Multimodal Humor Detection

Lin Ai

COMS 6998

Spring 2022

Why Study Humor?

- To understand human interaction
- To detect when people are being humorous rather than serious to evaluate the content of what they say
- To learn the characteristics of humorous speech to be able to synthesize it (e.g. for robots, chatbots, games, advertisements)
- Because it's interesting...

How Do We Define Humor?

- 1. Producer + Perceiver
- 2. Positive emotional reactions (laughter)
- 3. Highly individualistic & cultural specific

Lack of multimedia data annotated with humor

Humor Detection in Text

- 16k one-liners (Mihalcea and Strapparava, 2005)
 - Humor-Specific Stylistic Features: alliteration/rhyme, antonymy, adult slang
 - "A clean desk is a sign of a cluttered desk drawer"
- One-liners + 1k news article from "The Onion" (Mihalcea and Pulman, 2007)
 - Human-centeredness and negative polarity
 - "Take my advice; I don't use it anyway"
- The New Yorker Cartoon Caption Contest (Radev et al, 2015)
 - Negative sentiment, human-centeredness
 - "If that 's theseus, I'm not here."

Humor Detection in Text

- Extract humor anchor in one-liners (Yang et al., 2015)
 - The subset of candidates that provides the maximum decrement of humor scores
 - "The one who invented the door knocker got a No-bell prize."
- 1k tweets (Zhang and Liu, 2014)
 - Phonetic + morpho-syntactic + lexico-semantic + pragmatic + affective features
 - "I generally avoid temptation unless I can't resist it. Mae West #quote #humor"
- TED talk trancripts (Chen and Lee, 2017)
 - Sentences containing or immediately followed by markup '(Laughter)'
 - "If you're a dog and you spend your whole life doing nothing other than easy and fun things, you're a huge success! (Laughter) "

Multimodal Humor Detection

- TV sitcoms
 - Use canned laughters to label humor
 - FRIENDS (Purandare and Litman, 2006)
 - The Big Bang Theory (Bertero and Fung, 2016)
 - Seinfeld (Bertero and Fung, 2016)
 - No study has shown that canned laughter actually represents the audience's perception of humor.

Fig. 1: Example from The Big Bang Theory:

LEONARD: I did a bad thing. SHELDON: Does it affect me?

LEONARD: No.

SHELDON: Then suffer in silence. LAUGH

Danmu/bullet curtain — *Time-aligned Comments*

https://www.bilibili.com/video/BV1nJ411h7ax?share_source=copy_web https://www.nicovideo.jp/

```
动物建国后不准成精!
               23333333
   233333333333333要不起
                  233333
哈哈
       23333333
                  2333333333333333333333
      2333333
                哈哈哈哈哈哈哈哈哈哈哈
                        哈哈哈哈
666666
    2333333333333333
    哈哈哈哈哈哈哈哈哈哈哈哈哈哈
   哈哈哈哈哈哈哈哈哈哈哈哈哈
                        哈哈哈哈
```

Hypothesis

Audiences tend to respond to humor in videos with laughing A high volume of laughing comments at a given time

- Laughing indicators
 - '233' (internet meme)
 - '哈哈' & 'hh' (onomatopoeia of laughter)

Data Collection

'Papi酱'

- A Chinese influencer
- Famous for discussing trending topics in a humorous way
- 7 million subscribers, 660 million views on Bilibili.com

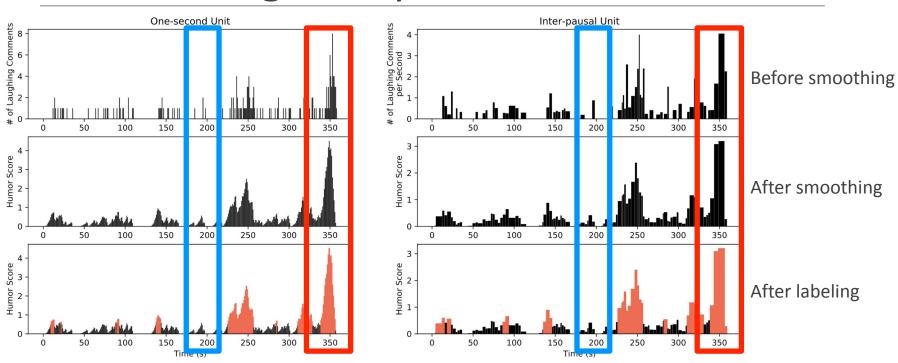
Data Collection

- We use early videos created by 'Papi酱'
 - Filtered out videos containing dialects and advertisements
 - 100 videos, 93,593 time-aligned comments
 - 5,064 comments with '233'
 - 7,255 comments with '哈哈'
 - 730 with 'hh'
- Segmentation
 - One-second unit level
 - Inter-pausal unit (IPU) level: 3 seconds on average

