Techniques for Emotion Classification

Julia Hirschberg COMS 4995/6998 Thanks to Kaushal Lahankar

Papers for Today

- Cowie: "Describing the emotional states expressed in speech", 2000
- Satoh et al: "Emotion clustering using the results of subjective opinion tests for emotion recognition in Infants' cries", 2007
- Nisimura et al: "Analyzing dialogue data for realworld emotional speech classification", 2006

Cowie '00: Describing the emotional states expressed in speech

- Emotions are not easily captured in words
- A suitable descriptive system for emotions does not exist as of yet.
- Objective To encourage the speech community towards standardization of key terms and descriptive techniques.

What to Study?

- Fullblown emotions
 - Natural discrete units which can be counted and possess distinct boundaries
- Emotional states
 - An attribute of certain states. E.g. "Her voice was tinged with emotion".
- Emotional systems
- *How does each distinction influence research?*

Cause and effect type descriptors

- Cause type
 - What are the emotion-related internal states and external factors causing speech to have particular characteristics?
 - Focus attention on physiological systems which can be used to describe emotions
- Effect type
 - Describes effect characteristics above would be likely to have on typical listener
 - Favor describing emotional states in terms of categories and dimensions that people find natural

Basic Emotion Categories

• Basic (primary) emotions

- `Pure' emotional states
- E.g. Ekman's Big 6: Fear, anger, happiness, sadness, surprise, disgust
- Second order (derived) emotions
 - Emotional states that are not so basic
 - E.g. chagrin, irritation

Wheel of emotions Plutchik's Wheel of Emotions **More information** serenity pptimism ove by Vance interest accept joy anticipation trust agdressiven/ss Submission ecstasy vigilance admiration fear annovance terror apprehension rage anger loathing amazemen contempt a_{We} grief disgust surprise ٨ distraction redom sadness disapproval Iremorse, 00 veness pensi [two-dimensional circumplex model] [three-dimensional circumplex model]

Other Representations

- Need to come up with a complementary representation that offers ways of drawing fewer, grosser distinctions to make things such as acquiring speech co-relates manageable
- *Feeltrace* might be such a system?

Emotion Related States

- Emotion-proper property :
 - Property 'belonging to' a type of emotion
 - Being frightening: emotion-proper property for fear
- Emotion terms surrounded by terms that resemble them but are different
 - Called *emotion related terms*
 - States associated with them called *emotion related states*

The states discussed

- Attitude
 - Categorization along an evaluative dimension
 - Appraisal
- Arousal
 - Degree of involvement

Biological Representations

- Assumption:
 - Descriptions of emotions are surrogates for descriptions of physiological states.
 - Can we replace verbal descriptions with physiological parameters?
- Which theory does this reflect?
- Pros and cons?

Continuous Representations

- Represent emotions in 2-D space in terms of Evaluation (X axis) and Activation (Y axis).
- Dimensions can be increased to represent the relationships which lie very close in the 2-D space.
- Pros and cons?

Feeltrace system

Structural Models

- Cognitive approach to describing emotions
- Based on hypothesis that distinct types of emotion correspond to distinct ways of appraising the situation evoking the emotion

Timing

• Short-lived or long-lived state

- Sadness vs. grieving

How are Underlying Emotional Tendencies Expressed?

- Restraint
 - Display rules
- Ambivalence
- Humour
- Simulation

Tools for Describing Emotions

- Naturalistic Database Belfast Naturalistic
 Database annotated using Feeltrace
- Feeltrace
- Basic Emotion Vocabulary
- Consider also
 - Whissell's Dictionary of Affect in Language
 (DAL): <u>demo</u>, <u>revised version</u>
 - Pennebaker's Linguistic Inquiry and Word Count (<u>LIWC</u>): <u>demo</u>, <u>twitter analysis</u>

Questions

Emotion clustering Using the results of subjective opinion tests for emotion recognition in infant's cries

- Objective To design an emotion clustering algorithm for emotion detection in infants' cries
- Previous work
 - Acoustic analysis of an infant's cries has been performed.
 - Classification between "hunger" and "sleepiness" has been studied.
 - Some emotion detection products currently available in the market employ simple acoustic techniques.

