## WordsEye - a platform for creating 3D worlds with language

Bob Coyne coyne@cs.columbia.edu

## Historical overview of text-to-graphics



## Varieties of Text-to-Graphics Systems

- Type: picture/scene construction vs virtual worlds vs animation vs sequential panels
- Domain-specificity: e.g. car accident simulations
- Graphical capability and style: simple blocks to 2D images to stylized 2D to photorealistic 3D. Animated characters?
- Interactivity: state-based vs stateless? User in the loop? Iteratively refine results? User interface?
- Language processing and input form: templates, real-world text, user-generated text.
- Technique-oriented: inference, graphic primitives, computational geometry, constraints, machine learning



## Text-to-Graphics Systems: SHRDLU

- SHRDLU is an early natural-language understanding computer program that was developed by Terry Winograd at MIT in 1968-1970.
- The user carries on a conversation with the computer, moving objects, naming collections and querying the
 state of a simplified "blocks world", essentially a virtual box filled with different blocks.
- The name SHRDLU was derived from ETAOIN SHRDLU, the arrangement of the letter keys on a Linotype machine, arranged in descending order of usage frequency in English.



## Text-to-Graphics Systems: SHRDLU

```
Person: PICK UP A BIG RED BLOCK.
Computer: OK. (does it)
Person: GRASP THE PYRAMID.
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO
THE BOX.
Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM
HOLDING.
Computer: OK. (does it)
Person: WHAT DOES THE BOX CONTAIN?
Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.
Person: WHAT IS THE PYRAMID SUPPORTED BY?
Computer: THE BOX.
Person: HOW MANY BLOCKS ARE NOT IN THE BOX?
Computer: FOUR OF THEM.
Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE WHICH I TOLD YOU TO PICK UP?
Computer: YES, THE RED CUBE.
Person: IS IT SUPPORTED?
Computer: YES, BY THE TABLE.
Person: CAN THE TABLE PICK UP BLOCKS?
Computer: NO.
Person: CAN A PYRAMID BE SUPPORTED BY A BLOCK?
Computer: YES.
```


## Text-to-Graphics Systems: Comic Chat

- Comic Chat [Kurlander et al., 1996] converts chat streams to comic book panels with the participants' dialog assigned to different 2D graphical comic characters.
- The emphasis of this system is on the presentational style and graphical layout of the resulting cartoon panels. The characters' gestures and facial expressions are determined by a set of simple rules.
- For example, greeting words in the chat will cause the chat character to be put into a waving pose. And self-references (such as $I$ or $I^{\prime} l l$ ) will cause the
 character to point to itself.


## Text-to-Graphics Systems: Carsim

## Johansson et al.: Carsim (2004): A system to visualize written road accident reports as animated 3d scenes

Corpus of 200 accident reports from Swedish newspapers.

- Length varies from couple sentences to over a page
- Style varies from very detailed to implicit
- Additional reports from STRADA database

Example: A fatal accident took place tonight south of Vissefjarda on Road 28. A car carrying two persons departed from the road in a left-hand curve and crashed at a high speed into a spruce. The passenger, who was born in 1984, died. The driver, who was 21 years old, is severely injured and is taken care of in a hospital. The police suspects that the car they were traveling in, a new Saab, was stolen in Emmaboda and will investigate it today. (translated)


## Text-to-Graphics Systems: PAR

- The PAR System is a graphical semantic framework that uses language to control animated characters in a closed pre-constructed virtual environment.
- The PAR (Parameterized Action Representation) framework represents AGENT, SOURCE, GOAL, PATH, and other verb arguments. A PAR gives a complete representation of the action. Each action also has applicability conditions, pre-conditions, and post-assertions.
- Input is parsed and used to instantiate a PAR. References are grounded in objects in the environment. The system
 supports a limited set of actions (walking, sitting down on a chair or bed, standing up, talking to others, climbing a ladder, opening a door, shaking hands, drinking).


## Current approach - 2D diffusion models

- Trained on labeled images (not 3D - works on pixels)
- Produces visually compelling and relevant output for almost any input.
- Very successful both technically and commercially. Midjourney has achieved over $\$ 200$ million in revenue with 40 employees, without any external investors.
- Intellectual property issues and lawsuits
- No explicit objects or world model (making it difficult to control details and spatial relations).
- Platforms: Midjourney, Dall-E, Stable Diffusion, and others


## Midjourney



A Midjourney-created image of Pope Francis wearing a puffer jacket, which went viral in 2023


Prompt: A cowboy wearing a tuxedo on the moon

## Stable Diffusion



Stable Diffusion is open source

Prompt: "a photograph of an astronaut riding a horse"

## Dall-E

Dall-E 3


Prompt: A paper craft art depicting a girl giving her cat a gentle hug. Both sit amidst potted plants, with the cat purring contentedly while the girl smiles. The scene is adorned with handcrafted paper flowers and leaves.

