

Haozhe Chen, Run Chen, Julia Hirschberg Columbia University

Text-to-Speech (TTS) has gotten very good. But they usually don't allow control of emotion/style

Traditional TTS pipeline synthesizes speech whose emotion is entirely decided by input text

Introducing **Se EmoKnob** Fine-grained control of emotion specified by few-shot samples

Consider Shakespeare's famous line To be, or not to be, that is the question.

Most TTS services can only convey it in one way with a given voice

(ElevenLabs)

Consider Shakespeare's famous line To be, or not to be, that is the question.

But it can be happy, sad, surprise, contempt ... Each conveys a different message

Generated with EmoKnob

EmoKnob allows users to specify and control a wide range of emotions

Young Taylor Swift

Old Taylor Swift

Joe Biden

Joe Biden With Trump speaking style

Voice clone models replicate speaker but speech emotion is still decided by input text

EmoKnob is built on recent developments of voice cloning models

metavoiceio/metavoice-1B-v0.1 □ ○ like 757
Text-to-Speech
Model card JE Files and versions 🍊 Community 13
MetaVoice-1B is a 1.2B parameter base model trained on 100K hours of speech for TTS (text-to-
speech). It has been built with the following priorities:
 Emotional speech rhythm and tone in English. No hallucinations.

- Support for voice cloning with finetuning.
 - We have had success with as little as 1 minute training data for Indian speakers.
- Zero-shot cloning for American & British voices, with 30s reference audio.
- Support for long-form synthesis.

We're releasing MetaVoice-1B under the Apache 2.0 license, it can be used without restrictions.

We base our work on MetaVoice (2024)

Voice clone models first encode speaker into an embedding and then decode speech with the speaker embedding

EmoKnob is built on recent developments of voice cloning models

EmoKnob repurposes voice cloning models for emotion control

EmoKnob takes embedding difference between emotional sample and neutral sample in speaker embedding space to extract emotion representation

EmoKnob allows emotion strength control

Complex emotions often lack large datasets. We can control these emotions with as few as two pairs of samples.

EmoKnob allows few-shot emotion extraction

Controlling emotion with synthetic data While existing TTS models do not allow emotion control, we can extract

ng TTS models do not allow emotion control, we can extract emotion from them with emotion-matching text

Controlling emotion with synthetic data

Allow us to control a wide range of emotions that lack existing data

Controlling emotion with synthetic data

Allow us to control a wide range of emotions that lack existing data

Future work

How can we control emotions without neutral sample?

EmoKnob Enhance Voice Cloning with Fine-Grained Emotion Control

See more details at <u>emoknob.cs.columbia.edu</u>