Methodology

• Mothers asked to fill in an emotion table after recording each cry and to rate the intensity of each

Emotion	Anger	Sadness	Hunger	Surprise	
Rank	0	4	2	0	

- Included pampered, anger, sdaness, fear, surprise, hunger, sleepiness, excretion, discomfort, painfulness
- Mothers could also see facial expression
- Baby-rearing experts did the same but only from recordings agreement with mothers not high

Emotion Clustering

- Here, an emotion i was selected from a cluster $X=\{e1,...,eI\} \text{ and } j, j\neq i \text{ was selected from cluster}$ $Y=\{e1,...,e(i-1),e\Phi,e(i+1),...eI\}.$ $\hat{m},\hat{n} = \underset{m,n (m\neq n)}{\operatorname{arg\,max}} \{\sum_{\substack{m,n (m\neq n) \\ i(i\neq m,n)}} P(r)P(i|r)\log P(i|r) + P(r)P(\phi|r)\log P(\phi|r)}$ $+ \sum_{\substack{p(i)P(r|i)\log P(r|i)}} \sum_{\substack{m,n (p|i) \\ i(i\neq m,n)}} P(i|i)\log P(j|i)\} (2)$
- Form of hierarchical clustering where the conditional entropy is the objective function to be minimized.

 $i(i \neq m, n) j(j \neq m, n)$

i(i≠m.n)

Clustering trees

Rank	c	Three and more (R3)				Two and more (R2)				
Metho	ethod Method I			Method II		Method I		Method II		
Mothers and experts (Set-M&D) SL PA AN SA HU		1 2 3 SL PA AN SA HU		2 1 3 SL PA AN SA HU		1 2 3 SL PA AN SA HU				
Mother (Set-M	ers (1)	1 3 2 1 3 SL PA AN SA HU SL PA AN SA] ² HU	2 1 3 SL PA AN SA H	SL PA AN SA HU			
Exper (Set-D	rts D)	1 2 SL PA AN SA	3 HU	1 2 SL PA AN SA	3 HU	3 1 2 SL PA AN SA H	U	1 2 3 SL PA AN SA HU		
(2-a) Clustering trees using the results performed by infants' mothers, baby-rearing experts, and both of them										
Rank		Three and more (R3)			Two and more (R2)					
Method		Method I		Method II		Method I		Method II		
Infant A	2 1 3 SL PA AN SA HU		2 1 3 SL PA AN SA		1 2 3 SL PA AN SA HU		SI	1 2 3 SL PA AN SA HU		
Infant B	t SL PA AN SA		L PA AN SA		SL	SL PA AN SA		SL PA AN SA		
Infant C	SL [PA AN SA	SL I	PA AN SA	4 SL	PA AN SA HU DC	SI	1 4 2 3 PA AN SA HU DC		

(2-b) Clustering trees for three infant sets using the results performed by infants' mothers and baby-rearing experts Figure 2. *Obtained clustering trees using the results of subjective opinion tests* (SL: sleepiness, PA: pampered, AN: anger, SA: sadness, HU: hunger, DC: discomfort)

Emotion Recognition

- Find the emotion given the segment sequence of a cry
- Determine the probability of the acoustic evidence q occurring when the infant utters the sequence z with the emotion e (argmax(P(q|e,z)_
 - Acoustic models for each segment for each emotion cluster
 - Train HMMs and use to recognize cries
 - Results with 2 clusters: 75% accuracy

Nisimura et al '06: Analyzing Dialogue Data for Real-World Emotional Speech Classification

- Goal: Classify child utterances wrt 'delightful' or 'hateable' emotions
- How did they obtain and annotate the data?
- What was the method of analysis?
 - Factor analysis
 - <u>Support vector machine</u>
 - <u>Regression analysis</u>
 - Jackknife method
- What can we conclude from this experiment?

Discussion

- Are 10 emotions actually needed?
- Instead of relying on the input from baby-rearing experts, could the inputs from the mothers have been used?
- Is the input data reliable?
- Improvements?