## Sora - Al generated video



Prompt: Tour of an art gallery with many beautiful works of art in different styles.

## Sora - ai generated video



Prompt: Beautiful, snowy Tokyo city is bustling. The camera moves through the bustling city street, following several people enjoying the beautiful snowy weather and shopping at nearby stalls. Gorgeous sakura petals are flying through the wind along with snowflakes.

## Sora - ai generated video



Prompt: Five gray wolf pups frolicking and chasing each other around a remote gravel road, surrounded by grass. The pups run and leap, chasing each other, and nipping at each other, playing.

## Let's talk about the benefits of 3D...



## Diffusing models - IP issues

- Generative AI images not protected by copyright law
https://www.reuters.com/legal/ai-created-images-lose-us-copyrights-test-new-technology-2023-02-22/
- Generative AI images can plagiarize existing art. For example, Midjourney produced these recognizable images of The Simpsons.
https://spectrum.ieee.org/midjourney-copyright



## 3D graphics



Wire-frame 3D polygonal mesh

Objects represented by 3D meshes.
Used in computer games, films, special effects, product design, architecture, etc.


Rendered 3D model

## 3D graphics

Polygonal meshes to represent 3D objects


## 3D graphics

Rendered scene generated from polygon mesh, surface attributes, and light sources


## 3D graphics

It's an explicit world model - can be re-rendered (or animated) from ANY point of view. Objects can be arbitrarily and independently modified.


3D graphics can depict anything imaginable, but

## 3D tools are complex



## WordsEye - Using language to create interactive 3D worlds

WordsEye on the web

## WordsEye on the web (2015-2021)

- 80K registered users
- 28 K scenes posted to Gallery
- 500 users with > 10 sessions
- A few hard-core users online 100+ hrs/month

Problem: While some users became were able to create compelling scenes, others had difficulties.

- Non-real-time camera made it hard to adjust viewpoint
- Spatial relations were tedious to specify


## WordsEye web interface



## WordsEye user examples

Sunset on the Marsh


Input text: a pond is in the swamp. sky. a dark wood boat is 10 feet behind and - 12 feet left of the pond. it faces left. a person is sitting in the boat. the person faces right. the boat's oar is black. 2 lights are 4 feet right of and above the person. camera light is black. sun is linen. @ nheiges

Wolf moon


Input text: sky is black.ground is invisible. a 300 inch tall moon.a 250 inch tall black wolf is in front of the moon the wolf is facing west. @kawe

## WordsEye user examples

Fishing


Input text: a carving. fish is -2 inch above carving. fish is facing southeast. fish is leaning 85 degrees to right. mauve 2.6 foot tall compass is -1 inch right of carving. compass is facing right. 3.2 foot tall bordeaux wine mauve sun symbol is -3 inch in front of carving. ground is shiny pond green. 6 foot tall white first mannequin is 3.5 foot behind carving. mannequin is facing up. mannequin is facing right. small arrow is 2 inch in fish. arrow is leaning 90 degrees to front. 6 foot tall clear second mannequin is 1.3 foot above first mannequin and -5 foot to left....
@tane69
"Excuse me Miss, I'm looking for the Brunt Ice Shelf..."


Input text: Statue of Liberty is -33 feet above a shiny lake. The lake is 50 feet wide water. New York backdrop. Camera light is black. A huge duck is -17.1 feet above and -2 feet right of and behind the Statue of Liberty. It is facing southwest.
@hedgehog1965

## WordsEye user examples

## Waiting for the 13:15



Input text: a elephant. A man is 1 feet right of the elephant. A train is in front of the man.it is facing left. The train is right of the man.shiny ground.

## WordsEye user examples

## Disco Lights



## WordsEye user examples

## Walk Into My Parlour



Input text: a mike. stage backdrop. a huge fly is -. 85 feet above and -3 feet right of and -. 1 feet in front of the mike. it leans 60 degrees to the northeast. the wing of the fly is 1 inch tall shiny [texture] .the body of the fly is scales. it faces northeast. a giant metal web is in front of and -3 feet above the mike. it leans back. a 3.7 feet tall and 3 feet wide wood table is -1.8 feet right of and -7 feet above the mike . it leans 10 degrees to the southeast. it faces southwest. a very huge shiny spider is -.37 feet above the table. a silver plate is . 11 feet left of and .11 feet in front of and -. 43 feet above the spider. it leans 7 degrees to the southeast.

