In these dialects rice is pronounced [r aa s]. **African-American Vernacular English** (AAVE) shares many vowels with Southern American English and also has individual words with specific pronunciations, such as [b ih d n ih s] for business and [ae k s] for ask. For older speakers or those not from the American West or Midwest, the words caught and cot have different vowels ([k ao t] and [k aa t], respectively). Young American speakers or those from the West pronounce the two words cot and caught the same; the vowels [ao] and [aa] are usually not distinguished in these dialects except before [r]. For speakers of some American and most non-American dialects of English (e.g., Australian English), the words Mary ([m ey r iy]), marry ([m ae r iy]), and marry ([m ch r iy]) are all pronounced differently. Many American speakers pronounce all three of these words identically as ([m ch r iy]).

Other sociolinguistic differences are due to **register or style**; a speaker might pronounce the same word differently depending on the social situation or the identity of the interlocutor. One of the most well-studied examples of style variation is the suffix -ing (as in something), which can be pronounced [ih ng] or [ih n] (this is often written somethin'). Most speakers use both forms; as Labov (1966) shows, they use [ih ng] when they are being more formal, and [ih n] when more casual. Wald and Shopen (1981) found that men are more likely to use the non-standard form [ih n] than women, that both men and women are more likely to use more of the standard form [ih ng] when the addressee is a women, and that men (but not women) tend to switch to [ih n] when they are talking with friends.

Many of these results on predicting variation rely on logistic regression on phonetically transcribed corpora, a technique with a long history in the analysis of phonetic variation (Cedergren and Sankoff, 1974), particularly with the VARBRUL and GOLDVARB software (Rand and Sankoff, 1990).

Finally, the detailed acoustic realization of a particular phone is very strongly influenced by coarticulation with its neighboring phones. We return to these fine-grained phonetic details in the following chapters (Section 8.4 and Section 10.3) after we introduce acoustic phonetics.

7.4 Acoustic Phonetics and Signals

We begin with a brief introduction to the acoustic waveform and how it is digitized and summarize the idea of frequency analysis and spectra. This is an extremely brief overview; the interested reader is encouraged to consult the references at the end of the chapter.

7.4.1 Waves

Acoustic analysis is based on the sine and cosine functions. Figure 7.12 shows a plot of a sine wave, in particular the function

\[y = A \sin(2\pi ft) \]

(7.2)

where we have set the amplitude A to 1 and the frequency f to 10 cycles per second.
Recall from basic mathematics that two important characteristics of a wave are its **frequency** and **amplitude**. The frequency is the number of times a second that a wave repeats itself, that is, the number of **cycles**. We usually measure frequency in **cycles per second**. The signal in Fig. 7.12 repeats itself 5 times in .5 seconds, hence 10 cycles per second. Cycles per second are usually called **hertz** (shortened to Hz), so the frequency in Fig. 7.12 would be described as 10 Hz. The **amplitude** A of a sine wave is the maximum value on the Y axis.

The **period** T of the wave is defined as the time it takes for one cycle to complete, defined as

$$T = \frac{1}{f} \quad (7.3)$$

In Fig. 7.12 we can see that each cycle lasts a tenth of a second; hence $T = .1$ seconds.

7.4.2 Speech Sound Waves

Let’s turn from hypothetical waves to sound waves. The input to a speech recognizer, like the input to the human ear, is a complex series of changes in air pressure. These changes in air pressure obviously originate with the speaker and are caused by the specific way that air passes through the glottis and out the oral or nasal cavities. We represent sound waves by plotting the change in air pressure over time. One metaphor which sometimes helps in understanding these graphs is that of a vertical plate blocking the air pressure waves (perhaps in a microphone in front of a speaker’s mouth, or the eardrum in a hearer’s ear). The graph measures the amount of **compression** or **rarefaction** (uncompression) of the air molecules at this plate. Figure 7.13 shows a short segment of a waveform taken from the Switchboard corpus of telephone speech of the vowel [iy] from someone saying “she just had a baby”.