Constructing Unsupervised Labels

- Users typically do not pause to comment
- Response Time = reaction time + typing time
- Smooth number of laughing comments by response time distribution
- Set threshold to distinguish humor from non-humor segments
- One-second unit level
 - 6,508 humorous segments; 17,847 non-humorous segments
- Inter-pausal unit (IPU) level
 - 2,531 humorous segments; 5,394 non-humorous segments

Constructing Unsupervised Labels



Verification: Human Annotation

- We need a manually annotated test set to verify our unsupervised labeling method
- Three human annotators
 - Label each second with humor/non-humor
 - Average Cohen's Kappa: 0.65
 - Fleiss' Kappa: 0.65
- Gold labels on test set: majority vote
 - Unsupervised labels' accuracy
 - One-second units: 0.78
 - Inter-pausal units: 0.76

Features — Acoustic-Prosodic

- Tools: Praat, openSMILE, Google ASR API
- Features:
 - Min, max, mean, range, std of pitch
 - Min, max, mean, range, std of intensity
 - Pitch existence: whether extractable pitch values exists in the segment
 - 384 features from openSMILE
 - More features, more functions
 - Speaking Rate: Number of characters per second (from ASR transcript)

Analysis - Speech Features

- The existence of pitch is positively correlated with humor
- Exclude segments with no pitch values in the analysis of other speech features

	One-second Unit		Inter-pausal Unit (IPU)	
	t	p	t	p
Pitch existence	8.71	p<0.001	1.57	p=0.116
Then min	3.68	p=0.403	-2.20	p=0.028
Pitch max	4.62	p < 0.001	5.52	p<0.001
Pitch mean	6.21	p < 0.001	4.37	p<0.001
Pitch range	2.40	p=0.016	6.55	p<0.001
Pitch stddev	0.93	p=0.352	3.64	p<0.001
Intensity min	6.91	p<0.001	4.22	p<0.001
Intensity max	16.88	p < 0.001	11.76	p<0.001
Intensity mean	7.02	p < 0.001	3.82	p<0.001
Intensity range	-5.02	p < 0.001	-3.30	p<0.001
Intensity stddev	-3.57	p < 0.001	-2.68	p<0.001
Speaking rate	-10.12	p<0.001	-10.16	p<0.001

Analysis - Speech Features

- Humorous speech has
 - Higher pitch value
 - Larger change in pitch
 - Higher intensity value
 - Smaller change in intensity
 - Slower speaking rate
- Humor techniques
 - Exaggeration and bombast

	One-second Unit		Inter-pausal Unit (IPU)	
	t	p	t	p
Pitch existence	8.71	p<0.001	1.57	p=0.116
Pitch min	3.68	p=0.403	-2.20	p=0.028
Pitch max	4.62	p < 0.001	5.52	p<0.001
Pitch mean	6.21	p < 0.001	4.37	p<0.001
Pitch range	2.40	p=0.016	6.55	p<0.001
Pitch stddev	0.93	p=0.352	3.64	p<0.001
Intensity min	6.91	p<0.001	4.22	p<0.001
Intensity max	16.88	p < 0.001	11.76	p<0.001
Intensity mean	7.02	p < 0.001	3.82	p<0.001
Intensity range	-5.02	p < 0.001	-3.30	p<0.001
Intensity stddev	-3.57	p < 0.001	-2.68	p<0.001
Speaking rate	-10.12	p<0.001	-10.16	p<0.001

Analysis - Speech Features

(Hamlet) In the end, surprisingly and also not surprisingly — everyone died!