## WordsEye user examples

## Everyone Needs a Lucky Pudding This Christmas



Input text: A large shiny shilling is in a cake. It is leaning 10 degrees to the back. Fireplace backdrop. A gingerbread man is 2 inch left of the cake. It is facing east. Backdrop is 20\% shiny. Sky is Christmas. Sky is leaning front. The cake is on a Christmas table. A woman is -9 inch right of and -4.6 feet above and -1 foot behind the cake. She is facing west. She is leaning front. Camera light is black. An orange light is above and behind and left of the cake. A lemon light is in front of and above the shilling. A 9 inch high glass is behind and -3.7 inch right of the cake.

## WordsEye user examples

## You're so vain



Input text: a entryway. a man is -16 feet left of and -9 feet in front of and -8.78 feet above the entryway. a 9 feet tall and 12 feet long marble wall is left of the entryway. it faces left. it is noon. sun is dim ochre brown. ambient light is delft blue. a fjord blue light is right of and in front of the man. 1st woman is 6 feet left of and 1 feet behind the man. she faces the man. the dress of the woman is 6 inch tall [texture]. a 6 feet wide yacht painting is -6 feet above and -7 feet behind and 1 inch right of the wall. it faces right. the frame of the painting is texture. a very tiny apricot ghost is -1.38 feet above and -9.3 inch in front of and -1.2 feet left of the man. it leans back. a wine bottle is -3.9 feet above and -8 inch left of and -1 feet in front of the man. it leans 45 degrees to the left. it faces southwest. 2nd woman is 1 feet in front of the 1st woman. she faces the 1st woman. a storm blue light is left of the 1 st woman. a 49 feet tall and 1.2 feet deep and .8 feet wide pewter gray fedora is -. 52 feet above and -1.44 feet behind and -1.6 feet left of the man. it faces southeast. it leans to the front.

## WordsEye World

- Work in-progress
- Based on Unity game engine for real-time 3D on the web
- Create an interactive 3D world vs a rendered 3D scene
- Refer to objects in your scene as you iteratively build vs deriving scene solely from a single block of text.
- Includes the ability to specify simple real-time actions in addition to the scenes themselves


## WordsEye World demo



## How it works

## Pipeline



Display updated scene graph in Unity App (User can manipulate the 3D camera viewpoint)


## New text input

"An elephant is in front of the first tree"

Parse \& interpret new text

Reference resolution
Merge: "first tree" with first oak tree in the scene

Update semantics/graphics
Generate scene graph \& display in Unity App

$\square$

## Semantic representation

Meaning represented as concepts and semantic relations applied to them.

Concepts - represent nouns or other referable entities

- Objects, collections, types, events, anonymous instances ...
- Structured in an IS-A hierarchy.

Semantic Relations - represent verbs, adjectives, prepositions, adverbs. Relations assert facts and give meaning to the concepts they are applied to.

## Concepts and lexical items



## Lexicon \& Concepts $\rightarrow$ Objects

## 15K nouns

ELECTRONIC-CAR-KEY.N (electronic car key, car key) ELECTRONIC-CIGARETTE.N (electronic cigarette) ELECTRONIC-DEVICE.N (electronic device, electronics) ELECTRONIC-FUSE.N (electronic fuse, fuse)
ELECTRONIC-INDUCTOR.N (electronic inductor, inductor)
ELECTRONIC-ORGAN.N (electronic organ)
ELECTRONIC-PORT.N (electronic port)
ELEGY.N (elegy)
ELEMENT.N (element)
ELEMENTARY-SCHOOL-STUDENT.N (elementary school student) ELENA-NAME.N (Elena)
ELEONOR-NAME.N (Eleonor)
ELEPHANT.N (elephant)
ELEPHANT-CALF.N (elephant calf)
EMOJI-ELEPHANT.N (elephant emoji)
ELEPHANT-GRAY-COLOR.N (elephant gray)
ELEPHANT-SEAL.N (elephant seal)
ELEPHANT-TRUNK.N (elephant trunk)
ELEVATION.N (elevation)
ELEVATOR.N (elevator)
ELEVATOR-BELL.N (elevator bell)
ELEVATOR-DOOR.N (elevator door)
EMOJI-ELEVATOR.N (elevator emoji)
EMOJI-ELEVEN OCLOCK.N (eleven o'clock emoji)
EMOJI-ELEVEN THIRTY.N (eleven-thirty emoji)
ELF.N (elf)
EMOJI-ELF.N (elf emoji)
ELFA-NAME.N (Elfa)
ELFREDA-NAME.N (Elfreda)
ELI-MANNING.N (eli manning, manning, eli, eli manning)
ELIANE-NAME.N (Eliane)
ELIAS-NAME.N (Elias)
BIBLICAL-ELIJAH.N (elijah)
ELINOR-NAME.N (Elinor)
ELIOT-NAME.N (Eliot)
ELISABETH-NAME.N (Elisabeth)
ELISE-NAME.N (Elise)