Let’s explore how the digital representation of the sound wave shown in Fig. 7.13 would be constructed. The first step in processing speech is to convert the analog representations (first air pressure and then analog electric signals in a microphone) into a digital signal. This process of analog-to-digital conversion has two steps: **sampling** and **quantization**. To sample a signal, we measure its amplitude at a particular time; the **sampling rate** is the number of samples taken per second. To accurately measure a wave, we must have at least two samples in each cycle: one measuring the
positive part of the wave and one measuring the negative part. More than two samples per cycle increases the amplitude accuracy, but fewer than two samples causes the frequency of the wave to be completely missed. Thus, the maximum frequency wave that can be measured is one whose frequency is half the sample rate (since every cycle needs two samples). This maximum frequency for a given sampling rate is called the Nyquist frequency. Most information in human speech is in frequencies below 10,000 Hz; thus, a 20,000 Hz sampling rate would be necessary for complete accuracy. But telephone speech is filtered by the switching network, and only frequencies less than 4,000 Hz are transmitted by telephones. Thus, an 8,000 Hz sampling rate is sufficient for telephone-bandwidth speech like the Switchboard corpus. A 16,000 Hz sampling rate (sometimes called wideband) is often used for microphone speech.

Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each second of speech, so it is important to store amplitude measurements efficiently. They are usually stored as integers, either 8 bit (values from -128–127) or 16 bit (values from -32768–32767). This process of representing real-valued numbers as integers is called quantization because the difference between two integers acts as a minimum granularity (a quantum size) and all values that are closer together than this quantum size are represented identically.

Once data is quantized, it is stored in various formats. One parameter of these formats is the sample rate and sample size discussed above; telephone speech is often sampled at 8 kHz and stored as 8-bit samples, and microphone data is often sampled at 16 kHz and stored as 16-bit samples. Another parameter of these formats is the number of channels. For stereo data or for two-party conversations, we can store both channels in the same file or we can store them in separate files. A final parameter is individual sample storage—linearly or compressed. One common compression format used for telephone speech is μ-law (often written u-law but still pronounced mu-law). The intuition of log compression algorithms like μ-law is that human hearing is more sensitive at small intensities than large ones; the log represents small values with more faithfulness at the expense of more error on large values. The linear (unlogged) values are generally referred to as linear PCM values (PCM stands for pulse code modulation, but never mind that). Here’s the equation for compressing a linear PCM sample value \(x \) to 8-bit \(\mu \)-law, (where \(\mu = 255 \) for 8 bits):

\[
F(x) = \frac{\text{sgn}(x) \log(1 + \mu|x|)}{\log(1 + \mu)}
\]

(7.4)
There are a number of standard file formats for storing the resulting digitized wavefile, such as Microsoft’s .wav, Apple’s AIFF and Sun’s AU, all of which have special headers; simple headerless “raw” files are also used. For example, the .wav format is a subset of Microsoft’s RIFF format for multimedia files; RIFF is a general format that can represent a series of nested chunks of data and control information. Figure 7.14 shows a simple .wav file with a single data chunk together with its format chunk.

Figure 7.14: Microsoft wavfile header format, assuming simple file with one chunk. Following this 44-byte header would be the data chunk.

7.4.3 Frequency and Amplitude; Pitch and Loudness

Sound waves, like all waves, can be described in terms of frequency, amplitude, and the other characteristics that we introduced earlier for pure sine waves. In sound waves, these are not quite as simple to measure as they were for sine waves. Let’s consider frequency. Note in Fig. 7.13 that although not exactly a sine, the wave is nonetheless periodic, repeating 10 times in the 38.75 milliseconds (.03875 seconds) captured in the figure. Thus, the frequency of this segment of the wave is 10/0.03875 or 258 Hz.

Where does this periodic 258 Hz wave come from? It comes from the speed of vibration of the vocal folds; since the waveform in Fig. 7.13 is from the vowel [iy], it is voiced. Recall that voicing is caused by regular openings and closings of the vocal folds. When the vocal folds are open, air is pushing up through the lungs, creating a region of high pressure. When the folds are closed, there is no pressure from the lungs. Thus, when the vocal folds are vibrating, we expect to see regular peaks in amplitude of the kind we see in Fig. 7.13, each major peak corresponding to an opening of the vocal folds. The frequency of the vocal fold vibration, or the frequency of the complex wave, is called the fundamental frequency of the waveform, often abbreviated F0.

We can plot F0 over time in a pitch track. Figure 7.15 shows the pitch track of a short question, “Three o’clock?” represented below the waveform. Note the rise in F0 at the end of the question.

The vertical axis in Fig. 7.13 measures the amount of air pressure variation; pressure is force per unit area, measured in Pascals (Pa). A high value on the vertical axis (a high amplitude) indicates that there is more air pressure at that point in time, a zero value means there is normal (atmospheric) air pressure, and a negative value means there is lower than normal air pressure (rarefaction).

