about 10% rejec-
tions. Table 3 shows differences in mean length of tasks, number of
corrections, number of misrecognitions, and number of misrecog-
nized corrections by dialogue strategy. The fewer misrecognitions,

Table 3: Corrections by System Strategy

Means System Mixed User
per Task Explicit Implicit NoConfirm

# Turns 13.4 11.7 16.2
# Corrs 1.3 4.6 7.1
# Misrecs 2.8 6.4 9.4
# Misrec’d Corrs 0.3 3.2 4.8

corrections and misrecognized corrections per task in the Syste-
mExplicit condition may well explain user ratings of the various
systems (non-adapt) in the original experiments[9]: When asked
to say whether they would be likely to use such a system in future,
on a 1-5 scale, subjects scored SE 3.5, MI 2.6, and UNC 1.7. User
satisfaction scores were similar: where 40 is the highest scores,
users gave SE 31.25, MI 24, and UNC 22.1. So, SystemExplicit
is preferred by users, even though MixedImplicit on average takes
fewer turns to accomplish a task, suggesting that the large number
of misrecognitions and consequent need for correction has a large
impact on user preferences. This is consistent with performance
functions derived from evaluations of TOOT [9].

Perhaps because correction chains often end unsuccessfully, users
frequently “restart” a task within a session. Most restarts oc-
curred in the MixedImplicit and UserNoConfirm conditions and
were rarely successful. In non-adaptive tasks, 42% of corrections
in the MixedImplicit condition were restarts and 31% in the User-
NoConfirm, while none occurred in the SystemExplicit condition.
Restarts were misrecognized 77% of the time, compared to 65%
of first turns in task. They thus seem to have been a worse strategy
than initiating a new task and might prove a useful diagnostic for
changing system strategy — or summoning a human operator.

4. DISCUSSION

In this paper we have presented results of an analysis of corrections
in the TOOT spoken dialogue corpus. Corrections in our corpus are
a serious problem for ASR, being recognized much more poorly

than non-corrections but not being rejected any more frequently.
Some corrections types are more difficult to handle for systems
than others, with repetitions and corrections omitting information
from the original turn much better recognized than corrections that
add or paraphrase information. Confirming previous studies of rep-
etition corrections, we found that corrections in general differ from
non-corrections prosodically: they are higher in f0, softer, longer,
follow longer pauses, and contain less internal silence than non-
corrections. Also, corrections more distant from the error they are
correcting are louder, higher in pitch, longer, slower, and follow
longer pauses than closer corrections. Both findings suggest a cor-
relation between corrections and hyperarticulation; however, most
prosodic differences persist even when perceptually hyperarticu-
lated turns are removed from the sample, and perceptual hyperar-
ticulation is not significantly correlated with distance from original
error. We hypothesize that recognizers may be more sensitive to
hyperarticulatory tendencies than humans.
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