## Objects are leaf nodes in the concept ontology



## 3D objects, images, materials, audio samples

12K 3D objects with 70K geometric parts


10K images


Drawinas


Artwork


Textures


Photoaraphs

## 600 materials



14K Audio samples

## animal voice (100)

[1.9 s$]$ bleat (sheep-lamb-bleat-01)
$[1.1 \mathrm{~s}]$ animal call (rhino-call-02)
$[1.3 \mathrm{~s}]$ animal call (rhino-call-01)
$[0.4 \mathrm{~s}]$ bark (panda-bear-bark-02)
$[0.4 \mathrm{~s}]$ bark (panda-bear-bark-01)
$[0.5 \mathrm{~s}]$ animal call (beaver-call-01)
$[1.3 \mathrm{~s}]$ moo (cow-moo-01)
$[1.0 \mathrm{~s}]$ roar (tiger-cub-roar-01)
$[1.4 \mathrm{~s}]$ roar (grizzly-bear-roar-02)
$[1.7 \mathrm{~s}]$ roar (grizzly-bear-roar-01)
$[0.9 \mathrm{~s}]$ animal call (elephant-seal-cub-call-02)
$[0.7 \mathrm{~s}]$ animal call (elephant-seal-cub-call-01)
$[0.7 \mathrm{~s}]$ bark (mattese-bark-01)
$[0.5 \mathrm{~s}]$ bark (labrador-retriever-bark-01)
$[0.3 \mathrm{~s}]$ bark (bull-terrier-bark-01)

## Semantic Relations

N -ary relations applied to concepts.

- Graphical and mereological primitives (eg in-front-of.r, part-of.r)
- FrameNet frames and verbs-as-relations (eg ingestion.eat.r)

All relations can have a (neo-Davidsonian style) SELF argument and an associated concept representing the relation as an entity (e.g. ingestion.eat.self.n for the relation ingestion.eat.r)

## Asserted relations $\rightarrow$ world knowledge and word meaning

polar bear: a white colored bear that lives in arctic


Semantic relation gives meaning to polar bear concept

Concept for "polar bear"

## ...and sentence meaning

The old gray polar bear ate the fish


Concepts for a particular polar
bear and fish

## ...grounding Sentence Meaning

The old gray polar bear ate the fish


## Graphical Semantics

## Graphical Semantics

What is needed to specify the graphical structure of scenes?

- Semantics on objects (affordances and other properties)
- Graphical primitives (constraints) to compose the scene


Resolve "in" to more specific spatial relations using object semantics
$\square$ Boat in water $\rightarrow$ EMBEDDED-IN
$\square$ Dog in boat $\rightarrow$ IN-CUPPED-REGION
Depends on object shape and function

The boat is in the ocean. The dog is in the boat.

## Intrinsic Properties of Objects

Represented as asserted semantic relations

All 3D objects have an default size and orientation that can be inherited through ISA hierarchy

Other graphical and functional properties. E.g.

- Constrained axes, segmentation, length axis
- Embedding distance (e.g. boat waterline)
- Vertical surface item (e.g. sconce)

Spatial regions as affordances

## Regions Used to Create Affordances



## Spatial prepositions



Salient regions are pre-designated on a

"A robin is on the cat" per-object basis. e.g. for ON the cat

## Interpretations of spatial prepositions

| Spatial relation | Scene elements |
| :--- | :--- |
| ENCLOSED-IN | Chicken in cage |
| EMBEDDED-IN | Horse in ground |
| IN-CUP | Chicken in bowl |
| ON-TOP-SURFACE | Apple on wall |
| ON-VERTICAL-SURFACE | Picture on wall |
| PATTERN-ON | Brick-texture on wall |
| UNDER-CANOPY | Vase under umbrella |
| UNDER-BASE | Rug under table |
| STEM-IN-CUP | Flower in vase |
| LATERALLY RELATED | Wall behind table |
| LENGTH AXIS | Wall |
| DEFAULT SIZE/DIRECTION | All objects |
| REGION | Right side of |
| DISTANCE | 2 feet behind |
| SIZE | Small and 16 ft |
| ORIENTATION | facing |