Features — Transcript-based

- Tools: Google ASR API, Jieba, LIWC
- Audio preprocessing:
 - 'Papi酱' speeds her videos, so we slowed them down to 0.75 times the original speed for ASR
 - Normalized intensity and pitch
- Transcript preprocessing:
 - Word segmentation using 'Jieba'
- LIWC (CLIWC): 91 word categories:
 - e.g. function words, affect words, social words, etc.

Analysis - Lexical Features

One-second unit level

- Positively correlated with humor:
 - Strategy: Anxiety, risk, netspeak, i
 - Content: Power, drive, religion
- Negatively correlated with humor:
 - Strategy: Cognitive process, insight
 - Content: Sexual, female, biological process

IPU level

- Positively correlated with humor:
 - Strategy: i
 - Content: religion
- Negatively correlated with humor:
 - Strategy: Cognitive process, cause, interrogatives, auxverb, they
 - Content: Female, biological process, body

Analysis - Lexical Features

- Humorous one-liners vs. non-humorous short sentence (Mihalcea and Pulman, 2007)
 - Negative polarity, Human-centeredness
- Negative polarity
 - Negation: not significant
 - Negative emotion: 'anxiety' significant on one-second unit level
- Human-centeredness
 - 'i' (first person pronouns): significant on both one-second unit and IPU level
 - Other personal pronouns: not significant

Features — Visual

- Frame similarity:
 - Assumption: difference between frames may capture visual patterns such as change of scenes and large body movements
 - Extracted 1 frame in each 10ms and compute similarity with neighbouring extracted frames
 - Measure: structural similarity index (SSIM)
 - Features: min, max, mean, range, std

Features — Visual

- Body poses
 - Extraction: AlphaPose
 - 17 keypoints of body junctions
 with confidence scores
 - Used binary features to indicate the appearance of hips and legs
 - Features: mean, std, mean of frame-level differences, std of differences

Features — Visual

- Facial landmarks:
 - Extraction: dlib library
 - 68 coordinates of facial landmarks
 - Preprocessing: rescaled, computed relative position, exclude keypoints for jawline
 - Features: mean, std, mean of frame-level differences, std of differences

Analysis - Visual Features

- SSIM frame similarity
- Humor segments
 - Are unlikely to be motionless
 - But also have fewer complete scene changes

	One-second Unit		Inter-pausal Unit (IPU)	
	t	p	t	p
SSIM min	0.75	p=0.452	3.05	p=0.002
SSIM max	-23.05	p<0.001	-11.34	p<0.001
SSIM mean	-19.83	p < 0.001	-12.63	p<0.001
SSIM range	-6.57	p < 0.001	-4.81	p<0.001
SSIM stddev	-6.51	p < 0.001	-5.77	p<0.001

Analysis - Visual Features

Good news for those who are single! In 2016 — you will still be a single dog.

Analysis - Visual Features

- Body poses:
 - One-second unit: keypoints above hips are significant
 - IPU unit: keypoints above shoulder are significant
 - The movements of keypoints are correlated with humor, but the movement directions are not significant
- Facial landmarks:
 - Most significant keypoints: brows, nose (head-turning information)

Classification Experiments

- 70 videos (unsupervised labels) in training set, 30 videos (human labels) in test set
- Feature dimensions:
 - 396 speech features (11 from Praat, 384 from openSMILE, speaking rate)
 - 91 text features (CLIWC)
 - 522 visual features (5 from frame similarity, 408 from facial landmarks,
 109 from body pose)
- Model: random forest classifier with 1000 estimators

Classification Experiments

- IPU segmentation outperforms one-second unit segmentation.
- Speech features are the most useful.

	One-second Unit	Inter-pausal Unit (IPU)
Speech	0.71	0.76
Text	0.70	0.70
Visual	0.72	0.72
Speech + Text	0.72	0.76
Speech + Visual	0.73	0.75
Text + Visual	0.72	0.72
All Features	0.73	0.75

Future Directions

- Collect more videos from different types of humorous video creators
 - Current videos mainly include humor techniques like exaggeration and bombast
 - Explore larger variety of characteristics in humor
- Apply to different types of emotions and reactions
- Examine other platforms and create automatic labeling of video segments
 - Use videos collected from other sources such as YouTube live chats

Thanks233!

Next Week

Topic: Speech Analysis: Deception and Trust

Any questions?