What makes a conversational agent sound trustworthy? Exploring the role of acoustic-prosodic factors.

> Sarah Ita Levitan Guest Lecture: Advanced Topics in SLP Columbia University February 20, 2024

Hello!

• Current (2020 – present)

Assistant Prof. of Computer Science, Hunter College Doctoral faculty of CS and Linguistics, CUNY Graduate Center

• Previous (2013-2019)

PhD & Postdoc at Columbia University Columbia Speech Lab: PI Julia Hirschberg

Outline

- Motivation
- Related work
- Data collection
 - Speech stimuli
 - Crowdsourcing experiment
- Acoustic-prosodic characteristics of trustworthy TTS

Motivation

Motivation

- Trust is essential for effective communication and collaboration
- In human-human interaction AND human-computer interaction
- We understand a great deal about signals of trust in *human* speech
- But have a limited understanding of how humans perceive trustworthiness in *synthesized* speech

What makes a conversational agent sound trustworthy?

Previous work

- Acoustic-Prosodic and Lexical Cues to Deception and Trust: Deciphering How People Detect Lies (Chen & Levitan et al. 2020)
- The sound of trustworthiness: Acoustic-based modulation of perceived voice personality (Belin et al. 2017)

The sound of trustworthiness: Acoustic-based modulation of perceived voice personality (Belin et al. 2017)

- How should one say "hello" to be perceived as trustworthy by new listeners?
- Generate high and low trustworthiness speech stimuli
- Evaluate perception of trustworthiness with online study

Synthesis of Trusthworthy/Untrustworthy stimuli

- STRAIGHT toolkit in Matlab
- Decompose natural speech stimulus into 5 parameters:
 - FO, frequency, spectro-temporal density, aperiodicity
- Manipulate and combine parameters
- Synthesize into a novel voice stimulus

Trust continuum stimuli

Control stimuli

Correlation between acoustics and trust ratings (*r*=0.99, *p*=0)

Intonation and perceived trustworthiness

Time (ms)

Current Study: Data Collection

- Speech stimuli preparation
- Crowdsourced perception study

Text selection

- Emotional Support Conversations Dataset (Liu et al. 2021)
- 1300 crowdsourced conversations between human help-seeker and virtual supporter
- Application that requires trust and vulnerability from the user
- We select sentences labeled as supporter **questions**

Amazon Polly Neural TTS

- State-of-the-art, commercial TTS system
- Integrated with dialogue systems and conversational robots
- Supports voice alterations using SSML
- Pre-trained male and female voices

Speech Synthesis Markup Language (SSML)

Acoustic-prosodic features

- Pitch
- Intensity
- Speaking rate

Total speech stimuli

- 27 prosodic profiles
 - 3 features (pitch, intensity, rate) x 3 settings (low, medium, high)
- 2 voices
 - 1 male ("Matthew"), 1 female ("Joanna")
- 10 question utterances
- Total: 540 speech samples

Mean feature values

Level	Intensity		Pit	tch	Speaking rate		
	F	Μ	F	Μ	F	Μ	
High	57.2	55	203	131	294	321	
Med	52	51	163	110	236	256	
Low	49	47	131	103	192	205	

Examples

• Low pitch, intensity, speaking rate

• Medium pitch, intensity, speaking rate

• High pitch, intensity, speaking rate

Crowdsourced Perception Study

- Listen to 20 audio clips
- Rate speaker traits with 5-point Likert scale
 - Trustworthy, lively, empathetic, respectful, cold, engaging
- Quality control: transcription task
- Listener traits:
 - Ten Item Personality Inventory (TIPI)
 - Gender

Crowdsourced Perception Study

- 135 participants (71 F, 63 M)
- Each audio sample was rated by 5 unique raters
- 2700 judgments of 540 speech stimuli
- All judgments are z-normalized by rater

Inter-Annotator Agreement

• Krippendorff's alpha

	trustworthy	lively	natural	boring	empathetic	respectful	cold	engaging
all raters	0.21	0.18	0.17	0.2	0.2	0.18	0.22	0.2
F raters	0.13	0.08	0.08	0.07	0.1	0.1	0.12	0.1
M raters	0.17	0.13	0.14	0.17	0.14	0.15	0.16	0.13