Input text: A large magenta flower is in a small vase. The vase is under an umbrella. The umbrella is on the right side of a table. A picture of a woman is on the left side of a 16 foot long wall. A brick texture is on the wall. The wall is 2 feet behind the table. A small brown horse is in the ground. It is a foot to the left of the table. A red chicken is in a birdcage. The cage is to the right of the table. A huge apple is on the wall. It is to the left of the picture. A large rug is under the table. A small blue chicken is in a large flower cereal bowl. A pink mouse is on a small chair. The chair is 5 inches to the left of the bowl. The bowl is in front of the table. The red chicken is facing the blue chicken. . .

## Interpretations of "of"



Containment: bowl of cats


Grouping: stack of cats


Part: head of the cow


Substance: horse of stone


Dimension: height of horse is..


Representation: Picture of girl

## Resolving "Of" based on arguments

| Text (A of B) | Resulfing Semantic Relation | Condfitions |
| :--- | :--- | :--- |
| Bowl of cherries | CONTAINER-OF (bowl, cherries) | $\mathrm{A}=$ container, $\mathrm{B}=$ plurality-or-mass |
| Slab of concrete | SUBSTANCE-OF (slab, concrete) | $\mathrm{A}=$ entity, $\mathrm{B}=$ substance |
| Picture of the girl | REPRESENTS (picture, girl) | $\mathrm{A}=$ representing-entity, $\mathrm{B}=$ entity |
| Arm of the chair | PART-OF (chair, arm) | $\mathrm{A}=$ part-of(B), $\mathrm{B}=$ entity |
| Height of the tree | DIMENSION-OF (height, tree) | $\mathrm{A}=$ size-property, $\mathrm{B}=$ physical-entity |
| Stack of plates | GROUPING-OF (stack,plates) | $\mathrm{A}=$ arrangement, $\mathrm{B}=$ plurality |

## Inferred semantic relations

Prepositions (interpret/resolve the relation)

- the picture of flowers $\rightarrow$ the picture represents flowers rel(arg1, arg2) $\rightarrow$ representation-of( $\arg 1, \arg 2)$

Noun-noun compounds (infer the missing relation)

- the wood table $\rightarrow$ the table is made of wood

$$
\arg 1 \arg 2 \rightarrow \text { made-of(arg1, arg2) }
$$

Metonymy and regular polysemy (infer the missing relation and arg)

- the cereal on the shelf $\rightarrow$ the cereal box is on shelf, and it contains cereal arg $\rightarrow$ container-of(cereal-box, arg)


## Spatial reference frames



## Spatial reference frames

Natural language descriptions of spatial scenes describe the location of one thing with respect to other things.

In a spatial description, something (the figure) is generally located with respect to something else (the ground).

We want to know in which direction from a ground we need to search to find the figure. A coordinate system comes into play.

## Spatial reference frames

Different types of reference frames:
Egocentric - coordinate systems anchored to the body of an observer
Object-centric (Intrinsic / Allocentric) — coordinate systems defined by intrinsic features of objects in the environment, independent of the observer.

- Relative to the ground object (in a figure / ground relation)
- Relative to an implicit background (stage-centric)

Absolute - e.g. Boston is north and east of New York.
Combinations - where ego-centric position or an additional context mediates the given object-centric reference frame

## Spatial frames of reference

Egocentric


The man is in front of the couch

## Spatial frames of reference

Egocentric


The man is right of the couch

## Spatial frames of reference

## Object-centric (couch)



The man is in front of the couch.
The dog is right of the couch.

## Spatial frames of reference

Stage-centric (room)


The man is right of the couch

## Frames of reference (egocentric)

Same location. Description changes for same scene with different egocentric reference frames


Egocentric: The zombie is left of the tree.


Object-centric (fence): The zombie is right of of the tree.

## Frames of reference

Orientation of car establishes object-centric reference frame


Object-centric (car): The zombie is in front of the car


Object-centric (car): The zombie is behind the car

## Frames of reference

Fence has no well-defined front vs back. So, object-centric reference frame is mediated by viewpoint.