In addition to this value of the amplitude at any point in time, we also often need to know the average amplitude over some time range, to give us some idea of how great the average displacement of air pressure is. But we can’t just take the average of the amplitude values over a range; the positive and negative values would (mostly) cancel out, leaving us with a number close to zero. Instead, we generally use the RMS
The power of the signal is related to the square of the amplitude. If the number of samples of a sound is N, the power is

$$\text{Power} = \frac{1}{N} \sum_{i=1}^{N} x_i^2$$

(7.6)

Intensity

Rather than power, we more often refer to the intensity of the sound, which normalizes the power to the human auditory threshold and is measured in dB. If P_0 is the auditory threshold pressure $= 2 \times 10^{-5}$ Pa, then intensity is defined as follows:

$$\text{Intensity} = 10 \log_{10} \frac{1}{P_0} \sum_{i=1}^{N} x_i^2$$

(7.7)

Figure 7.16 shows an intensity plot for the sentence “Is it a long movie?” from the CallHome corpus, again shown below the waveform plot.

Two important perceptual properties, pitch and loudness, are related to frequency and intensity. The pitch of a sound is the mental sensation, or perceptual correlate, of fundamental frequency; in general, if a sound has a higher fundamental frequency we perceive it as having a higher pitch. We say “in general” because the relationship is not linear, since human hearing has different acuities for different frequencies. Roughly speaking, human pitch perception is most accurate between 100 Hz and 1000 Hz and
in this range pitch correlates linearly with frequency. Human hearing represents frequencies above 1000 Hz less accurately, and above this range, pitch correlates logarithmically with frequency. Logarithmic representation means that the differences between high frequencies are compressed and hence not as accurately perceived. There are various psychoacoustic models of pitch perception scales. One common model is the mel scale (Stevens et al., 1937; Stevens and Volkman, 1940). A mel is a unit of pitch defined such that pairs of sounds which are perceptually equidistant in pitch are separated by an equal number of mels. The mel frequency m can be computed from the raw acoustic frequency as follows:

$$m = 1127 \ln(1 + \frac{f}{700})$$ \hspace{1cm} (7.8)

We return to the mel scale in Chapter 9 when we introduce the MFCC representation of speech used in speech recognition.

The loudness of a sound is the perceptual correlate of the power. So sounds with higher amplitudes are perceived as louder, but again the relationship is not linear. First of all, as we mentioned above when we defined μ-law compression, humans have greater resolution in the low-power range; the ear is more sensitive to small power differences. Second, it turns out that there is a complex relationship between power, frequency, and perceived loudness; sounds in certain frequency ranges are perceived as being louder than those in other frequency ranges.

Various algorithms exist for automatically extracting F0. In a slight abuse of terminology, these are called pitch extraction algorithms. The autocorrelation method of pitch extraction, for example, correlates the signal with itself at various offsets. The offset that gives the highest correlation gives the period of the signal. Other methods for pitch extraction are based on the cepstral features we introduce in Chapter 9. There are various publicly available pitch extraction toolkits; for example, an augmented autocorrelation pitch tracker is provided with Praat (Boersma and Weenink, 2005).
7.4.4 Interpretation of Phones from a Waveform

Much can be learned from a visual inspection of a waveform. For example, vowels are pretty easy to spot. Recall that vowels are voiced; another property of vowels is that they tend to be long and are relatively loud (as we can see in the intensity plot in Fig. 7.16). Length in time manifests itself directly on the x-axis, and loudness is related to (the square of) amplitude on the y-axis. We saw in the previous section that voicing is realized by regular peaks in amplitude of the kind we saw in Fig. 7.13, each major peak corresponding to an opening of the vocal folds. Figure 7.17 shows the waveform of the short sentence “she just had a baby”. We have labeled this waveform with word and phone labels. Notice that each of the six vowels in Fig. 7.17, [iy], [ax], [ae], [ax], [ey], [iy], all have regular amplitude peaks indicating voicing.

Figure 7.17 A waveform of the sentence “She just had a baby” from the Switchboard corpus (conversation 4325). The speaker is female, was 20 years old in 1991, which is approximately when the recording was made, and speaks the South Midlands dialect of American English.

For a stop consonant, which consists of a closure followed by a release, we can often see a period of silence or near silence followed by a slight burst of amplitude. We can see this for both of the [b]’s in baby in Fig. 7.17.

Another phone that is often quite recognizable in a waveform is a fricative. Recall that fricatives, especially very strident fricatives like [sh], are made when a narrow channel for airflow causes noisy, turbulent air. The resulting hissy sounds have a noisy, irregular waveform. This can be seen somewhat in Fig. 7.17; it’s even clearer in Fig. 7.18, where we’ve magnified just the first word she.