Average ratings per trait

	trustworthy	lively	natural	boring	empathetic	respectful	cold	engaging
all raters	3.66	3.66	3.48	2.6	3.34	3.7	3	3.6
F raters	3.69	3.7	3.6	2.5	3.3	3.6	3	3.6
M raters	3.66	3.6	3.4	2.6	3.3	3.7	3	3.5

Questions

- How do raters define trustworthiness in terms of other speaker traits?
 - Lively, empathetic, respectful, cold, engaging
- What are the acoustic-prosodic characteristics of trustworthy speech?
 - And other speaker traits?
- How do listener characteristics (gender, personality) affect their perception of trustworthiness and other speaker traits?

Correlation analysis of speaker attributes

trustworthy	1.00 p=0.000	0.45 p=0.000	0.50 p=0.000	-0.47 p=0.000	0.34 p=0.000	0.45 p=0.000	-0.27 p=0.000	0.45 p=0.000	
lively	0.45 p=0.000	1.00 p=0.000	0.48 p=0.000	-0.36 p=0.000	0.18 p=0.000	0.36 p=0.000	-0.19 p=0.000	0.36 p=0.000	
natural	0.50 p=0.000	0.48 p=0.000	1.00 p=0.000	-0.38 p=0.000	0.31 p=0.000	0.36 p=0.000	-0.21 p=0.000	0.48 p=0.000	- 0.8
boring	-0.47 p=0.000	-0.36 p=0.000	-0.38 p=0.000	1.00 p=0.000	-0.13 p=0.000	-0.24 p=0.000	0.23 p=0.000	-0.24 p=0.000	- 0.6 - 0.4
empathetic	0.34 p=0.000	0.18 p=0.000	0.31 p=0.000	-0.13 p=0.000	1.00 p=0.000	0.31 p=0.000	-0.22 p=0.000	0.41 p=0.000	- 0.2 - 0.0
respectful	0.45 p=0.000	0.36 p=0.000	0.36 p=0.000	-0.24 p=0.000	0.31 p=0.000	1.00 p=0.000	-0.14 p=0.000	0.50 p=0.000	0.2
cold	-0.27 p=0.000	-0.19 p=0.000	-0.21 p=0.000	0.23 p=0.000	-0.22 p=0.000	-0.14 p=0.000	1.00 p=0.000	-0.23 p=0.000	
engaging	0.45 p=0.000	0.36 p=0.000	0.48 p=0.000	-0.24 p=0.000	0.41 p=0.000	0.50 p=0.000	-0.23 p=0.000	1.00 p=0.000	
	trustworthy	lively	natural	boring	empathetic	respectful	cold	engaging	

Acoustic-prosodic characteristics of trustworthy TTS

Intensity	Pitch	Rate	Gender	Avg Rating
medium	medium	medium	М	4.1
high	high	medium	F	4
low	high	low	Μ	3.95
medium	high	medium	Μ	3.91
medium	high	low	F	3.9
low	low	high	Μ	3.2
high	low	high	Μ	3.15
medium	medium	high	Μ	3.15
high	low	high	F	3
high	medium	high	Μ	2.9

GLS Regression Analysis

Features	trustworthy		
	r	р	
intensity low	-0.13	0	
intensity medium	0.31	0	
intensity high	-0.17	0	
pitch low pitch medium	-0.17	0	
pitch high	0.29	0	
speaking rate low	0.3	0	
speaking rate medium speaking rate high	0.4	0	

How does listener gender affect their perception?

- Female listeners were more likely to perceive speakers as natural (r=-0.18) and empathetic (r=-0.07)
- Male listeners were more likely to perceive speakers as boring (r=0.11)

How does listener personality affect their perception?

Summary

- Crowdsourced perception study of trustworthy synthesized speech
- Identified specific patterns of synthesized speech associated with perceived trustworthiness
- Listener gender and personality traits may affect perception
- Next steps: explore the role of lexical factors
 - Dialogue act
 - Politeness
 - Complexity

Thank you!

- Yuwen Yu: PhD student, CUNY Graduate Center
- Ghazanfar Shahbaz: Previous undergraduate student, Hunter College
- Funding: NSF EAGER

Questions?