Object-centric (fence): The zombie is behind the fence Stage-centric: The zombie is left of the fence


Object-centric (fence): The zombie is in front of the fence Stage-centric: The zombie is left of the fence

## Frames of reference

The vase has no intrinsic orientation. So use stage-centric or egocentric reference frames


Stage-centric: The zombie is right of the vase


Stage-centric: The zombie is left of the vase

## Frames of reference (stage-centric)



Stage-centric: An astronaut is right of the couch Stage-centric: A dog is in front of the couch

Object-centric (couch): A astronaut is in front of the couch Object-centric (couch): A dog is left of the couch

## Frames of reference (inferred reference frames)



## "the 2nd mouse is on the table to the left of the 1st mouse"

Figure: 2nd mouse
Ground: 1st mouse
Reference frame: table

The added constraint of "on the table" can imply using the table's intrinsic reference frame vs the 1st mouse.
"The bookcase is against the wall. It is right of the couch"

AGAINST introduces the wall as the reference frame, that gets combined with "right of couch".

## Frames of reference (some factors)

What is the most natural frame of reference to use, given:

- Input text
- Existing scene


## Factors

- Do surrounding objects imply or establish a stage-centric reference frame?
- Does viewer (ego-centric) location mediate the choice of object-centric ref frame?
- Ground object intrinsic properties: have an identifiable front vs back? Does it have any natural orientation or is it the same from all angles.
- Does the text imply object-centric or stage-centric or viewer centric
- Does figure orientation matter?
- Do additional (possibly pre-existing) constraints affect the interpretation of the given constraint.
- Is the model simple enough to allow the user predict the system's interpretation.


## Referring expressions



## Reference resolution

Given versus new information is a distinction between information that is assumed or supplied by the speaker and that which is presented for the first time. [Prince 1981]

Text with text: In text, we must determine if two references, within the text, are to the same object or not. If they are, then they are represented by a single entity, and any references to them (including attributes) are merged.

Text with scene: Text can also refer to objects in the current scene. References must then be merged with the scene. Otherwise a new object is introduced into the scene.

## Reference resolution (within text)

## Definite vs indefinite articles.

- "A chair is near the couch. A cat is on the chair" [merge]
- "A chair is near the couch. A cat is on a chair" [new]


## Membership in collections

- "A cat and dog are at the door. The animals are hungry." [merge]
- "Five cats and three dogs are out in the yard. A dog started chasing a cat." [merge new individuals with group]


## Sub-types

- "A Poodle is sleeping on the lawn. The dog is very old." [merge]
- "A dog is sleeping on the lawn. The poodle is very old." [new]


## Attributes as identifiers

- "The red tree is 20 feet tall. The red tree is near the house" [merge]
- "The red tree is 20 feet tall. The tall tree is near the house" [new]

Various other factors (e.g. position in sentence - subject or direct object)

## Reference resolution (merging with scene)

Many of the same factors (indefinite/definite reference, subtypes, ...) apply. But the objects in a scene are fully grounded. That allows arbitrary (previously unstated) properties of those objects to be referenced and cause merging.

## Definite/indefinite references

- Chair in scene + "The chair..." [merge]
- Chair in scene + " A chair..." [separate]


## Intrinsic properties

- "The dead tree is..." [find and merge]

Computed properties

- "The dog near the tree is 3 feet tall" [find and merge]

Relational attributes (intrinsic or computed)

- "The man with the hat is..." [find and merge]


## Merging with scene and text



A man is left of the tree.
A hunter is right of the tree.

- No textual merge between man

Note: "Hunter" happened to be a woman and "man" happened to be Santa. They can subsequently be referred to accordingly.
and hunter.

- No scene merge for man or hunter, so new objects added.
- Tree merges textually with itself and then with the tree in the scene.

Santa is blue.
He is facing the woman

- Santa and he textually merge. (Since Santa is a man).
- Santa/he merges with the scene object.
- Woman merges with the scene object.


## Computed scene references

The man near the table is facing left.


The short man is tinted blue.

## Gestural references

## Deictic gestures

These gestures are also known as pointing where children extend their index finger, although any other body part could also be used, to single out an object of interest. Deictic gestures occur across cultures and indicate that infants are aware of what other people pay attention to.

Gestures in language acquisition - Wikipedia

Examples: (indicating) here, there, that, it, those

## Referring to HERE and THERE


"A small robin is THERE"