7.4.5 Spectra and the Frequency Domain

While some broad phonetic features (such as energy, pitch, and the presence of voicing, stop closures, or fricatives) can be interpreted directly from the waveform, most computational applications such as speech recognition (as well as human auditory processing) are based on a different representation of the sound in terms of its component frequencies. The insight of Fourier analysis is that every complex wave can be represented as a sum of many sine waves of different frequencies. Consider the waveform in Fig. 7.19. This waveform was created (in Praat) by summing two sine waveforms, one of frequency 10 Hz and one of frequency 100 Hz.

We can represent these two component frequencies with a spectrum. The spectrum
Section 7.4. Acoustic Phonetics and Signals

Notice the spectrum of a signal is a representation of each of its frequency components and their amplitudes. Figure 7.20 shows the spectrum of Fig. 7.19. Frequency in Hz is on the x-axis and amplitude on the y-axis. Note the two spikes in the figure, one at 10 Hz and one at 100 Hz. Thus, the spectrum is an alternative representation of the original waveform, and we use the spectrum as a tool to study the component frequencies of a sound wave at a particular time point.

Let’s look now at the frequency components of a speech waveform. Figure 7.21 shows part of the waveform for the vowel [æ] of the word had, cut out from the sentence shown in Fig. 7.17.
The waveform of part of the vowel [ae] from the word *had* cut out from the waveform shown in Fig. 7.17.

Note that there is a complex wave that repeats about ten times in the figure; but there is also a smaller repeated wave that repeats four times for every larger pattern (notice the four small peaks inside each repeated wave). The complex wave has a frequency of about 234 Hz (we can figure this out since it repeats roughly 10 times in .0427 seconds, and 10 cycles/.0427 seconds = 234 Hz).

The smaller wave then should have a frequency of roughly four times the frequency of the larger wave, or roughly 936 Hz. Then, if you look carefully, you can see two little waves on the peak of many of the 936 Hz waves. The frequency of this tiniest wave must be roughly twice that of the 936 Hz wave, hence 1872 Hz.

Figure 7.22 shows a smoothed spectrum for the waveform in Fig. 7.21, computed with a discrete Fourier transform (DFT).

The x-axis of a spectrum shows frequency, and the y-axis shows some measure of the magnitude of each frequency component (in decibels (dB), a logarithmic measure of amplitude that we saw earlier). Thus, Fig. 7.22 shows significant frequency components at around 930 Hz, 1860 Hz, and 3020 Hz, along with many other lower-magnitude frequency components. These first two components are just what we noticed in the time domain by looking at the wave in Fig. 7.21!

Why is a spectrum useful? It turns out that these spectral peaks that are easily visible in a spectrum are characteristic of different phones; phones have characteristic spectral “signatures”. Just as chemical elements give off different wavelengths of light when they burn, allowing us to detect elements in stars by looking at the spectrum of the light, we can detect the characteristic signature of the different phones by looking at the
spectrum of a waveform. This use of spectral information is essential to both human and machine speech recognition. In human audition, the function of the cochlea, or inner ear, is to compute a spectrum of the incoming waveform. Similarly, the various kinds of acoustic features used in speech recognition as the HMM observation are all different representations of spectral information.

Let's look at the spectrum of different vowels. Since some vowels change over time, we'll use a different kind of plot called a spectrogram. While a spectrum shows the frequency components of a wave at one point in time, a spectrogram is a way of envisioning how the different frequencies that make up a waveform change over time. The x-axis shows time, as it did for the waveform, but the y-axis now shows frequencies in hertz. The darkness of a point on a spectrogram corresponds to the amplitude of the frequency component. Very dark points have high amplitude, light points have low amplitude. Thus, the spectrogram is a useful way of visualizing the three dimensions (time x frequency x amplitude).

Figure 7.23 shows spectrograms of three American English vowels, [ih], [ae], and [ah]. Note that each vowel has a set of dark bars at various frequency bands, slightly different bands for each vowel. Each of these represents the same kind of spectral peak that we saw in Fig. 7.21.

Each dark bar (or spectral peak) is called a formant. As we discuss below, a formant is a frequency band that is particularly amplified by the vocal tract. Since different vowels are produced with the vocal tract in different positions, they will produce different kinds of amplifications or resonances. Let's look at the first two formants, called F1 and F2. Note that F1, the dark bar closest to the bottom, is in a different position for the three vowels; it's low for [ih] (centered at about 470 Hz) and somewhat higher for [ae] and [ah] (somewhere around 800 Hz). By contrast, F2, the second dark bar from the bottom, is highest for [ih], in the middle for [ae], and lowest for [ah].

We can see the same formants in running speech, although the reduction and coarticulation processes make them somewhat harder to see. Figure 7.24 shows the spectrogram of "she just had a baby", whose waveform was shown in Fig. 7.17. F1 and F2 (and also F3) are pretty clear for the [ax] of just, the [ae] of had, and the [ey] of baby.

What specific clues can spectral representations give for phone identification? First, since different vowels have their formants at characteristic places, the spectrum can distinguish vowels from each other. We've seen that [ae] in the sample waveform had formants at 930 Hz, 1860 Hz, and 3020 Hz. Consider the vowel [iy] at the beginning
1.059 Time (s)

A spectrogram of the sentence “she just had a baby” whose waveform was shown in Fig. 7.17. We can think of a spectrogram as a collection of spectra (time slices), like Fig. 7.22 placed end to end. The spectrum for this vowel is shown in Fig. 7.25. The first formant of [iy] is 540 Hz, much lower than the first formant for [ae], and the second formant (2581 Hz) is much higher than the second formant for [ae]. If you look carefully, you can see these formants as dark bars in Fig. 7.24 just around 0.5 seconds.

Figure 7.24 A spectrogram of the sentence “she just had a baby” whose waveform was shown in Fig. 7.17. The location of the first two formants (called F1 and F2) plays a large role in determining vowel identity, although the formants still differ from speaker to speaker. Higher formants tend to be caused more by general characteristics of a speaker’s vocal tract rather than by individual vowels. Formants also can be used to identify the nasal phones [n], [m], and [ng] and the liquids [l] and [r].

7.4.6 The Source-Filter Model

Why do different vowels have different spectral signatures? As we briefly mentioned above, the formants are caused by the resonant cavities of the mouth. The source-filter
model is a way of explaining the acoustics of a sound by modeling how the pulses produced by the glottis (the source) are shaped by the vocal tract (the filter).

Let's see how this works. Whenever we have a wave such as the vibration in air caused by the glottal pulse, the wave also has harmonics. A harmonic is another wave whose frequency is a multiple of the fundamental wave. Thus, for example, a 115 Hz glottal fold vibration leads to harmonics (other waves) of 230 Hz, 345 Hz, 460 Hz, and so on. In general, each of these waves will be weaker, that is, will have much less amplitude than the wave at the fundamental frequency.

It turns out, however, that the vocal tract acts as a kind of filter or amplifier; indeed any cavity, such as a tube, causes waves of certain frequencies to be amplified and others to be damped. This amplification process is caused by the shape of the cavity; a given shape will cause sounds of a certain frequency to resonate and hence be amplified. Thus, by changing the shape of the cavity, we can cause different frequencies to be amplified.

When we produce particular vowels, we are essentially changing the shape of the vocal tract cavity by placing the tongue and the other articulators in particular positions. The result is that different vowels cause different harmonics to be amplified. So a wave of the same fundamental frequency passed through different vocal tract positions will result in different harmonics being amplified.

We can see the result of this amplification by looking at the relationship between the shape of the vocal tract and the corresponding spectrum. Figure 7.26 shows the vocal tract position for three vowels and a typical resulting spectrum. The formants are places in the spectrum where the vocal tract happens to amplify particular harmonic frequencies.

7.5 Phonetic Resources

A wide variety of phonetic resources can be drawn on for computational work. One key set of resources are pronunciation dictionaries. Such on-line phonetic dictionaries give phonetic transcriptions for each word. Three commonly used on-line dictionaries for English are the CELEX, CMUdict, and PRONLEX lexicons; for other languages, the LDC has released pronunciation dictionaries for Egyptian Arabic, German, Japanese, Korean, Mandarin, and Spanish. All these dictionaries can be used for both speech recognition and synthesis work.

The CELEX dictionary (Baayen et al., 1995) is the most richly annotated of the dictionaries. It includes all the words in the 1974 Oxford Advanced Learner’s Dictionary (41,000 lemmata) and the 1978 Longman Dictionary of Contemporary English (53,000 lemmata); in total it has pronunciations for 160,595 wordforms. Its (British rather than American) pronunciations are transcribed with an ASCII version of the IPA called SAM. In addition to basic phonetic information like phone strings, syllabification, and stress level for each syllable, each word is also annotated with morphological, part-of-speech, syntactic, and frequency information. CELEX (as well as CMU and PRONLEX) represent three levels of stress: primary stress, secondary stress, and no stress. For example, some of the CELEX information for the word *dictionary* includes